Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = mean velocity profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2624 KiB  
Article
Cerebral Hemodynamics as a Diagnostic Bridge Between Mild Cognitive Impairment and Late-Life Depression: A Multimodal Approach Using Transcranial Doppler and MRI
by Sergiu-Florin Arnautu, Diana-Aurora Arnautu, Minodora Andor, Cristina Vacarescu, Dragos Cozma, Brenda-Cristina Bernad, Catalin Juratu, Adrian Tutelca and Catalin-Dragos Jianu
Life 2025, 15(8), 1246; https://doi.org/10.3390/life15081246 - 6 Aug 2025
Abstract
Background: Vascular dysfunction is increasingly recognized as a shared contributor to both cognitive impairment and late-life depression (LLD). However, the combined diagnostic value of cerebral hemodynamics, neuroimaging markers, and neuropsychological outcomes remains underexplored. This study aimed to investigate the associations be-tween transcranial Doppler [...] Read more.
Background: Vascular dysfunction is increasingly recognized as a shared contributor to both cognitive impairment and late-life depression (LLD). However, the combined diagnostic value of cerebral hemodynamics, neuroimaging markers, and neuropsychological outcomes remains underexplored. This study aimed to investigate the associations be-tween transcranial Doppler (TCD) ultrasound parameters, cognitive performance, and depressive symptoms in older adults with mild cognitive impairment (MCI) and LLD. Importantly, we evaluated the integrative value of TCD-derived indices alongside MRI-confirmed white matter lesions (WMLs) and standardized neurocognitive and affective assessments. Methods: In this cross-sectional study, 96 older adults were enrolled including 78 cognitively unimpaired individuals and 18 with MCI. All participants underwent structured clinical, neuropsychological, and imaging evaluations including the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS-15), MRI-based Fazekas scoring of WMLs, and TCD ultrasonography of the middle cerebral artery. Hemodynamic variables included mean blood flow velocity (MBFV), end-diastolic velocity (EDV), pulsatility index (PI), and resistive index (RI). Logistic regression and receiver operating characteristic (ROC) analyses were used to identify independent predictors of MCI. Results: Participants with MCI showed significantly lower MBFV and EDV, and higher PI and RI (p < 0.05 for all) compared with cognitively unimpaired participants. In multivariate analysis, lower MBFV (OR = 0.64, p = 0.02) and EDV (OR = 0.70, p = 0.03), and higher PI (OR = 3.2, p < 0.01) and RI (OR = 1.9, p < 0.01) remained independently associated with MCI. ROC analysis revealed excellent discriminative performance for RI (AUC = 0.919) and MBFV (AUC = 0.879). Furthermore, PI correlated positively with depressive symptom severity, while RI was inversely related to the GDS-15 scores. Conclusions: Our findings underscore the diagnostic utility of TCD-derived hemodynamic parameters—particularly RI and MBFV—in identifying early vascular contributions to cognitive and affective dysfunction in older adults. The integration of TCD with MRI-confirmed WML assessment and standardized cognitive/mood measures represents a novel and clinically practical multi-modal approach for neurovascular profiling in aging populations. Full article
(This article belongs to the Special Issue Intracerebral Hemorrhage: Advances and Perspectives)
Show Figures

