Rapid Heating-Driven Variant Selection and Martensitic Refinement for Superior Strength–Ductility Synergy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Heat Treatment Process
2.2. Microstructural Characterization
3. Results and Discussion
3.1. Microstructural Evolution Under Rapid Heating
3.2. Analysis of Misorientation and Martensitic Variant Pairs
3.3. Martensitic Variants Selection
3.4. Relationship Between Microstructure and Mechanical Properties
4. Conclusions
- (1)
- Rapid heating at 300 °C/s significantly refined the microstructure, reducing the prior austenite grain (PAG) size from 16.08 μm to 5.06 μm and the martensitic block size from 4.24 μm to 2.41 μm, while retaining approximately 8.6% ferrite. This microstructural refinement reflects the non-equilibrium nature of rapid austenitization, which constrains transformation time and alters the austenite evolution process.
- (2)
- The rapid austenitizing and quenching altered the crystallographic and morphological features of the martensitic structure, leading to a higher density of high-angle grain boundaries (HAGBs), irregular grain boundary morphology, and reduced variant diversity. Notably, rapid heating promoted variant selection dominated by closely packed (CP) groups and facilitated variant formation through Σ3 twin boundaries, enhancing microstructural complexity.
- (3)
- These structural and crystallographic modifications translated into superior mechanical performance, with the rapid-heated specimens achieving a 28.3% higher product of strength and elongation (PSE) compared to conventionally heated counterparts. This improvement is attributed to the synergistic effects of refined martensitic substructures, increased HAGB density, and retained ferrite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junkui, L.; Zhinan, Y.; Hua, M.; Chen, C.; Fucheng, Z. A Medium-C Martensite Steel with 2.6 GPa Tensile Strength and Large Ductility. Scr. Mater. 2023, 228, 115327. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, G.; Li, L.; Kang, J.; Yan, F.; Du, P.; Raabe, D.; Wang, G. Ductile 2-GPa Steels with Hierarchical Substructure. Science 2023, 379, 168–173. [Google Scholar] [CrossRef]
- Liu, L.; Yu, Q.; Wang, Z.; Ell, J.; Huang, M.X.; Ritchie, R.O. Making Ultrastrong Steel Tough by Grain-Boundary Delamination. Science 2020, 368, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, M.X. Optimising the Strength-Ductility-Toughness Combination in Ultra-High Strength Quenching and Partitioning Steels by Tailoring Martensite Matrix and Retained Austenite. Int. J. Plast. 2020, 134, 102851. [Google Scholar] [CrossRef]
- He, B.B.; Hu, B.; Yen, H.W.; Cheng, G.J.; Wang, Z.K.; Luo, H.W.; Huang, M.X. High Dislocation Density–Induced Large Ductility in Deformed and Partitioned Steels. Science 2017, 357, 1029–1032. [Google Scholar] [CrossRef]
- Morito, S.; Huang, X.; Furuhara, T.; Maki, T.; Hansen, N. The Morphology and Crystallography of Lath Martensite in Alloy Steels. Acta Mater. 2006, 54, 5323–5331. [Google Scholar] [CrossRef]
- Zou, Y.; Ding, H.; Zhang, Y.; Tang, Z. Microstructural Evolution and Strain Hardening Behavior of a Novel Two-Stage Warm Rolled Ultra-High Strength Medium Mn Steel with Heterogeneous Structures. Int. J. Plast. 2022, 151, 103212. [Google Scholar] [CrossRef]
- Morsdorf, L.; Emelina, E.; Gault, B.; Herbig, M.; Tasan, C.C. Carbon Redistribution in Quenched and Tempered Lath Martensite. Acta Mater. 2021, 205, 116521. [Google Scholar] [CrossRef]
- Macchi, J.; Teixeira, J.; Danoix, F.; Geandier, G.; Denis, S.; Bonnet, F.; Allain, S.Y.P. Impact of Carbon Segregation on Transition Carbides and Cementite Precipitation during Tempering of Low Carbon Steels: Experiments and Modeling. Acta Mater. 2024, 272, 119919. [Google Scholar] [CrossRef]
