Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = medium carbon steels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7102 KiB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Viewed by 120
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

27 pages, 4704 KiB  
Article
Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water
by Ioana Maior, Gabriela Elena Badea, Oana Delia Stănășel, Mioara Sebeșan, Anca Cojocaru, Anda Ioana Graţiela Petrehele, Petru Creț and Cristian Felix Blidar
Energies 2025, 18(14), 3634; https://doi.org/10.3390/en18143634 - 9 Jul 2025
Viewed by 336
Abstract
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of [...] Read more.
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of geothermal waters and their effect on thermal installations. Geothermal waters from Bihor County, Romania, have a variable composition, depending on the crossed geological layers, but also on pressure and temperature. Obviously, water transport and heat transfer are involved in all applications of geothermal waters. This article aims to characterize certain geothermal waters from the point of view of composition and corrosion if used as a thermal agent. Atomic absorption spectroscopy (AAS) and UV–Vis spectroscopy were employed to analyze water specimens. Chemical composition includes calcite (CaCO3), chalcedony (SiO2), goethite (FeO(OH)), and magnetite (Fe3O4), which confirms the corrosion and scale potential of these waters. Corrosion resistance of mild carbon steel, commonly used as pipe material, was studied by the gravimetric method and through electrochemical methodologies, including chronoamperometry, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization method, and open circuit potential measurement (OCP). Statistical analysis shows that the medium corrosion rate of S235 steel, expressed as penetration rate, is between 0.136 mm/year to 0.615 mm/year. The OCP, EIS, and chronoamperometry experiments explain corrosion resistance through the formation of a passive layer on the surface of the metal. This study proposes an innovative methodology and a systematic algorithm for analyzing chemical processes and corrosion phenomena in geothermal installations, emphasizing the necessity of individualized assessments for each aquifer to optimize operational parameters and ensure sustainable resource utilization. Full article
(This article belongs to the Special Issue The Status and Development Trend of Geothermal Resources)
Show Figures

Graphical abstract

16 pages, 5802 KiB  
Article
Enhancing the Mechanical Performance of Dual-Phase Steel Through Multi-Axis Compression and Inter-Critical Annealing
by Pooja Dwivedi, Aditya Kumar Padap, Sachin Maheshwari, Faseeulla Khan Mohammad, Mohammed E. Ali Mohsin, SK Safdar Hossain, Hussain Altammar and Arshad Noor Siddiquee
Materials 2025, 18(13), 3139; https://doi.org/10.3390/ma18133139 - 2 Jul 2025
Viewed by 417
Abstract
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined [...] Read more.
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined grain microstructure. Optical micrographs confirmed the presence of ferrite and martensite phases after annealing, with significant grain refinement observed following MAC. The average grain size decreased from 66 ± 4 μm to 18 ± 1 μm after nine MAC passes. Mechanical testing revealed substantial improvements in hardness (from 145 ± 9 HV to 298 ± 18 HV) and ultimate tensile strength (from 557 ± 33 MPa to 738 ± 44 MPa), attributed to strain hardening and the Hall–Petch effect. Fractographic analysis revealed a ductile failure mode in the annealed sample, while DP0 and DP9 exhibited a mixed fracture mode. Both DP0 and DP9 samples demonstrated superior wear resistance compared to the annealed sample. However, the DP9 sample exhibited slightly lower wear resistance than DP0, likely due to the fragmentation of martensite induced by high accumulated strain, which could act as crack initiation sites during sliding wear. Furthermore, wear resistance was significantly enhanced due to the combined effects of the DP structure and Severe Plastic Deformation (SPD). These findings highlight the potential of MAC processing for developing high-performance steels suitable for lightweight automotive applications. Full article
Show Figures