Figure 1

9 pages, 651 KiB  
Article
Intracycle Velocity Variation During a Single-Sculling 2000 m Rowing Competition
by Joana Leão, Ricardo Cardoso, Jose Arturo Abraldes, Susana Soares, Beatriz B. Gomes and Ricardo J. Fernandes
Sensors 2025, 25(15), 4696; https://doi.org/10.3390/s25154696 - 30 Jul 2025
Viewed by 226
Abstract
Rowing is a cyclic sport that consists of repetitive biomechanical actions, with performance being influenced by the balance between propulsive and resistive forces. The current study aimed to assess the relationships between intracycle velocity variation (IVV) and key biomechanical and performance variables in [...] Read more.
Rowing is a cyclic sport that consists of repetitive biomechanical actions, with performance being influenced by the balance between propulsive and resistive forces. The current study aimed to assess the relationships between intracycle velocity variation (IVV) and key biomechanical and performance variables in male and female single scullers. Twenty-three experienced rowers (10 females) completed a 2000 m rowing competition, during which boat position and velocity were measured using a 15 Hz GPS, while cycle rate was derived from the integrated triaxial accelerometer sampling at 100 Hz. From these data, it was possible to calculate distance per cycle, IVV, the coefficient of velocity variation (CVV), and technical index values. Males presented higher mean, maximum and minimum velocity, distance per cycle, CVV, and technical index values than females (15.40 ± 0.81 vs. 13.36 ± 0.88 km/h, d = 0.84; 21.39 ± 1.68 vs. 18.77 ± 1.52 km/h, d = 1.61; 11.15 ± 1.81 vs. 9.03 ± 0.85 km/h, d = 1.45; 7.68 ± 0.32 vs. 6.89 ± 0.97 m, d = 0.69; 14.13 ± 2.02 vs. 11.64 ± 1.93%, d = 2.06; and 34.25 ± 4.82 vs. 26.30 ± 4.23 (m2/s·cycle), d = 4.56, respectively). An association between mean velocity and intracycle IVV, CVV, and cycle rate (r = 0.68, 0.74 and 0.65, respectively) was observed in males but not in female single scullers (which may be attributed to anthropometric specificities). In female single scullers, mean velocity was related with distance per cycle and was associated with technical index in both males and females (r = 0.76 and 0.66, respectively). Despite these differences, male and female single scullers adopted similar pacing strategies and CVV remained constant throughout the 2000 m race (indicating that this variable might not be affected by fatigue). Differences were also observed in the velocity–time profile, with men reaching peak velocity first and having a faster propulsive phase. Data provided new information on how IVV and CVV relate to commonly used biomechanical variables in rowing. Technical index (r = 0.87): distance per cycle was associated with technical index in both males and females (r = 0.76 and 0.66, respectively). Future studies should include other boat classes and other performance variables such as the power output and arc length. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 269
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

