Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,890)

Search Parameters:
Keywords = mechanism science

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4565 KiB  
Article
Experimental Study of Two-Bite Test Parameters for Effective Drug Release from Chewing Gum Using a Novel Bio-Engineered Testbed
by Kazem Alemzadeh and Joseph Alemzadeh
Biomedicines 2025, 13(8), 1811; https://doi.org/10.3390/biomedicines13081811 (registering DOI) - 24 Jul 2025
Abstract
Background: A critical review of the literature demonstrates that masticatory apparatus with an artificial oral environment is of interest in the fields including (i) dental science; (ii) food science; (iii) the pharmaceutical industries for drug release. However, apparatus that closely mimics human [...] Read more.
Background: A critical review of the literature demonstrates that masticatory apparatus with an artificial oral environment is of interest in the fields including (i) dental science; (ii) food science; (iii) the pharmaceutical industries for drug release. However, apparatus that closely mimics human chewing and oral conditions has yet to be realised. This study investigates the vital role of dental morphology and form–function connections using two-bite test parameters for effective drug release from medicated chewing gum (MCG) and compares them to human chewing efficiency with the aid of a humanoid chewing robot and a bionics product lifecycle management (PLM) framework with built-in reverse biomimetics—both developed by the first author. Methods: A novel, bio-engineered two-bite testbed is created for two testing machines with compression and torsion capabilities to conduct two-bite tests for evaluating the mechanical properties of MCGs. Results: Experimental studies are conducted to investigate the relationship between biting force and crushing/shearing and understand chewing efficiency and effective mastication. This is with respect to mechanochemistry and power stroke for disrupting mechanical bonds releasing the active pharmaceutical ingredients (APIs) of MCGs. The manuscript discusses the effect and the critical role that jaw physiology, dental morphology, the Bennett angle of mandible (BA) and the Frankfort-mandibular plane angle (FMA) on two-bite test parameters when FMA = 0, 25 or 29.1 and BA = 0 or 8. Conclusions: The impact on other scientific fields is also explored. Full article
Show Figures

Graphical abstract

30 pages, 9268 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 (registering DOI) - 24 Jul 2025
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

40 pages, 1654 KiB  
Review
Bioactive Plant-Derived Compounds as Novel Perspectives in Oral Cancer Alternative Therapy
by Gabriela Mitea, Verginica Schröder and Irina Mihaela Iancu
Pharmaceuticals 2025, 18(8), 1098; https://doi.org/10.3390/ph18081098 (registering DOI) - 24 Jul 2025
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most serious forms of cancer in the world. The opportunities to decrease the mortality rate would lie in the possibility of earlier identification of this pathology, and at the same time, the immediate [...] Read more.
Background: Oral squamous cell carcinoma (OSCC) is one of the most serious forms of cancer in the world. The opportunities to decrease the mortality rate would lie in the possibility of earlier identification of this pathology, and at the same time, the immediate approach of anticancer therapy. Furthermore, new treatment strategies for OSCC are needed to improve existing therapeutic options. Bioactive compounds found in medicinal plants could be used to support these strategies. It is already known that they have an increased potential for action and a safety profile; therefore, they could improve the therapeutic effect of classical chemotherapeutic agents in combination therapies. Methodology: This research was based on an extensive review of recently published studies in scientific databases (PubMed, Scopus, and Web of Science). The selection criteria were based on experimental protocols investigating molecular mechanisms, synergistic actions with conventional anticancer agents, and novel formulation possibilities (e.g., nanoemulsions and mucoadhesive films) for the targeted delivery of bioactive compounds in OSCC. Particular attention was given to in vitro, in vivo, translational, and clinical studies that have proven therapeutic relevance. Results: Recent discoveries regarding the effect of bioactive compounds in the treatment of oral cancer were analyzed, with a view to integrating them into oncological practice for increasing therapeutic efficacy and reducing the occurrence of adverse reactions and treatment resistance. Conclusions: Significant progress has been achieved in this review, allowing us to appreciate that the valorization of these bioactive compounds is emerging. Full article
Show Figures