Figure 1

20 pages, 3408 KiB  
Article
Friction Stress Analysis of Slag Film in Mold of Medium-Carbon Special Steel Square Billet
by Xingjuan Wang, Xulin Si, Liguang Zhu, Tianshuo Wei and Xuelong Zheng
Metals 2025, 15(7), 702; https://doi.org/10.3390/met15070702 - 24 Jun 2025
Viewed by 265
Abstract
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between [...] Read more.
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between the frictional stress and the thickness and viscosity of the liquid slag film, and the lubrication state between the cast billet and the mold was evaluated. Based on the actual production data of 40Mn2 steel and combined with the numerical simulation results of the solidification and shrinkage process of the molten steel in the mold by ANSYS 2022 R1 software, the frictional stress on the cast billet in the mold was calculated. It was found that within the range of 44~300 mm from the meniscus, the friction between the cast billet and the mold was mainly liquid friction, and the friction stress value increased from 0 to 145 KPa. Within 300–720 mm from the meniscus, the billet shell is in direct contact with the mold. The friction between the cast billet and the mold is mainly solid-state friction, and the friction stress value increases from 10.6 KPa to 26.6 KPa. It indicates that the excessive frictional stress inside the mold causes poor lubrication of the cast billet. By reducing the taper of the mold and optimizing the physical and chemical properties of the protective powder, within the range of 44~550 mm from the meniscus, the friction between the cast billet and the mold is mainly liquid friction, and the friction stress value varies within the range of 0–200 Pa. It reduces the frictional stress inside the mold, improves the lubrication between the billet shell and the mold, and completely solves the problem of mesh cracks on the surface of 40Mn2 steel cast billets. Full article
(This article belongs to the Special Issue Numerical Modelling of Metal-Forming Processes)
Show Figures

Figure 1

17 pages, 4291 KiB  
Article
The Research on Carbon Deoxygenation of Molten Steel and Its Application in the Converter Steelmaking Process
by Fang Gao and Yanping Bao
Metals 2025, 15(6), 648; https://doi.org/10.3390/met15060648 - 10 Jun 2025
Viewed by 887
Abstract
At the steelmaking temperature, carbon has a strong deoxidation ability. Under the vacuum condition, its deoxidation ability can be further improved, and it can become a stronger deoxidation element than aluminum. The product of carbon deoxygenation is CO, which floats up and detaches [...] Read more.
At the steelmaking temperature, carbon has a strong deoxidation ability. Under the vacuum condition, its deoxidation ability can be further improved, and it can become a stronger deoxidation element than aluminum. The product of carbon deoxygenation is CO, which floats up and detaches from the molten steel in the form of bubbles and does not produce oxide inclusions. Under normal pressure, replacing aluminum with carbon to complete partial deoxidation tasks can not only reduce the generation of inclusions and alleviate the pressure of removing inclusions, but also reduce the consumption of aluminum and save deoxidation costs. In this study, the carbon deoxidation process after the converter was investigated. Firstly, the timing of carbon addition was determined through thermodynamic calculations, and it was found that, in oxygen-enriched molten steel, the priority of the reaction of the deoxidation element was [Al] > [Si] > [C] > [Mn]. Through the carbon and oxygen balance calculation, it is known that the carbon deoxidation effect is greatly affected by the carbon content of the molten steel; for low-carbon steel, carbon can be used for pre-deoxygenation, whereas for medium-carbon and high-carbon steel, carbon can complete most of the deoxidation tasks. Finally, with 45 steel as the research object, the carbon deoxidation process was designed and tested in industry. The results showed that, compared with the aluminum deoxidation process, the number of inclusions in the billet casting of the carbon deoxidation process was reduced by 68.8%, and the carbon deoxidation process had fewer large-sized inclusions in the billet casting. In addition, the carbon deoxidation process uses carbon powder instead of the aluminum block for deoxidation during steel tapping from the converter. The deoxidant cost is reduced by CNY 15.47/ton of steel. From a comprehensive point of view, the application of carbon deoxidation after the converter can reduce aluminum consumption and improve the cleanliness of steel, which is an important way for enterprises to reduce costs and increase efficiency. Full article
(This article belongs to the Special Issue Advances in Continuous Casting and Refining of Steel)
Show Figures