12 pages, 262 KiB  
Article
Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition
by Olga López-Torres, Raúl Nieto-Acevedo, Amelia Guadalupe-Grau and Valentín Emilio Fernández Elías
J. Funct. Morphol. Kinesiol. 2025, 10(3), 284; https://doi.org/10.3390/jfmk10030284 - 24 Jul 2025
Viewed by 767
Abstract
Background: Resistance training (RT) promotes muscle hypertrophy and strength gains in both men and women. However, sex differences in neuromuscular performance, muscle fiber composition, and the hormonal environment influence strength and power adaptations. While men generally exhibit greater absolute and relative strength, it [...] Read more.
Background: Resistance training (RT) promotes muscle hypertrophy and strength gains in both men and women. However, sex differences in neuromuscular performance, muscle fiber composition, and the hormonal environment influence strength and power adaptations. While men generally exhibit greater absolute and relative strength, it remains unclear to what extent these differences persist across various load intensities. A better understanding of sex-specific strength and power profiles may help optimize training strategies. The aim of this study was to compare strength and power performance during the bench press exercise in physically active males and females, relative to body mass and fat-free mass (FFM). Methods: Twenty-nine physically active individuals (16 men: 21.3 ± 4.1 years, 13 women: 22.6 ± 4.9 years) performed a one-repetition maximum (1RM) test and an incremental velocity-based assessment at 45%, 55%, 65%, 75%, and 85% of the 1RM using a Smith machine. The barbell velocity was measured via a linear transducer, with the mean propulsive velocity (MPV) recorded for each load. Power-related variables (e.g., peak force [F0], maximal velocity [V0], and maximal power [Pmax]) were analyzed. To account for differences in body composition, data were adjusted for body mass and FFM. Results: Men exhibited significantly greater strength and power than women across most loads when adjusted for both body mass and fat-free mass (FFM) (p < 0.05). These differences were particularly pronounced when normalized to FFM (45–75%1RM; p = 0.001–0.031), with large effect sizes observed (ηp2 = 0.185–0.383). Notably, sex differences in mean propulsive velocity (MPV) disappeared at 85%1RM (p = 0.208; ηp2 = 0.06), suggesting that maximal neuromuscular recruitment may minimize sex-related disparities at higher intensities. Furthermore, men demonstrated significantly higher values in six of the seven power-related variables, with no significant differences in the %1RM required to achieve an optimal power output. Conclusions: These findings confirm that men exhibit greater strength and power than women, even after adjusting for body composition. However, at high relative loads (≥85%1RM), sex differences in movement velocity appear to diminish, likely due to similar recruitment patterns of high-threshold motor units. These results highlight the importance of sex-specific resistance training programs, particularly in relation to load prescription and the application of velocity-based training methods. Full article
17 pages, 4162 KiB  
Article
Evaluation of Wake Structure Induced by Helical Hydrokinetic Turbine
by Erkan Alkan, Mehmet Ishak Yuce and Gökmen Öztürkmen
Water 2025, 17(15), 2203; https://doi.org/10.3390/w17152203 - 23 Jul 2025
Viewed by 182
Abstract
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow [...] Read more.
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow rate of 180 m3/h, corresponding to a Reynolds number of approximately 90 × 103. Velocity measurements were collected at 13 downstream cross-sections using an Acoustic Doppler Velocimeter, with each point sampled repeatedly. Standard error analysis was applied to quantify measurement uncertainty. Complementary numerical simulations were conducted in ANSYS Fluent using a steady-state k-ω Shear Stress Transport (SST) turbulence model, with a mesh of 4.7 million elements and mesh independence confirmed. Velocity deficit and turbulence intensity were employed as primary parameters to characterize the wake structure, while the analysis also focused on the recovery of cross-sectional velocity profiles to validate the extent of wake influence. Experimental results revealed a maximum velocity deficit of over 40% in the near-wake region, which gradually decreased with downstream distance, while turbulence intensity exceeded 50% near the rotor and dropped below 10% beyond 4 m. In comparison, numerical findings showed a similar trend but with lower peak velocity deficits of 16.6%. The root mean square error (RMSE) and mean absolute error (MAE) between experimental and numerical mean velocity profiles were calculated as 0.04486 and 0.03241, respectively, demonstrating reasonable agreement between the datasets. Extended simulations up to 30 m indicated that flow profiles began to resemble ambient conditions around 18–20 m. The findings highlight the importance of accurately identifying the downstream distance at which the wake effect fully dissipates, as this is crucial for determining appropriate inter-turbine spacing. The study also discusses potential sources of discrepancies between experimental and numerical results, as well as the limitations of the modeling approach. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

22 pages, 5271 KiB  
Article
Impact of Biomimetic Fin on Pitching Characteristics of a Hydrofoil
by Faraz Ikram, Muhammad Yamin Younis, Bilal Akbar Chuddher, Usman Latif, Haroon Mushtaq, Kamran Afzal, Muhammad Asif Awan, Asad Ijaz and Noman Bashir
Biomimetics 2025, 10(7), 462; https://doi.org/10.3390/biomimetics10070462 - 15 Jul 2025
Viewed by 384
Abstract
Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the [...] Read more.
Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the foil leading edge. The work is performed in a recirculating water channel at low Reynolds numbers (Re) with a range of 1300 ≤ Re ≤ 3200. Using high-speed videography and Particle Image Velocimetry (PIV), the pitching characteristics and wakes are visualized. Passive pitching characteristics, i.e., the pitching amplitude and pitching frequency of the hydrofoils, are investigated based on their trailing edge movement. Significant improvement in both pitching frequency and amplitudes are observed for the foil with fin strips compared to the baseline simple foil. Comparing the pitching characteristics of the two foils, it is observed that the hydrofoil with biomimetic fin strips exhibits 25% and 21% higher pitching amplitude and pitching frequency, respectively, compared to that of the baseline at comparable Reynolds numbers. The initiation of pitching for the finned foil is also observed at comparatively low Reynolds numbers. The wake is also studied using time mean and fluctuating velocity profiles obtained using PIV. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Graphical abstract