- Xing, X.; Huang, S.; Li, L.; Ouyang, J.; Gao, J.; Chen, S.; Peng, Z. Optimizing Dislocation Strengthening in High-Strength Medium-Carbon Steel via Fast Induction Heating Quenching & Tempering. J. Mater. Res. Technol. 2023, 25, 832–839. [Google Scholar] [CrossRef]
- Komotori, J.; Shimizu, M.; Misaka, Y.; Kawasaki, K. Fatigue Strength and Fracture Mechanism of Steel Modified by Super-Rapid Induction Heating and Quenching. Int. J. Fatigue 2001, 23, 225–230. [Google Scholar] [CrossRef]
- Matlock, D.K.; Kang, S.; De Moor, E.; Speer, J.G. Applications of Rapid Thermal Processing to Advanced High Strength Sheet Steel Developments. Mater. Charact. 2020, 166, 110397. [Google Scholar] [CrossRef]
- Denand, B.; Esin, V.A.; Dehmas, M.; Geandier, G.; Denis, S.; Sourmail, T.; Aeby-Gautier, E. Carbon Content Evolution in Austenite during Austenitization Studied by in Situ Synchrotron X-Ray Diffraction of a Hypoeutectoid Steel. Materialia 2020, 10, 100664. [Google Scholar] [CrossRef]
- Jacot, A.; Rappaz, M. A Two-Dimensional Diffusion Model for the Prediction of Phase Transformations: Application to Austenitization and Homogenization of Hypoeutectoid Fe-C Steels. Acta Mater. 1997, 45, 575–585. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, X.; Allam, T.; Song, W.; Bleck, W. Austenite Transformation and Deformation Behavior of a Cold-Rolled Medium-Mn Steel under Different Annealing Temperatures. Mater. Sci. Eng. A 2022, 829, 142115. [Google Scholar] [CrossRef]
- Liang, C.; Song, G.; Wang, W.; Sohn, I.; Zeng, J. In Situ Observation of the Austenite to Ferrite Transformation in Low-Carbon Steels from Different Initial Phases at Defined Cooling Rates. J. Mater. Res. Technol. 2024, 28, 2116–2126. [Google Scholar] [CrossRef]
- Yuan, Q.; Ren, J.; Mo, J.; Zhang, Z.; Tang, E.; Xu, G.; Xue, Z. Effects of Rapid Heating on the Phase Transformation and Grain Refinement of a Low-Carbon Mciroalloyed Steel. J. Mater. Res. Technol. 2023, 23, 3756–3771. [Google Scholar] [CrossRef]
- Tan, X.; Lu, W.; Rao, X. Effect of Ultra-Fast Heating on Microstructure and Mechanical Properties of Cold-Rolled Low-Carbon Low-Alloy Q&P Steels with Different Austenitizing Temperature. Mater. Charact. 2022, 191, 112086. [Google Scholar] [CrossRef]
- Nishiyama, Z. Introduction to Martensite and Martensitic Transformation. In Martensitic Transformation; Academic Press: Cambridge, MA, USA, 1978; pp. 1–13. ISBN 978-0-12-519850-9. [Google Scholar]
- Stormvinter, A.; Miyamoto, G.; Furuhara, T.; Hedström, P.; Borgenstam, A. Effect of Carbon Content on Variant Pairing of Martensite in Fe–C Alloys. Acta Mater. 2012, 60, 7265–7274. [Google Scholar] [CrossRef]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic Features of Lath Martensite in Low-Carbon Steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The Morphology and Crystallography of Lath Martensite in Fe-C Alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Kaneshita, T.; Miyamoto, G.; Furuhara, T. Variant Selection in Grain Boundary Nucleation of Bainite in Fe-2Mn-C Alloys. Acta Mater. 2017, 127, 368–378. [Google Scholar] [CrossRef]
- Gao, X.; Wang, H.; Li, J.; Lv, M.; Wu, Z.; Li, Y.; Sha, G.; Ren, H. Cerium-Alloyed Ultra-High Strength Maraging Steel with Good Ductility: Experiments, First-Principles Calculations and Phase-Field Simulations. Mater. Sci. Eng. A. 2022, 846, 143306. [Google Scholar] [CrossRef]
- Zhang, X.; Miyamoto, G.; Toji, Y.; Nambu, S.; Koseki, T.; Furuhara, T. Orientation of Austenite Reverted from Martensite in Fe-2Mn-1.5Si-0.3C Alloy. Acta Mater. 2018, 144, 601–612. [Google Scholar] [CrossRef]