Figure 1

16 pages, 8638 KiB  
Article
Rapid Heating-Driven Variant Selection and Martensitic Refinement for Superior Strength–Ductility Synergy
by Siming Huang, Liejun Li, Haixiao Ye, Xianqiang Xing, Jianping Ouyang, Zhuoran Li, Xinkui Zhang, Songjun Chen and Zhengwu Peng
Materials 2025, 18(11), 2488; https://doi.org/10.3390/ma18112488 - 26 May 2025
Cited by 1 | Viewed by 537
Abstract
This study elucidates the influence of rapid heating (300 °C/s) on martensitic transformation pathways, crystallographic variant selection, and the resulting mechanical performance in a medium-carbon steel. Compared with conventional heating, rapid heating markedly refines the prior austenite grain (PAG) and martensitic substructures, reducing [...] Read more.
This study elucidates the influence of rapid heating (300 °C/s) on martensitic transformation pathways, crystallographic variant selection, and the resulting mechanical performance in a medium-carbon steel. Compared with conventional heating, rapid heating markedly refines the prior austenite grain (PAG) and martensitic substructures, reducing the mean PAG size from 16.08 μm to 5.06 μm and the martensitic block size from 4.24 μm to 2.41 μm. The accelerated austenitizing and quenching promote a higher density of high-angle grain boundaries (HAGBs) and favor variant selection dominated by the closely packed (CP) group. Σ3 twin boundaries are also found to assist variant nucleation and contribute to microstructural complexity. Despite a marginal decrease in tensile strength, rapid-heated steels exhibit significantly enhanced ductility and a 28.3% increase in the product of strength and elongation (PSE) compared to their conventionally treated counterparts. These findings demonstrate that rapid heating not only enables effective refinement of martensitic substructures but also offers a powerful means of controlling variant evolution, thereby achieving a superior strength–ductility synergy in martensitic steels. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 9208 KiB  
Article
Effect of Intermediate Annealing Before Cold Rolling on Microstructure and Mechanical Properties of Medium Manganese Steel and Mechanism of Phase Transformation Plasticity
by Shun Yao, Kuo Cao, Di Wang, Junming Chen and Aimin Zhao
Metals 2025, 15(5), 500; https://doi.org/10.3390/met15050500 - 30 Apr 2025
Viewed by 462
Abstract
To address the issue of cracking in cold-rolled medium manganese steel caused by the formation of a large amount of martensite after hot rolling, intermediate annealing was conducted prior to cold rolling. The research results indicate that after 1 h of intermediate annealing [...] Read more.
To address the issue of cracking in cold-rolled medium manganese steel caused by the formation of a large amount of martensite after hot rolling, intermediate annealing was conducted prior to cold rolling. The research results indicate that after 1 h of intermediate annealing at a temperature of 700 °C, some martensite is replaced by ferrite and residual austenite, leading to a reduction in rolling stress. The dissolution of cementite leads to an increase in the solubility of the alloying elements in austenite. This increases the volume fraction and carbon content of austenite. Following cold rolling and final heat treatment, the Mn content is higher in both martensite and residual austenite, while it is relatively lower in ferrite. Elevated C and Mn content enhances the stability of the austenite. The elongation of the sample with intermediate annealing increased from 17% to 27%, and the yield strength slightly decreased. During the tensile process, ferrite provides plasticity during the early stage of deformation. As strain increases, martensite begins to deform, making a significant contribution to the material’s strength. The TRIP effect of austenite contributes most of the plasticity, especially the stable thin-film residual austenite. When the residual austenite is exhausted, the incompatibility between ferrite and martensite leads to crack propagation and eventual fracture. Full article
Show Figures

Figure 1

20 pages, 8702 KiB  
Article
Quantitative Prediction of Residual Stress, Surface Hardness, and Case Depth in Medium Carbon Steel Plate Based on Multifunctional Magnetic Testing Techniques
by Changjie Xu, Xianxian Wang, Haijiang Dong, Juanjuan Li, Liting Wang, Xiucheng Liu and Cunfu He
Sensors 2025, 25(9), 2812; https://doi.org/10.3390/s25092812 - 29 Apr 2025
Viewed by 424
Abstract
In this study, the methods of tangential magnetic field (TMF), magnetic Barkhausen noise (MBN), and incremental permeability (IP) were employed for in the simultaneous, quantitative prediction of target properties (bidirectional residual stress, surface hardness, and case depth) in the 45 steel plate. The [...] Read more.
In this study, the methods of tangential magnetic field (TMF), magnetic Barkhausen noise (MBN), and incremental permeability (IP) were employed for in the simultaneous, quantitative prediction of target properties (bidirectional residual stress, surface hardness, and case depth) in the 45 steel plate. The bidirectional magnetic signals and target properties were measured experimentally. The results of Pearson correlation analyses revealed that most parameters of the MBN and IP signals are strongly correlated with both residual stress and surface hardness under the influence of multiple target properties. The multiple linear regression (MLR) model demonstrated highly accurate quantitative prediction of residual stress and hardness in the y-direction. However, the simultaneous prediction of residual stress and case depth in the x-direction proved less effective than expected. To address this limitation, an inversion method was developed based on the regression model with the single parameter as the dependent variable and the target properties as the independent variable. By incorporating known magnetic parameters and target properties, the model effectively determined the unknown target properties. After applying the method, the coefficient of determination (R2) for x-direction residual stress increased from 0.89 to 0.96 and the absolute error (AE) of case depth decreased from 0.10 mm to 0.04 mm for case depths below 0.15. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 5879 KiB  
Article
Effect of Post-Weld Heat Treatment Cooling Strategies on Microstructure and Mechanical Properties of 0.3 C-Cr-Mo-V Steel Weld Joints Using GTAW Process
by Syed Quadir Moinuddin, Mohammad Faseeulla Khan, Khaled Alnamasi, Skander Jribi, K. Radhakrishnan, Syed Shaul Hameed, V. Muralidharan and Muralimohan Cheepu
Metals 2025, 15(5), 496; https://doi.org/10.3390/met15050496 - 29 Apr 2025
Viewed by 590
Abstract
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as [...] Read more.
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as it is prone to brittle martensitic formation, which increases the risk of cracking and embrittlement. The present paper focuses on enhancing the microstructure and mechanical properties of 0.3% C-Cr-Mo-V steel by gas tungsten arc welded (GTAW) joints, utilizing post-weld heat treatment and cooling strategies (PWHTCS). A systematic experimental approach was employed to ensure a defect-free weld through dye penetrant testing (DPT) and X-ray radiography techniques. Subsequently, test specimens were extracted from the welded sections and subjected to PWHT protocols, including hardening, tempering, and rapid quenching using air and oil cooling (AC and OC, respectively) mediums. Results show that OC has enhanced tensile strength and hardness while simultaneously maintaining and improving ductility, ensuring a well-balanced combination of strength and toughness. Fractography analysis revealed ductile fracture in AC samples, whereas OC weldments exhibited a mixed ductile–brittle fracture mode. Thus, the findings demonstrate the critical role of PWHTCS, with OC, as an effective method for achieving enhanced mechanical performance and microstructural stability in high-integrity applications. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