Figure 1

19 pages, 967 KiB  
Review
Hematologic and Immunologic Overlap Between COVID-19 and Idiopathic Pulmonary Fibrosis
by Gabriela Mara, Gheorghe Nini, Stefan Marian Frenț and Coralia Cotoraci
J. Clin. Med. 2025, 14(15), 5229; https://doi.org/10.3390/jcm14155229 - 24 Jul 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral infections and chronic lung disease, this review offers a focused analysis of the shared hematologic and immunologic mechanisms between COVID-19 and IPF. Our aim is to better understand how SARS-CoV-2 infection may worsen disease progression in IPF and identify converging pathophysiological pathways that may inform clinical management. We conducted a narrative synthesis of the peer-reviewed literature from PubMed, Scopus, and Web of Science, focusing on clinical, experimental, and pathological studies addressing immune and coagulation abnormalities in both COVID-19 and IPF. Both diseases exhibit significant overlap in inflammatory and fibrotic signaling, particularly via the TGF-β, IL-6, and TNF-α pathways. COVID-19 amplifies coagulation disturbances and endothelial dysfunction already present in IPF, promoting microvascular thrombosis and acute exacerbations. Myeloid cell overactivation, impaired lymphocyte responses, and fibroblast proliferation are central to this shared pathophysiology. These synergistic mechanisms may accelerate fibrosis and increase mortality risk in IPF patients infected with SARS-CoV-2. This review proposes an integrative framework for understanding the hematologic and immunologic convergence of COVID-19 and IPF. Such insights are essential for refining therapeutic targets, improving prognostic stratification, and guiding early interventions in this high-risk population. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

21 pages, 1563 KiB  
Systematic Review
Anhedonia and Negative Symptoms in First-Episode Psychosis: A Systematic Review and Meta-Analysis of Prevalence, Mechanisms, and Clinical Implications
by Valerio Ricci, Alessandro Sarni, Marialuigia Barresi, Lorenzo Remondino and Giuseppe Maina
Healthcare 2025, 13(15), 1796; https://doi.org/10.3390/healthcare13151796 - 24 Jul 2025
Abstract
Background: Anhedonia, defined as the diminished capacity to experience pleasure, represents a core negative symptom in first-episode psychosis (FEP) with profound implications for functional outcomes and long-term prognosis. Despite its clinical significance, comprehensive understanding of anhedonia prevalence, underlying mechanisms, and optimal intervention [...] Read more.
Background: Anhedonia, defined as the diminished capacity to experience pleasure, represents a core negative symptom in first-episode psychosis (FEP) with profound implications for functional outcomes and long-term prognosis. Despite its clinical significance, comprehensive understanding of anhedonia prevalence, underlying mechanisms, and optimal intervention strategies in early psychosis remains limited. Objectives: To systematically examine the prevalence and characteristics of anhedonia in FEP patients, explore neurobiological mechanisms, identify clinical correlates and predictive factors, and evaluate intervention efficacy. Methods: Following PRISMA 2020 guidelines, we conducted comprehensive searches across PubMed, Embase, PsycINFO, and Web of Science databases from January 1990 to June 2025. Studies examining anhedonia and negative symptoms in FEP patients (≤24 months from onset) using validated assessment instruments were included. Quality assessment was performed using appropriate tools for study design. Results: Twenty-one studies comprising 3847 FEP patients met inclusion criteria. Anhedonia prevalence ranged from 30% at 10-year follow-up to 53% during acute phases, demonstrating persistent motivational deficits across illness trajectory. Factor analytic studies consistently supported five-factor negative symptom models with anhedonia as a discrete dimension. Neuroimaging investigations revealed consistent alterations in reward processing circuits, including ventral striatum hypofunction and altered network connectivity patterns. Social anhedonia demonstrated stronger associations with functional outcomes compared to other domains. Epigenetic mechanisms involving oxytocin receptor methylation showed gender-specific associations with anhedonia severity. Conventional antipsychotic treatments showed limited efficacy for anhedonia improvement, while targeted psychosocial interventions demonstrated preliminary promise. Conclusions: Anhedonia showed high prevalence (30–53%) across FEP populations with substantial clinical burden (13-fold increased odds vs. general population). Meta-analysis revealed large effect sizes for anhedonia severity in FEP vs. controls (d = 0.83) and strong negative correlations with functional outcomes (r =·−0.82). Neuroimaging demonstrated consistent ventral striatum dysfunction and altered network connectivity. Social anhedonia emerged as the strongest predictor of functional outcomes, with independent suicide risk associations. Conventional antipsychotics showed limited efficacy, while behavioral activation approaches demonstrated preliminary promise. These findings support anhedonia as a distinct treatment target requiring specialized assessment and intervention protocols in early psychosis care. Full article
(This article belongs to the Section Medication Management)
Show Figures