- Takayama, N.; Miyamoto, G.; Furuhara, T. Effects of Transformation Temperature on Variant Pairing of Bainitic Ferrite in Low Carbon Steel. Acta Mater. 2012, 60, 2387–2396. [Google Scholar] [CrossRef]
- Wu, B.B.; Wang, X.L.; Wang, Z.Q.; Zhao, J.X.; Jin, Y.H.; Wang, C.S.; Shang, C.J.; Misra, R.D.K. New Insights from Crystallography into the Effect of Refining Prior Austenite Grain Size on Transformation Phenomenon and Consequent Mechanical Properties of Ultra-High Strength Low Alloy Steel. Mater. Sci. Eng. A. 2019, 745, 126–136. [Google Scholar] [CrossRef]
- Zhao, J.; Hou, Z.; Wang, B.; Yang, H.; Wang, Y.; Chang, Z.; Zhang, L.; Wu, G.; Huang, X. Effect of Austenitizing Temperature on Variant Selection of Martensite Transformation in a 2 GPa Grade Steel. J. Mater. Res. Technol. 2024, 33, 2794–2802. [Google Scholar] [CrossRef]
- Yin, T.W.; Shen, Y.F.; Jia, N.; Li, Y.J.; Xue, W.Y. Controllable Selection of Martensitic Variant Enables Concurrent Enhancement of Strength and Ductility in a Low-Carbon Steel. Int. J. Plast. 2023, 168, 103704. [Google Scholar] [CrossRef]
- Sun, M.Y.; Wang, X.L.; Wang, Z.Q.; Wang, X.M.; Li, X.C.; Yan, L.; Misra, R.D.K. The Critical Impact of Intercritical Deformation on Variant Pairing of Bainite/Martensite in Dual-Phase Steels. Mater. Sci. Eng. A 2020, 771, 138668. [Google Scholar] [CrossRef]
- Wu, B.B.; Wang, Z.Q.; Wang, X.L.; Xu, W.S.; Shang, C.J.; Misra, R.D.K. Toughening of Martensite Matrix in High Strength Low Alloy Steel: Regulation of Variant Pairs. Mater. Sci. Eng. A 2019, 759, 430–436. [Google Scholar] [CrossRef]
- Niessen, F.; Nyyssönen, T.; Gazder, A.A.; Hielscher, R. Parent Grain Reconstruction from Partially or Fully Transformed Microstructures in MTEX. J. Appl. Crystallogr. 2022, 55, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Alizamini, H.; Militzer, M.; Poole, W.J. Austenite Formation in Plain Low-Carbon Steels. Metall. Mater. Trans. A 2011, 42, 1544–1557. [Google Scholar] [CrossRef]
- Feng, H.; Wang, H.; Li, H.; Zhu, H.; Zhang, S.; Jiang, Z. Parent Austenite Grain Reconstruction in Martensitic Steel. J. Mater. Sci. Technol. 2025, 215, 244–257. [Google Scholar] [CrossRef]
- Aydogan, E.; Anderoglu, O.; Maloy, S.A.; Livescu, V.; Gray, G.T.; Perez-Bergquist, S.; Williams, D.J. Effect of Shock Loading on the Microstructure, Mechanical Properties and Grain Boundary Characteristics of HT-9 Ferritic/Martensitic Steels. Mater. Sci. Eng. A 2016, 651, 75–82. [Google Scholar] [CrossRef]
- Mao, C.; Liu, C.; Yu, L.; Li, H.; Liu, Y. Discontinuous Lath Martensite Transformation and Its Relationship with Annealing Twin of Parent Austenite and Cooling Rate in Low Carbon RAFM Steel. Mater. Des. 2021, 197, 109252. [Google Scholar] [CrossRef]
- Sobti, A.; Mondal, K.; Kumar Ray, R.; Sankaran, S. Influencing TRIP Threshold and Variant Pairing through Minor Cold and Cryo-Rolling in Bainitic Steel. Materialia 2024, 38, 102259. [Google Scholar] [CrossRef]
- Morito, S.; Pham, A.H.; Hayashi, T.; Ohba, T. Block Boundary Analyses to Identify Martensite and Bainite. Mater. Today: Proc. 2015, 2, S913–S916. [Google Scholar] [CrossRef]
- Archie, F.; Zaefferer, S. On Variant Selection at the Prior Austenite Grain Boundaries in Lath Martensite and Relevant Micro-Mechanical Implications. Mater. Sci. Eng. A 2018, 731, 539–550. [Google Scholar] [CrossRef]
- Cayron, C.; Barcelo, F.; de Carlan, Y. The Mechanisms of the Fcc–Bcc Martensitic Transformation Revealed by Pole Figures. Acta Mater. 2010, 58, 1395–1402. [Google Scholar] [CrossRef]
- Nambu, S.; Shibuta, N.; Ojima, M.; Inoue, J.; Koseki, T.; Bhadeshia, H.K.D.H. In Situ Observations and Crystallographic Analysis of Martensitic Transformation in Steel. Acta Mater. 2013, 61, 4831–4839. [Google Scholar] [CrossRef]