10 pages, 3771 KiB  
Article
Effects of Tempering Temperature on the Microstructure and Mechanical Properties of Vanadium-Microalloyed Medium-Carbon Bainitic Steel
by Litang Geng, Zhiwen Tian, Dongyun Sun, Xiaoyong Feng and Fucheng Zhang
Coatings 2025, 15(5), 503; https://doi.org/10.3390/coatings15050503 - 23 Apr 2025
Cited by 1 | Viewed by 504
Abstract
This study examined the impact of tempering temperature on the microstructure and properties of vanadium (V)-microalloyed medium-carbon bainitic steel. A series of heat treatments were performed on the steel, and the microstructural evolution and mechanical properties were systematically investigated through X-ray diffraction (XRD), [...] Read more.
This study examined the impact of tempering temperature on the microstructure and properties of vanadium (V)-microalloyed medium-carbon bainitic steel. A series of heat treatments were performed on the steel, and the microstructural evolution and mechanical properties were systematically investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical testing systems (MTS). The findings revealed that tempering temperature has a significant influence on microstructural changes. Specifically, at 350–450 °C, retained austenite begins to decompose and carbides start to precipitate. At 550–600 °C, bainitic ferrite laths undergo coarsening. Regarding mechanical properties, both tensile strength and yield strength initially increase with tempering temperature before decreasing as the temperature continues to rise. The diffusion and redistribution of carbon atoms during tempering enhance the elongation of all tempered samples compared to their untempered counterparts. Optimal comprehensive mechanical properties are achieved at 450 °C, where precipitation strengthening from vanadium, enhanced stability of retained austenite, and synergistic strengthening effects of decomposition products are most pronounced. This research provides a theoretical foundation for optimizing the heat treatment process of such steels and offers insights into the synergistic effects of V-microalloying and tempering. Full article
Show Figures

Figure 1

19 pages, 5584 KiB  
Article
A Novel Model for Transformation-Induced Plasticity and Its Performance in Predicting Residual Stress in Quenched AISI 4140 Steel Cylinders
by Junpeng Li, Yingqiang Xu, Haiwei Wang, Youwei Liu and Yanlong Xu
Metals 2025, 15(4), 450; https://doi.org/10.3390/met15040450 - 16 Apr 2025
Viewed by 606
Abstract
A better residual stress prediction model can lead to more accurate life assessments, better manufacturing process design and improved component reliability. Accurate modeling of transformation-induced plasticity (TRIP) is critical for improving residual stress simulation fidelity in advanced manufacturing processes. In this work, a [...] Read more.
A better residual stress prediction model can lead to more accurate life assessments, better manufacturing process design and improved component reliability. Accurate modeling of transformation-induced plasticity (TRIP) is critical for improving residual stress simulation fidelity in advanced manufacturing processes. In this work, a novel TRIP model is implemented within a finite element framework to predict residual stress in quenched AISI 4140 steel cylinders. The proposed model incorporates a dual-exponential normalized saturation function to capture TRIP kinetics. Residual stress characterization through X-ray diffraction (XRD) is employed to validate the predictive capability of the finite element model that couples the new TRIP model. In addition, the performance of the new TRIP model in predicting residual stress is compared with traditional TRIP models such as Leblond and Desalos model. Systematic comparison of finite element models incorporating different TRIP models reveals that traditional TRIP models exhibit more deviations from the measurements, while the new TRIP model demonstrates more accurate predictive accuracy, with both the axial and hoop residual stress distribution curves showing a better degree of agreement with XRD results. The findings of this study provide a reliable numerical simulation tool for optimizing the quenching process, particularly for improving fatigue life predictions of critical components such as gears and bearings. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behavior of High-Strength Steel)
Show Figures