19 pages, 11146 KiB  
Article
Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels
by Emanuela Cutuli, Lorena Saitta, Nunzio Tuccitto, Gianluca Cicala and Maide Bucolo
Polymers 2025, 17(13), 1864; https://doi.org/10.3390/polym17131864 - 3 Jul 2025
Viewed by 380
Abstract
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed [...] Read more.
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed in two orientations: along XY (Dev-1) and across YX (Dev-2) the printhead direction. Next, the surface finish was characterized using a profilometer to acquire the primary profile of the surface along the microchannel’s edge. The results indicated that the build orientation had a strong influence on the latter, since Dev-1 displayed a tall and narrow Gaussian distribution for a channel width of 398.43 ± 0.29 µm; Dev-2 presented a slightly lower value of 393.74 ± 1.67 µm, characterized by a flat and broader distribution, highlighting greater variability due to more disruptive, orthogonally oriented, and striated patterns. These results were also confirmed by hydrodynamically testing the two MoF devices with an air–water slug flow process. A large experimental study was conducted by analyzing the mean period trend in the slug flow with respect to the imposed flow rate and build orientation. Dev-1 showed greater sensitivity to flow rate changes, attributed to its smoother, more consistent microchannel geometry. The slightly narrower average channel width in Dev-2 contributed to increased flow velocity at the expense of having worse discrimination capability at different flow rates. This study is relevant for optimizing 3D-printing strategies for the fabrication of high-performance microfluidic devices, where precise flow control is essential for applications in biomedical engineering, chemical processing, and lab-on-a-chip systems. These findings highlight the effect of microchannel morphology in tuning a system’s sensitivity to flow rate modulation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

18 pages, 606 KiB  
Article
Two-Way Conversion Between Fifth-Order Stokes Wave Theories
by Hsien-Kuo Chang, Yang-Yih Chen and Jin-Cheng Liou
AppliedMath 2025, 5(3), 78; https://doi.org/10.3390/appliedmath5030078 - 27 Jun 2025
Viewed by 232
Abstract
Stokes wave is a classical problem in physics. Various Stokes wave theories in different forms have been developed to help us better understand their characteristics and for engineering applications. Exploring whether these Stokes wave theories can be converted into each other is a [...] Read more.
Stokes wave is a classical problem in physics. Various Stokes wave theories in different forms have been developed to help us better understand their characteristics and for engineering applications. Exploring whether these Stokes wave theories can be converted into each other is a mathematical issue. We select three Stokes wave theories with different expansion parameters, all expressed in terms of water depth measured from the mean water level (MWL). Using series reversion to convert between the different expansions, we successfully transform the expressions for the velocity potential, wave profile, and dynamic properties between two of the Stokes wave theories. Through this conversion, we identify an incorrect expression for the water level in one Stokes wave theory. Full article
Show Figures

