Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = marine port

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3220 KiB  
Article
Distributed Energy Management for Ship-Integrated Energy System Under Marine Environmental Risk Field
by Yuxin Zhang, Yang Xiao and Tieshan Li
Energies 2025, 18(15), 4163; https://doi.org/10.3390/en18154163 - 6 Aug 2025
Abstract
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. [...] Read more.
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. Meanwhile, an energy management model that considers both economic and environmental benefits is developed to enhance the penetration rate of renewable resources. Subsequently, a distributed energy management algorithm based on finite-time consensus theory is proposed to ensure a rapid and accurate response to load demand. Moreover, a mathematical analysis is provided to demonstrate the algorithm’s effectiveness. Finally, the sea area between Singapore Port (Singapore) and Penang Port (Malaysia) is chosen as the simulation environment. The experimental results demonstrate the effectiveness of energy management for the S-IES. Full article
Show Figures

Figure 1

21 pages, 2077 KiB  
Article
Quantitative Risk Assessment of Liquefied Natural Gas Bunkering Hoses in Maritime Operations: A Case of Shenzhen Port
by Yimiao Gu, Yanmin Zeng and Hui Shan Loh
J. Mar. Sci. Eng. 2025, 13(8), 1494; https://doi.org/10.3390/jmse13081494 - 2 Aug 2025
Viewed by 236
Abstract
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, [...] Read more.
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, particularly hazards associated with vapor cloud dispersion caused by bunkering hose releases. This study employs the Phast software developed by DNV to systematically simulate LNG release scenarios during STS operations, integrating real-world meteorological data and storage conditions. The dynamic effects of transfer flow rates, release heights, and release directions on vapor cloud dispersion are quantitatively analyzed under daytime and nighttime conditions. The results demonstrate that transfer flow rate significantly regulates dispersion range, with recommendations to limit the rate below 1500 m3/h and prioritize daytime operations to mitigate risks. Release heights exceeding 10 m significantly amplify dispersion effects, particularly at night (nighttime dispersion area at a height of 20 m is 3.5 times larger than during the daytime). Optimizing release direction effectively suppresses dispersion, with vertically downward releases exhibiting minimal impact. Horizontal releases require avoidance of downwind alignment, and daytime operations are prioritized to reduce lateral dispersion risks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 8118 KiB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 287
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

7 pages, 4461 KiB  
Data Descriptor
Dataset on Environmental Parameters and Greenhouse Gases in Port and Harbor Seawaters of Jeju Island, Korea
by Jae-Hyun Lim, Ju-Hyoung Kim, Hyo-Ryeon Kim, Seo-Young Kim and Il-Nam Kim
Data 2025, 10(7), 118; https://doi.org/10.3390/data10070118 - 19 Jul 2025
Viewed by 322
Abstract
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, [...] Read more.
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, pH, total alkalinity, and dissolved inorganic carbon. Concentrations and air–sea fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were also quantified. All measurements were conducted following standardized analytical protocols, and certified reference materials and duplicate analyses were used to ensure data accuracy. Consequently, the dataset revealed that elevated nutrient accumulation in port and harbor waters and GHG concentrations tended to be higher at sites with stronger land-based influence. During August 2021, most sites functioned as sources of N2O, CH4, and CO2 to the atmosphere. This integrated dataset offers valuable insights into the influence of anthropogenic and hydrological factors on coastal GHG dynamics and provides a foundation for future studies across diverse semi-enclosed marine systems. Full article
Show Figures