Figure 1

17 pages, 4733 KiB  
Article
Distinguishing the Contribution of Extracellular Electron Transfer in the Desulfovibrio caledoniensis-Induced Total Corrosion of Q235 Carbon Steel
by Keliang Fan, Fang Guan, Xiaofan Zhai, Guanhua Jiao, Yugang Sang, Min Jing and Jizhou Duan
Materials 2025, 18(7), 1613; https://doi.org/10.3390/ma18071613 - 2 Apr 2025
Viewed by 504
Abstract
Microbially influenced corrosion (MIC) in anaerobic environments accounts for many severe failures and losses in different industries. Sulfate-reducing bacteria (SRB) represent a typical class of corrosive microorganisms capable of acquiring electrons from steel through extracellular electron transfer processes, thereby inducing severe electrical microbially [...] Read more.
Microbially influenced corrosion (MIC) in anaerobic environments accounts for many severe failures and losses in different industries. Sulfate-reducing bacteria (SRB) represent a typical class of corrosive microorganisms capable of acquiring electrons from steel through extracellular electron transfer processes, thereby inducing severe electrical microbially influenced corrosion (EMIC). Although prior research has underscored the significance of extracellular electron transfer, the contribution of EMIC to the whole MIC has not been comprehensively studied. In this study, Q235 steel coupons were employed in an H-shaped electrochemical cell to conduct electrochemical and coupon immersion experiments, aiming to determine the contribution of EMIC to the overall MIC. The experiments were conducted under two distinct carbon source conditions: 100% carbon source (CS) and 1% CS environments. It was observed that the biotic electrodes exhibited significantly higher cathodic currents, with the most pronounced biological cathodic activity detected in the 100% CS biotic medium. The voltammetric responses of the electrodes before and after changes in the medium confirmed the biocatalytic capability of the attached biofilm in stimulating the cathodic reaction. The proportion of EMIC in MIC was calculated using linear polarization resistance, revealing a trend over time. Additionally, weight loss tests indicated that the contribution of EMIC to the total MIC was approximately 27.69%. Furthermore, the results demonstrated that while the overall corrosion rate was lower in the 1% CS environment, the proportion of EMIC in MIC increased to approximately 37.68%. Full article
Show Figures

Graphical abstract

20 pages, 5665 KiB  
Article
Applied Internet of Things to Analyze Vibration, Workpiece Roughness, and Tool Wear: Case Study of Successive Milling
by Chin-Shan Chen and Pin-Yu Pan
Processes 2025, 13(4), 978; https://doi.org/10.3390/pr13040978 - 25 Mar 2025
Viewed by 780
Abstract
Along with technology development and market change, automated production should be made easier and more intelligent to promote production efficiency and product quality as well as reduce labor and production costs. The introduction of the Internet of Things (IoT) is an important issue [...] Read more.
Along with technology development and market change, automated production should be made easier and more intelligent to promote production efficiency and product quality as well as reduce labor and production costs. The introduction of the Internet of Things (IoT) is an important issue in automated processing. This study aims to apply the Industrial Internet of Things (IIoT) to automated processing systems for real-time monitoring of the condition of production lines and analyze the causal relationship between vibration, surface roughness, tool wear, and take successive milling of medium carbon steel workpieces as a case study. First, automated processing hardware equipment is set up, and software and hardware are required for installing IIoT; then, the IoT App is designed. Second, successive automated processing experiments are preceded. The Taguchi method is utilized in the processing process to find optimized cutting parameters to be the parameter setting values for successive cutting. Three accelerometers are used to detect vibration changes in the cutting process; meanwhile, IIoT is introduced to monitor the condition of the production line. Finally, Using big data analytics acquired in the experiments to verify the processing quality under optimized cutting parameters could make a 4.516% improvement and obtain the vibration value for the best tool change during successive processing as well as to realize the obtainment of current processing information through IIoT. The system would deliver tool change or processing abnormality alerts to users for real-time condition exclusion. To achieve the goal of remote monitoring and intelligent automatic processing. Full article
Show Figures