Figure 1

28 pages, 8561 KiB  
Article
Ice Ice Maybe: Stream Hydrology and Hydraulic Processes During a Mild Winter in a Semi-Alluvial Channel
by Christopher Giovino, Jaclyn M. H. Cockburn and Paul V. Villard
Water 2025, 17(13), 1878; https://doi.org/10.3390/w17131878 - 24 Jun 2025
Viewed by 772
Abstract
Warm conditions during typically cold winters impact runoff and resulting hydraulic processes in channels where ice-cover would typically dominate. This field study on a short, low-slope reach in Southern Ontario, Canada, examined hydrologic and hydraulic processes with a focus on winter runoff events [...] Read more.
Warm conditions during typically cold winters impact runoff and resulting hydraulic processes in channels where ice-cover would typically dominate. This field study on a short, low-slope reach in Southern Ontario, Canada, examined hydrologic and hydraulic processes with a focus on winter runoff events and subsequent bed shear stress variability. Through winter 2024, six cross-sections over a ~100 m reach were monitored near-weekly to measure hydraulic geometry and velocity profiles. These data characterized channel processes and estimated bed shear stress with law of the wall. In this channel, velocity increased more rapidly than width or depth with rising discharge and influenced bed shear stress distribution. Bed shear stress magnitudes were highest (means ranged ~2–6 N/m2) and most variable over gravel beds compared to the exposed bedrock (means ranged ~0.05–2 N/m2). Through a rain-on-snow (ROS) event in late January, bed shear stress estimates decreased dramatically over the rougher gravel bed, despite minimal changes in water depth and velocity. Pebble counts before, during, and after the event, showed that the proportion of finer-sized particles (i.e., <5 cm) increased while median grain size did not vary. These observations align with findings from both flume and field studies and suggest that milder winters reduce gravel-bed roughness through finer-sized sediment deposition, altering sediment transport dynamics and affecting gravel habitat suitability. Additionally, limited ice-cover leads to lower bed shear stresses and thus finer-sized materials are deposited, further impacting gravel habitat suitability. Results highlight the importance of winter hydrologic variability in shaping channel processes and inform potential stream responses under future climate scenarios. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 15481 KiB  
Article
Effects of 12 Weeks of Chromium, Phyllanthus emblica Fruit Extract, and Shilajit Supplementation on Markers of Cardiometabolic Health, Fitness, and Weight Loss in Men and Women with Risk Factors to Metabolic Syndrome Initiating an Exercise and Diet Intervention: A Randomized Double-Blind, Placebo-Controlled Trial
by Victoria Martinez, Kay McAngus, Broderick L. Dickerson, Megan Leonard, Elena Chavez, Jisun Chun, Megan Lewis, Dante Xing, Drew E. Gonzalez, Choongsung Yoo, Joungbo Ko, Heather Rhodes, Hudson Lee, Ryan J. Sowinski, Christopher J. Rasmussen and Richard B. Kreider
Nutrients 2025, 17(12), 2042; https://doi.org/10.3390/nu17122042 - 19 Jun 2025
Viewed by 2562
Abstract
Background: Exercise and nutritional interventions are often recommended to help manage risk related to metabolic syndrome (MetSyn). The co-ingestion of Phyllanthus emblica (PE) with trivalent chromium (Cr) has been purported to improve the bioavailability of chromium and enhance endothelial function, reduce platelet aggregation, [...] Read more.
Background: Exercise and nutritional interventions are often recommended to help manage risk related to metabolic syndrome (MetSyn). The co-ingestion of Phyllanthus emblica (PE) with trivalent chromium (Cr) has been purported to improve the bioavailability of chromium and enhance endothelial function, reduce platelet aggregation, and help manage blood glucose as well as lipid levels. Shilajit (SJ) has been reported to have anti-inflammatory, adaptogenic, immunomodulatory, and lipid-lowering properties. This study evaluated whether dietary supplementation with Cr, PE, and SJ, or PE alone, during an exercise and diet intervention may help individuals with risk factors to MetSyn experience greater benefits. Methods: In total, 166 sedentary men and women with at least two markers of metabolic syndrome participated in a randomized, placebo-controlled, parallel-arm, and repeated-measure intervention study, of which 109 completed the study (48.6 ± 10 yrs., 34.2 ± 6 kg/m2, 41.3 ± 7% fat). All volunteers participated in a 12-week exercise program (supervised resistance and endurance exercise 3 days/week with walking 10,000 steps/day on non-training days) and were instructed to reduce energy intake by −5 kcals/kg/d. Participants were matched by age, sex, BMI, and body mass for the double-blind and randomized supplementation of a placebo (PLA), 500 mg of PE (PE-500), 1000 mg/d of PE (PE-1000), 400 µg of trivalent chromium (Cr) with 6 mg of PE and 6 mg of SJ (Cr-400), or 800 µg of trivalent chromium with 12 mg of PE and 12 mg of SJ (Cr-800) once a day for 12 weeks. Data were obtained at 0, 6, and 12 weeks of supplementation, and analyzed using general linear model multivariate and univariate analyses with repeated measures, pairwise comparisons, and mean changes from the baseline with 95% confidence intervals (CIs). Results: Compared to PLA responses, there was some evidence (p < 0.05 or approaching significance, p > 0.05 to p < 0.10) that PE and/or Cr with PE and SJ supplementation improved pulse wave velocity, flow-mediated dilation, platelet aggregation, insulin sensitivity, and blood lipid profiles while promoting more optimal changes in body composition, strength, and aerobic capacity. Differences among groups were more consistently seen at 6 weeks rather than 12 weeks. While some benefits were seen at both dosages, greater benefits were more consistently observed with PE-1000 and Cr-800 ingestion. Conclusions: The results suggest that PE and Cr with PE and SJ supplementation may enhance some exercise- and diet-induced changes in markers of health in overweight individuals with at least two risk factors to MetSyn. Registered clinical trial #NCT06641596. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