- Morsdorf, L.; Tasan, C.C.; Ponge, D.; Raabe, D. 3D Structural and Atomic-Scale Analysis of Lath Martensite: Effect of the Transformation Sequence. Acta Mater. 2015, 95, 366–377. [Google Scholar] [CrossRef]
- Miyamoto, G.; Iwata, N.; Takayama, N.; Furuhara, T. Quantitative Analysis of Variant Selection in Ausformed Lath Martensite. Acta Mater. 2012, 60, 1139–1148. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T.; Wang, Z.; Wang, X.; Shang, C.; Yu, Y.; Elhefnawey, M.; Li, L. Effects of Carbon Concentration and Transformation Temperature on Incomplete Transformation and Crystallography of Low-Carbon Bainitic Steel. J. Mater. Res. Technol. 2024, 32, 827–840. [Google Scholar] [CrossRef]
- Ji, H.; Wang, J.; Wang, Z.; Li, Y. Effect of Martensitic Variant Selection on the Crystallographic Features of Bainite/Martensite Multiphase Structure of 42CrMo Steel. J. Mater. Res. Technol. 2024, 30, 9561–9571. [Google Scholar] [CrossRef]
Variant | Plane Parallel | Direction Parallel | CP Group | Bain Group | Misorientation From V1 (°) |
---|---|---|---|---|---|
V1 | (111) γ//(011) α | [−101] γ//[−1−11] α | CP1 | B1 | - |
V2 | [−101] γ//[−11−1] α | B2 | 60.0 | ||
V3 | [01−1] γ//[−1−11] α | B3 | 60.0 | ||
V4 | [01−1] γ//[−11−1] α | B1 | 10.5 | ||
V5 | [1−10] γ//[−1−11] α | B2 | 60.0 | ||
V6 | [1−10] γ//[−11−1] α | B3 | 49.5 | ||
V7 | (1−11) γ//(011) α | [10−1] γ//[−1−11] α | CP2 | B2 | 49.5 |
V8 | [10−1] γ//[−11−1] α | B1 | 10.5 | ||
V9 | [−1−10] γ//[−1−11] α | B3 | 50.5 | ||
V10 | [−1−10]γ//[−11−1] α | B2 | 50.5 | ||
V11 | [011] γ//[−1−11] α | B1 | 14.9 | ||
V12 | [011]γ//[−11−1] α | B3 | 57.2 | ||
V13 | (−111) γ//(011) α | [0−11] γ//[−1−11] α | CP3 | B1 | 14.9 |
V14 | [0−11] γ//[−11−1] α | B3 | 50.5 | ||
V15 | [−10−1] γ//[−1−11] α | B2 | 57.2 | ||
V16 | [−10−1]γ//[−11−1] α | B1 | 20.6 | ||
V17 | [110] γ//[−1−11] α | B3 | 51.7 | ||
V18 | [110]γ//[−11−1] α | B2 | 47.1 | ||
V19 | (11−1) γ//(011) α | [−110] γ//[−1−11] α | CP4 | B3 | 50.5 |
V20 | [−110] γ//[−11−1] α | B2 | 57.2 | ||
V21 | [0−1−1] γ//[−1−11] α | B1 | 20.6 | ||
V22 | [0−1−1]]γ//[−11−1] α | B3 | 47.1 | ||
V23 | [101] γ//[−1−11] α | B2 | 57.2 | ||
V24 | [101]γ//[−11−1] α | B1 | 21.1 |
C | Si | Mn | P | S | Ni | Cr | Cu | Fe |
---|---|---|---|---|---|---|---|---|
0.300 | 0.793 | 0.951 | 0.011 | 0.006 | 0.100 | 0.090 | 0.088 | Bal. |
Steels | FLAGBs | FPAGBs | FHAGBs | DLAGBs | DPAGBs | DHAGBs |
---|---|---|---|---|---|---|
RH steel | 27% | 11% | 62% | 0.819 μm−1 | 0.345 μm−1 | 1.941 μm−1 |
CH steel | 28% | 5% | 67% | 0.754 μm−1 | 0.128 μm−1 | 1.806 μm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Li, L.; Ye, H.; Xing, X.; Ouyang, J.; Li, Z.; Zhang, X.; Chen, S.; Peng, Z. Rapid Heating-Driven Variant Selection and Martensitic Refinement for Superior Strength–Ductility Synergy. Materials 2025, 18, 2488. https://doi.org/10.3390/ma18112488
Huang S, Li L, Ye H, Xing X, Ouyang J, Li Z, Zhang X, Chen S, Peng Z. Rapid Heating-Driven Variant Selection and Martensitic Refinement for Superior Strength–Ductility Synergy. Materials. 2025; 18(11):2488. https://doi.org/10.3390/ma18112488
Chicago/Turabian StyleHuang, Siming, Liejun Li, Haixiao Ye, Xianqiang Xing, Jianping Ouyang, Zhuoran Li, Xinkui Zhang, Songjun Chen, and Zhengwu Peng. 2025. "Rapid Heating-Driven Variant Selection and Martensitic Refinement for Superior Strength–Ductility Synergy" Materials 18, no. 11: 2488. https://doi.org/10.3390/ma18112488
APA StyleHuang, S., Li, L., Ye, H., Xing, X., Ouyang, J., Li, Z., Zhang, X., Chen, S., & Peng, Z. (2025). Rapid Heating-Driven Variant Selection and Martensitic Refinement for Superior Strength–Ductility Synergy. Materials, 18(11), 2488. https://doi.org/10.3390/ma18112488