Figure 1

22 pages, 4990 KiB  
Article
Modeling the Tripartite Coupling Dynamics of Electricity–Carbon–Renewable Certificate Markets: A System Dynamics Approach
by Zhangrong Pan, Yuexin Wang, Junhong Guo, Xiaoxuan Zhang, Song Xue, Wei Li, Zhuo Chen and Zhenlu Liu
Processes 2025, 13(3), 868; https://doi.org/10.3390/pr13030868 - 15 Mar 2025
Viewed by 674
Abstract
To ensure a smooth transition towards peak carbon emissions and carbon neutrality, one key strategy is to promote a low-carbon transition in the energy sector by facilitating the coordinated development of the electricity market, carbon market, and other markets. Currently, China’s national carbon [...] Read more.
To ensure a smooth transition towards peak carbon emissions and carbon neutrality, one key strategy is to promote a low-carbon transition in the energy sector by facilitating the coordinated development of the electricity market, carbon market, and other markets. Currently, China’s national carbon market primarily focuses on the power generation industry. High-energy-consuming industries such as the steel industry not only participate in the electricity market but also play a significant role in China’s future carbon market. Despite existing research on market mechanisms, there remains a significant research gap in understanding how steel enterprises adjust their trading behaviors to optimize costs in multi-market coupling contexts. This study employs a system dynamics approach to model the trading interconnection between electricity trading (ET), carbon emission trading (CET), and tradable green certificates (TGC). Within this multi-market system, thermal power enterprises and renewable generators serve as suppliers of carbon allowances and green certificates, respectively, while steel companies must meet both carbon emission constraints and renewable energy consumption obligations. The results show that companies can reduce future market transaction costs by increasing the proportion of medium to long-term electricity contracts and the purchase ratio of green electricity. Additionally, a lower proportion of free quotas leads to increased costs in the carbon market transactions in later stages. Therefore, it is beneficial for steel companies to conduct cost analyses of their participation in multivariate market transactions in the long run and adapt to market changes in advance and formulate rational market trading strategies. Full article
Show Figures

Figure 1

18 pages, 11000 KiB  
Article
A Novel Low-Cost Fibrous Tempered-Martensite/Ferrite Low-Alloy Dual-Phase Steel Exhibiting Balanced High Strength and Ductility
by Xianguang Zhang, Yiwu Pei, Haoran Han, Shouli Feng and Yongjie Zhang
Materials 2025, 18(6), 1292; https://doi.org/10.3390/ma18061292 - 14 Mar 2025
Viewed by 631
Abstract
Low-cost and low-alloy dual-phase (DP) steel with a tensile strength (TS) above 1000 MPa and high ductility is in great demand in the automobile industry. An approach to using a medium-carbon and fibrous DP structure for developing such new DP steel has been [...] Read more.
Low-cost and low-alloy dual-phase (DP) steel with a tensile strength (TS) above 1000 MPa and high ductility is in great demand in the automobile industry. An approach to using a medium-carbon and fibrous DP structure for developing such new DP steel has been proposed. The microstructure and mechanical performance of fibrous DP steel obtained via partial reversion from martensite in Fe-C-Mn-Si low-alloy steel have been investigated. The TS of the as-quenched DP steel is above 1300 MPa, while the total elongation is less than 6%. The total elongation was increased to above 13%, with an acceptable loss in TS by performing additional tempering. The fibrous tempered-martensite/ferrite DP steel exhibits an excellent balance of strength and ductility, surpassing the current low-alloy DP steels with the same strength grade. Plate-like or quasi-spherical fine carbides were precipitated, and the relatively high-density dislocations were maintained due to the delay of lath recovery by the enrichment of Mn and C in martensite (austenite before quenching), contributing to the tempering softening resistance. In addition, nanotwins and a very small amount of retained austenite were present due to the martensite chemistry. High-density dislocations, fine carbide precipitation, and partially twinned structures strengthened the tempered martensite while maintaining relatively high ductility. Quantitative strengthening models and calculations were not included in the present work, which is an interesting topic and will be studied in the future. Full article
Show Figures

Figure 1

Back to TopTop