12 pages, 796 KiB  
Article
Maternal Vascular Adaptation in High-Risk Pregnancies: Effects of Early Smoking Cessation on Hemodynamic and Endothelial Function
by Kaltrina Kutllovci Hasani, Mila Cervar-Zivkovic, Ursula Hiden, Adam Saloň, Manurishi Nanda, Bianca Steuber, Katharina Eberhard, Patrick De Boever, Christina Stern, Karoline Mayer-Pickel and Nandu Goswami
Int. J. Mol. Sci. 2025, 26(12), 5781; https://doi.org/10.3390/ijms26125781 - 16 Jun 2025
Viewed by 438
Abstract
Cardiovascular adaptation is vital for a healthy pregnancy but may be impaired in women at high risk for preeclampsia (PE), a condition marked by endothelial dysfunction. Smoking may lower the PE risk but harms vessels, and the effects of early cessation remain unclear. [...] Read more.
Cardiovascular adaptation is vital for a healthy pregnancy but may be impaired in women at high risk for preeclampsia (PE), a condition marked by endothelial dysfunction. Smoking may lower the PE risk but harms vessels, and the effects of early cessation remain unclear. This prospective cohort study assessed vascular changes in high-risk pregnancies and the potential influence of early smoking cessation. Of 110 women screened for PE in the first trimester, 43 were classified as high-risk: 18 former smokers and 25 lifelong non-smokers. Vascular assessments were performed at 11–16, 24–28, and 34–37 weeks of gestation. Parameters included the carotid–femoral pulse wave velocity (cfPWV), asymmetric dimethylarginine (ADMA), mean arterial pressure (MAP), systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), and retinal vessel calibers (central retinal arteriolar and venular equivalents (CRAE, CRVE)). Serum cotinine confirmed abstinence in former smokers. Across gestation, ADMA (p = 0.034), MAP (p = 0.001), SBP (p = 0.033), DBP (p = 0.004), and HR (p = 0.004) increased, while CRAE (p = 0.016) and CRVE (p = 0.004) narrowed in late pregnancy; cfPWV remained stable (p = 0.783). Non-smokers showed increases in their ADMA (p = 0.020), MAP (p = 0.001), and DBP (p = 0.0001) with no differences between groups. High-risk pregnancies showed vascular changes with similar profiles in former and non-smokers, underscoring the need for broader studies. Full article
Show Figures