Figure 1

43 pages, 1130 KiB  
Systematic Review
Percutaneous Electrolysis for Musculoskeletal Disorders Management in Rehabilitation Settings: A Systematic Review
by Carmelo Pirri, Nicola Manocchio, Andrea Sorbino, Nina Pirri and Calogero Foti
Healthcare 2025, 13(15), 1793; https://doi.org/10.3390/healthcare13151793 - 23 Jul 2025
Abstract
Background: Percutaneous electrolysis (PE) is a minimally invasive procedure that utilizes galvanic current delivered through a needle. PE is increasingly employed for musculoskeletal disorders, despite the scarcity of scientific evidence supporting its use. The aim of this systematic review is to synthesize [...] Read more.
Background: Percutaneous electrolysis (PE) is a minimally invasive procedure that utilizes galvanic current delivered through a needle. PE is increasingly employed for musculoskeletal disorders, despite the scarcity of scientific evidence supporting its use. The aim of this systematic review is to synthesize the existing evidence and explore the applications of PE in rehabilitation. Methods: In line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search was conducted across the PubMed, Web of Science, Scopus, and PEDro databases from inception to July 2025. The search strategy employed the term “Percutaneous Electrolysis” without applying additional filters or time restrictions, ensuring a comprehensive search. Cited references from screened articles were also evaluated for potential inclusion. Studies were included if they met the following criteria: peer-reviewed articles, intervention-based research, relevance to the topic, and publication in English. Results: Of the 181 papers retrieved, 143 were excluded for various reasons, leaving 38 studies. The evidence suggests that PE appears effective in reducing pain and improving function, particularly when combined with exercises such as eccentric training or stretching, though inconsistencies in protocols and patient characteristics, along with unclear mechanisms, show that it warrants further investigation. Conclusions: In conclusion, while PE emerges as a promising therapeutic strategy for musculoskeletal disorders, its full integration into rehabilitation practice necessitates further rigorous research to standardize treatment protocols, elucidate the underlying mechanism, and validate its cost-effectiveness. These steps are essential to establish PE as a robust and evidence-based option within the field of rehabilitation. Full article
Show Figures

Figure 1

41 pages, 4318 KiB  
Review
A Review of Pretreatment Strategies for Anaerobic Digestion: Unlocking the Biogas Generation Potential of Wastes in Ghana
by James Darmey, Satyanarayana Narra, Osei-Wusu Achaw, Walter Stinner, Julius Cudjoe Ahiekpor, Herbert Fiifi Ansah, Berah Aurelie N’guessan, Theophilus Ofori Agyekum and Emmanuel Mawuli Koku Nutakor
Waste 2025, 3(3), 24; https://doi.org/10.3390/waste3030024 - 23 Jul 2025
Abstract
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in [...] Read more.
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in developing countries like Ghana, where organic waste remains underutilized. A narrative synthesis of the literature between 2010 and 2024 was conducted through ScienceDirect and Scopus, categorizing pretreatment types as mechanical, thermal, chemical, biological, enzymatic, and hybrid. A bibliometric examination using VOSviewer also demonstrated global trends in research and co-authorship networks. Mechanical and thermal pretreatments increased biogas production by rendering the substrate more available, while chemical treatment degraded lignin and hemicellulose, sometimes more than 100% in methane yield. Biological and enzymatic pretreatments were energy-consuming and effective, with certain enzymatic blends achieving 485% methane yield increases. The study highlights the synergistic benefits of hybrid approaches and growing global interest, as revealed by bibliometric analysis; hence, the need to explore their potential in Ghana. In Ghana, this study concludes that low-cost, biologically driven pretreatments are practical pathways for advancing anaerobic digestion systems toward sustainable waste management and energy goals, despite infrastructure and policy challenges. Full article
(This article belongs to the Special Issue New Trends in Liquid and Solid Effluent Treatment)
Show Figures