Figure 1

14 pages, 322 KiB  
Article
Serum Indoxyl Sulfate as a Potential Biomarker of Peripheral Arterial Stiffness in Patients with Non-Dialysis Chronic Kidney Disease Stages 3 to 5
by Yahn-Bor Chern, Jen-Pi Tsai, Chin-Hung Liu, Yu-Li Lin, Chih-Hsien Wang and Bang-Gee Hsu
Toxins 2025, 17(6), 283; https://doi.org/10.3390/toxins17060283 - 5 Jun 2025
Viewed by 668
Abstract
Indoxyl sulfate (IS), which is a protein-bound uremic toxin, is involved in vascular dysfunction and cardiovascular risk in subjects with chronic kidney disease (CKD). However, its role in peripheral arterial stiffness (PAS) remains unclear. This cross-sectional study evaluated the relationship between IS and [...] Read more.
Indoxyl sulfate (IS), which is a protein-bound uremic toxin, is involved in vascular dysfunction and cardiovascular risk in subjects with chronic kidney disease (CKD). However, its role in peripheral arterial stiffness (PAS) remains unclear. This cross-sectional study evaluated the relationship between IS and PAS in patients diagnosed with CKD stages 3 through 5 who are not undergoing dialysis. Patients with CKD from a single center were enrolled. High-performance liquid chromatography analyzed the serum IS levels. PAS was evaluated using brachial–ankle pulse wave velocity (baPWV). IS was independently associated with PAS (odds ratio [OR]: 1.389 for 1 μg/mL increase in IS, 95% confidence interval [CI]: 1.086–1.775, p = 0.009) in a multivariable analysis after adjustment for age, hypertension, diabetes mellitus, blood pressure, lipid profiles, renal function, albumin, and proteinuria. Moreover, the mean baPWV (p = 0.010), left baPWV (p = 0.009), and right baPWV (p = 0.015) levels significantly correlated with the log-transformed IS (log-IS) levels. The area under the receiver operating characteristic curve for serum IS as a predictor of PAS was determined to be 0.667 (95% CI: 0.580−0.754; p = 0.0002). IS was associated with PAS in non-dialysis CKD stages 3–5, suggesting that IS may be a possible vascular risk marker. Future studies should address the nature of the relationship between IS and vascular dysfunction and assess therapeutic strategies to reduce IS. Full article
(This article belongs to the Special Issue The Role of Uremic Toxins in Comorbidities of Chronic Kidney Disease)
Show Figures

Figure 1

19 pages, 361 KiB  
Article
From Monitoring to Prediction: Velocity-Based Strength Training in Female Floorball Athletes
by Basil B. Achermann, Naire Regazzi, Rahel Heynen, Dennis Lüdin, Julia Suter, Anna Drewek and Silvio R. Lorenzetti
Sports 2025, 13(6), 175; https://doi.org/10.3390/sports13060175 - 31 May 2025
Viewed by 1433
Abstract
This study examined the use of linear regression models for predicting the outcomes of a six-week velocity-based training (VBT) intervention in female floorball players. The intervention was integrated into regular training and consisted of brief 30-min sessions focused on back squats and trap [...] Read more.
This study examined the use of linear regression models for predicting the outcomes of a six-week velocity-based training (VBT) intervention in female floorball players. The intervention was integrated into regular training and consisted of brief 30-min sessions focused on back squats and trap bar deadlifts. Key performance metrics included neuromuscular adaptation, sprint speed, jump performance, stop-and-go (SAG) performance, and load-velocity profiles. Seventeen participants completed 12 training sessions, a strength block set (Sessions 1–6) and a power block set (Sessions 7–12). The predictive models explained 54% to 79% (R2 = 0.54–0.79) of the performance improvement in the strength-related tests. Significant gains were observed in neuromuscular metrics, including estimated one-repetition maximum (1RMest) and average mean concentric velocity for both exercises. These findings underscore the predictive potential of VBT in enhancing strength and power while highlighting the need to integrate task-specific exercises to optimize sport-specific performance. This study provides valuable insights for tailoring VBT strategies for female athletes in high-demand team sports such as floorball. Full article
Show Figures

Figure 1

22 pages, 6043 KiB  
Article
Shape of the Pulmonary Doppler Sonography Blood Flow Profile of the Congo Grey Parrot (Psittacus erithacus) and the Influence of Heart Disease
by Carolin Girard, Norbert Kummerfeld, Michael Pees, Michael Fehr and Marko Legler
Vet. Sci. 2025, 12(5), 468; https://doi.org/10.3390/vetsci12050468 - 14 May 2025
Viewed by 457
Abstract
In avian medicine, sonographic examination is an important diagnostic tool for heart diseases. Little is known about the diagnostic relevance of the Doppler blood flow profiles of parrots. In the present study, sonographic examinations of Congo grey parrots with atherosclerosis were evaluated retrospectively [...] Read more.
In avian medicine, sonographic examination is an important diagnostic tool for heart diseases. Little is known about the diagnostic relevance of the Doppler blood flow profiles of parrots. In the present study, sonographic examinations of Congo grey parrots with atherosclerosis were evaluated retrospectively to gain more knowledge about their pulmonary and aortic systolic blood flow. The shapes of their Doppler sonographic blood flow profiles were quantified by the determination of the acceleration and deceleration phases. The investigations showed the differences between the aortic flow profile, with fast rising velocities, and the pulmonary flow profile, which has a round shape, in grey parrots. Diseased parrots with ultrasonographic signs of a right heart failure, such as an enlarged right ventricle and/or insufficiencies of the right atrioventricular and/or pulmonary valve, showed a significantly shorter acceleration and longer deceleration phase than parrots without heart failure or with sonographic signs of left heart failure only. The correlation of the shape of the pulmonary Doppler blood flow profile with the diameter of the left atrium, the systolic and diastolic diameter of the right ventricle, the fractional shortening of the left and right ventricle, and the mean aortic and pulmonary blood flow illustrates the importance of these sonographic parameters in the investigation of the function of the right ventricle in heart disease. Our examination showed that the shape of the pulmonary Doppler blood flow profile of Congo grey parrots provides important information about the pressure load on the right ventricle in heart diseases, which is comparable to that in small animal and human medicine. Full article
Show Figures

Figure 1

19 pages, 2887 KiB  
Article
Equivalence Between Optical Flow, the Unrest Index, and Walking Distance to Estimate the Welfare of Broiler Chickens
by Danilo Florentino Pereira, Irenilza de Alencar Nääs and Saman Abdanan Mehdizadeh
Animals 2025, 15(9), 1311; https://doi.org/10.3390/ani15091311 - 1 May 2025
Viewed by 445
Abstract
Modern poultry production demands scalable and non-invasive methods to monitor animal welfare, particularly as broiler strains are increasingly bred for rapid growth, often at the expense of mobility and health. This study evaluates two advanced computer vision techniques—Optical Flow and the Unrest Index—to [...] Read more.
Modern poultry production demands scalable and non-invasive methods to monitor animal welfare, particularly as broiler strains are increasingly bred for rapid growth, often at the expense of mobility and health. This study evaluates two advanced computer vision techniques—Optical Flow and the Unrest Index—to assess movement patterns in broiler chickens. Three commercial broiler strains (Hybro®, Cobb®, and Ross®) were housed in controlled environments and continuously monitored using ceiling-mounted video systems. Chicken movements were detected and tracked using a YOLO model, with centroid data informing both the Unrest Index and distance walked metrics. Optical Flow velocity metrics (mean, variance, skewness, and kurtosis) were extracted using the Farnebäck algorithm. Pearson correlation analyses revealed strong associations between Optical Flow variables and traditional movement indicators, with average velocity showing the strongest correlation to walked distance and the Unrest Index. Among the evaluated strains, Cobb® demonstrated the strongest correlation between Optical Flow variance and the Unrest Index, indicating a distinct movement profile. The equipment’s movement and the camera’s slight instability had a minimal effect on the Optical Flow measurement. Still, its strong correlation with the Unrest Index and walking distance accredits it as an effective method for high-resolution behavioral monitoring. This study supports the integration of Optical Flow and Unrest Index technologies into precision livestock systems, offering a foundation for predictive welfare management at scale. Full article
Show Figures

Figure 1

Back to TopTop