Figure 1

20 pages, 3409 KiB  
Article
Order Lot Sizing: Insights from Lattice Gas-Type Model
by Margarita Miguelina Mieras, Tania Daiana Tobares, Fabricio Orlando Sanchez-Varretti and Antonio José Ramirez-Pastor
Entropy 2025, 27(8), 774; https://doi.org/10.3390/e27080774 - 23 Jul 2025
Abstract
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the [...] Read more.
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications. Full article
(This article belongs to the Special Issue Statistical Mechanics of Lattice Gases)
Show Figures

Figure 1

29 pages, 1900 KiB  
Review
A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives
by Feng Tian, Yiwen Wang, Yawen Zhao, Ruyu Sun, Man Qi, Suqing Wu and Li Wang
Water 2025, 17(15), 2184; https://doi.org/10.3390/w17152184 - 22 Jul 2025
Abstract
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis [...] Read more.
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis conditions, it may contain potentially harmful substances. Industrial wastes such as fly ash, steel slag, red mud, and phosphogypsum are rich in minerals and show potential for soil improvement, but direct application may pose environmental risks. The co-application of biochar with these wastes can produce composite amendments that enhance pH buffering capacity, nutrient availability, and pollutant immobilization. Therefore, a review of biochar-industrial waste composites as soil amendments is crucial for addressing soil degradation and promoting resource utilization of wastes. In this study, the literature was retrieved from Web of Science, Scopus, and Google Scholar using keywords including biochar, fly ash, steel slag, red mud, phosphogypsum, combined application, and soil amendment. A total of 144 articles from 2000 to 2025 were analyzed. This review summarizes the physicochemical properties of biochar and representative industrial wastes, including pH, electrical conductivity, surface area, and elemental composition. It examines their synergistic mechanisms in reducing heavy metal release through adsorption, complexation, and ion exchange. Furthermore, it evaluates the effects of these composites on soil health and crop productivity, showing improvements in soil structure, nutrient balance, enzyme activity, and metal immobilization. Finally, it identifies knowledge gaps as well as future prospects and recommends long-term field trials and digital agriculture technologies to support the sustainable application of these composites in soil management. Full article
Show Figures

Figure 1

52 pages, 3227 KiB  
Review
Advances in Photodynamic Treatment of Precancerous and Cancerous Gynecological Diseases
by Polina Alekseeva, Vladimir Makarov, Kanamat Efendiev, Aida Gilyadova and Victor Loschenov
Cancers 2025, 17(15), 2421; https://doi.org/10.3390/cancers17152421 - 22 Jul 2025
Abstract
High mortality rates and poor quality of life result from the late-stage detection and frequent recurrence of gynecological neoplasms. Background/Objectives: The aim of this study was to conduct a systematic analysis of the energy parameters of photodynamic therapy (PDT) in the treatment [...] Read more.
High mortality rates and poor quality of life result from the late-stage detection and frequent recurrence of gynecological neoplasms. Background/Objectives: The aim of this study was to conduct a systematic analysis of the energy parameters of photodynamic therapy (PDT) in the treatment of cervical and vulvar lesions, with a focus on stimulating immune responses leading to human papillomavirus (HPV) eradication and lesion regression without adverse effects, such as thermal damage. Methods: A total of 46 peer-reviewed studies published between January 2010 and April 2024 were analyzed. These studies focused on PDT applications for cervical and vulvar lesions, sourced from Google Scholar, Scopus, and Web of Science. Results: Although PDT shows promise, significant limitations exist, such as insufficient consideration of individual tumor characteristics, restricted treatment depths, and the heterogeneous distribution and low selectivity of photosensitizer (PS) accumulation in tumors. Tumor hypoxia further reduces PDT’s effectiveness, and most studies overlook immune system activation, which is crucial for targeting HPV infections and improving antitumor responses. Conclusions: Advancing the research into PDT’s molecular and cellular mechanisms, optimizing the immune response stimulation, and improving the PS and delivery methods could enhance the safety and effectiveness of cervical and vulvar neoplasm treatments. The use of personalized PDT parameters may reduce the side effects and enhance the outcomes for patients suffering from gynecological diseases. Full article
(This article belongs to the Special Issue New Advances in the Diagnosis of Gynecological Cancer)
Show Figures

Figure 1

20 pages, 1837 KiB  
Review
Vitamin D, Gut Microbiota, and Cancer Immunotherapy—A Potentially Effective Crosstalk
by Yizhen Yan, Yi Guo, Yiting Li, Qingrui Jiang, Chenhang Yuan, Li Zhao and Shanshan Mao
Int. J. Mol. Sci. 2025, 26(15), 7052; https://doi.org/10.3390/ijms26157052 - 22 Jul 2025
Abstract
Recent breakthroughs in cancer immunotherapy have shown remarkable success, yet treatment efficacy varies significantly among individuals. Emerging evidence highlights the gut microbiota as a key modulator of immunotherapy response, while vitamin D (VD), an immunomodulatory hormone, has garnered increasing attention for its potential [...] Read more.
Recent breakthroughs in cancer immunotherapy have shown remarkable success, yet treatment efficacy varies significantly among individuals. Emerging evidence highlights the gut microbiota as a key modulator of immunotherapy response, while vitamin D (VD), an immunomodulatory hormone, has garnered increasing attention for its potential interactions with gut microbiota and immunotherapy outcomes. However, the precise mechanisms and clinical applications of VD in this context remain controversial. This study systematically analyzed peer-reviewed evidence from PubMed, Scopus, Web of Science, PsycINFO, and MEDLINE (January 2000–May 2025) to investigate the complex interplay among VD, gut microbiota, and cancer immunotherapy. This review demonstrates that VD exerts dual immunomodulatory effects by directly activating immune cells through vitamin D receptor (VDR) signaling while simultaneously reshaping gut microbial composition to enhance antitumor immunity. Clinical data reveal paradoxical outcomes: optimal VD levels correlate with improved immunotherapy responses and reduced toxicity in some studies yet are associated with immunosuppression and poorer survival in others. The bidirectional VD–microbiota interaction further complicates this relationship: VD supplementation enriches beneficial bacteria, which reciprocally regulate VD metabolism and amplify immune responses, whereas excessive VD intake may disrupt this balance, leading to dysbiosis and compromised therapeutic efficacy. These findings underscore the need to elucidate VD’s dose-dependent and microbiota-mediated mechanisms to optimize its clinical application in immunotherapy regimens. Future research should prioritize mechanistic studies of VD’s immunoregulatory pathways, personalized strategies accounting for host–microbiota variability, and large-scale clinical trials to validate VD’s role as an adjuvant in precision immunotherapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

33 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

24 pages, 725 KiB  
Review
Targeting Drug-Resistant Epilepsy: A Narrative Review of Five Novel Antiseizure Medications
by Guillermo de Jesús Aguirre-Vera, Luisa Montufar, María Fernanda Tejada-Pineda, María Paula Fernandez Gomez, Andres Alvarez-Pinzon, José E. Valerio and Eder Luna-Ceron
Int. J. Transl. Med. 2025, 5(3), 31; https://doi.org/10.3390/ijtm5030031 - 22 Jul 2025
Viewed by 59
Abstract
Epilepsy remains a major therapeutic challenge, with approximately one-third of patients experiencing drug-resistant epilepsy (DRE) despite the availability of multiple antiseizure medications (ASMs). This review aims to evaluate emerging ASMs—cenobamate, fenfluramine, ganaxolone, ezogabine (retigabine), and perampanel—with a focus on their mechanisms of action, [...] Read more.
Epilepsy remains a major therapeutic challenge, with approximately one-third of patients experiencing drug-resistant epilepsy (DRE) despite the availability of multiple antiseizure medications (ASMs). This review aims to evaluate emerging ASMs—cenobamate, fenfluramine, ganaxolone, ezogabine (retigabine), and perampanel—with a focus on their mechanisms of action, pharmacological profiles, and potential role in precision medicine. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science to identify preclinical and clinical studies evaluating the pharmacodynamics, pharmacokinetics, efficacy, and safety of the selected ASMs. Relevant trials, reviews, and mechanistic studies were reviewed to synthesize the current understanding of their application in DRE and specific epilepsy syndromes. Each ASM demonstrated unique mechanisms targeting hyperexcitability, including the modulation of γ-aminobutyric acid receptor A (GABA-A) receptors, sodium and potassium channels, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA receptors), and serotonin systems. These mechanisms correspond with specific pathophysiological features in syndromes such as Dravet and Lennox–Gastaut. Evidence from clinical trials supports their use as adjunctive therapies with generally favorable tolerability, though adverse events and variable efficacy profiles were noted. The mechanistic diversity of these emerging ASMs supports their value in personalized epilepsy management, particularly in treatment-resistant cases. While the promise of precision medicine is evident, further studies are required to address challenges related to long-term safety, cost, and equitable access. Full article
Show Figures

Figure 1

35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 200
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

19 pages, 857 KiB  
Article
Financial Technology Expenditure and Green Total Factor Productivity: Influencing Mechanisms and Threshold Effects
by Yalin Qi, Yanlin Lu, Huanyu Xu and Gang Sheng
Sustainability 2025, 17(14), 6653; https://doi.org/10.3390/su17146653 - 21 Jul 2025
Viewed by 145
Abstract
The integration of financial technology expenditures and green total factor productivity (GTFP) constitutes a critical impetus for sustainable economic advancement. This study employs provincial panel data from China (2012–2020) and uses the SBM model with undesirable outputs, the PVAR model, moderation effect analysis, [...] Read more.
The integration of financial technology expenditures and green total factor productivity (GTFP) constitutes a critical impetus for sustainable economic advancement. This study employs provincial panel data from China (2012–2020) and uses the SBM model with undesirable outputs, the PVAR model, moderation effect analysis, and threshold regression to investigate the underlying mechanisms and threshold effects of financial technology expenditure on GTFP. The results show that (1) financial technology expenditure has a significant promoting effect on the growth of GTFP, with a coefficient of 0.614 (p < 0.05), indicating the need for further increases in fiscal investment in science and technology; (2) the effect of financial technology expenditure on GTFP varies across the eastern, central, and western regions of China, with stronger effects observed in the eastern region, suggesting that the government should formulate differentiated financial technology expenditure policies on the basis of local conditions; and (3) that educational investment and industrial upgrading play strong moderating roles in the impact of financial technology expenditure on GTFP, with interaction term coefficients of 0.059 (p < 0.05) and 0.206 (p < 0.1), respectively. Threshold analysis further reveals that the positive effect strengthens significantly once educational investment surpasses a log value of 9.3674 and industrial upgrading exceeds a ratio of 0.0814. However, currently, China’s education investment and industrial structure upgrading are still insufficient, necessitating further increases in education investment and promoting the transformation and upgrading of the industrial structure. Full article
(This article belongs to the Special Issue Circular Economy and Sustainability)
Show Figures

Figure 1

Back to TopTop