Figure 1

17 pages, 2044 KiB  
Article
The Application of Multi-Criteria Analysis to Coastal Zone Management Decision-Making
by Astrid Zekić, Ana Gundić, Luka Grbić and Mate Vukić
Sustainability 2025, 17(13), 6194; https://doi.org/10.3390/su17136194 - 6 Jul 2025
Viewed by 477
Abstract
Various activities, whether economic, social, or environmental, exert pressure on a coastal area. The extent of economic activities taking place in coastal regions is continuously increasing, particularly in tourism, maritime transport, port operations, and fisheries and aquaculture. Therefore, the decision to establish activities [...] Read more.
Various activities, whether economic, social, or environmental, exert pressure on a coastal area. The extent of economic activities taking place in coastal regions is continuously increasing, particularly in tourism, maritime transport, port operations, and fisheries and aquaculture. Therefore, the decision to establish activities in a coastal area is complex and requires careful consideration by all stakeholders who use this space, which is potentially one of the most important natural resources for the development of any coastal country. This research is focused on assessing the justification for establishing economic activities in a coastal area, taking into account the interconnection of spatial, safety, environmental, and social factors. Therefore, three possible scenarios have been proposed: the location of the communal port, the location of the nautical port-marina, and the location of the marine entertainment and recreation centre. The goal was to develop a model that would enable the objective assessment and selection of the most suitable activity that would simultaneously benefit society and have the least harmful impact on the environment. Therefore, a multi-criteria analysis was conducted using the AHP (Analytic Hierarchy Process) method. The decision-making process was based on the expert validation of criteria, sub-criteria, and alternatives. An analytical tool called Expert Choice was used to synthesise the results and select the optimal activity. The sensitivity analysis confirmed the stability and reliability of the obtained results, with the AHP method proving to be an effective tool in structuring the decision-making process regarding the establishment of activities in the coastal area. Based on the results of the multi-criteria assessment, planning the establishment of activities is an important precondition for the long-term and sustainable development of coastal activities in an area. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 1463 KiB  
Article
On Predicting Marine Engine Measurements with Synthetic Data in Scarce Dataset
by Sandi Baressi Šegota, Igor Poljak, Nikola Anđelić and Vedran Mrzljak
J. Mar. Sci. Eng. 2025, 13(7), 1289; https://doi.org/10.3390/jmse13071289 - 30 Jun 2025
Viewed by 250
Abstract
The scarcity of high-quality maritime datasets poses a significant challenge for machine learning (ML) applications in marine engineering, particularly in scenarios where real-world data collection is limited or impractical. This study investigates the effectiveness of synthetic data generation and cross-modeling in predicting operational [...] Read more.
The scarcity of high-quality maritime datasets poses a significant challenge for machine learning (ML) applications in marine engineering, particularly in scenarios where real-world data collection is limited or impractical. This study investigates the effectiveness of synthetic data generation and cross-modeling in predicting operational metrics of LNG carrier engines. A total of 38 real-world data points were collected from port and starboard engines, focusing on four target outputs: mechanical efficiency, fuel consumption, load, and effective power. CopulaGAN, a hybrid generative model combining statistical copulas and generative adversarial networks, was employed to produce synthetic datasets. These were used to train multilayer perceptron (MLP) regression models, which were optimized via grid search and validated through five-fold cross-validation. The results show that synthetic data can yield accurate models, with mean absolute percentage errors (MAPE) below 2% in most cases. The combined synthetic datasets consistently outperformed those generated from single-engine data. Cross-modeling was partially successful, as models trained on starboard data generalized well to port data but not vice versa. The engine load variable remained challenging to predict due to its narrow and low-range distribution. Overall, the study highlights synthetic data as a viable solution for enhancing the performance of ML models in data-scarce maritime applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 10755 KiB  
Article
Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment
by Isavela N. Monioudi, Dimitris Chatzistratis, Konstantinos Moschopoulos, Adonis F. Velegrakis, Amalia Polydoropoulou, Theodoros Chalazas, Efstathios Bouhouras, Georgios Papaioannou, Ioannis Karakikes and Helen Thanopoulou
Water 2025, 17(13), 1897; https://doi.org/10.3390/w17131897 - 26 Jun 2025
Viewed by 688
Abstract
This study assesses the exposure of the 155 Greek seaports to marine flooding and extreme heat under climate change. Flood exposure was estimated through a threshold approach that compared projected mean and extreme sea levels to high-resolution port quay elevation data. It was [...] Read more.
This study assesses the exposure of the 155 Greek seaports to marine flooding and extreme heat under climate change. Flood exposure was estimated through a threshold approach that compared projected mean and extreme sea levels to high-resolution port quay elevation data. It was found that while relatively few ports will face quay inundation, the majority will experience operational disruptions due to insufficient freeboard for berthing of commercial vessels under both the mean (80%) and extreme sea (96%) levels by 2050. For selected ports, 2-D flood modelling was undertaken that showed that the used ‘static’ flood threshold approach likely underestimates flood exposure. Future heat exposure was studied through the comparison of extreme temperature and humidity projections to operational and health/safety thresholds. Port infrastructure and personnel/users will be exposed to large material, operational and health risks, whereas energy demand will rise steeply. Deadly heat days (due to mean temperature/humidity combination) will increase, particularly at island ports: 20% of Greek ports might face more than 50 such days annually by end-century. As ports are associated with large urban clusters, these findings suggest a broader health risk. Our findings suggest an urgent climate adaptation need given the strategic socio-economic importance of ports. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

22 pages, 21422 KiB  
Article
Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
by Maria Emanuela Mihailov, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea and Gianina Chiroșca
Sustainability 2025, 17(12), 5664; https://doi.org/10.3390/su17125664 - 19 Jun 2025
Viewed by 554
Abstract
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this [...] Read more.
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this form of contamination. Mytilus galloprovincialis, a well-established bioindicator, accumulates microplastics, providing a direct measure of environmental pollution and indicating potential economic consequences deriving from degraded ecosystem services. While previous studies have documented microplastic pollution in the Black Sea, our paper specifically quantified microplastic contamination in M. galloprovincialis collected from four sites along the western Black Sea coast, each characterised by distinct levels of anthropogenic influence: Midia Port, Constanta Port, Mangalia Port, and 2 Mai. We used statistical analysis to quantify site-specific microplastic contamination in M. galloprovincialis and employed machine learning to develop models predicting accumulation patterns based on environmental variables. Our findings demonstrate the efficacy of mussels as bioindicators of marine plastic pollution and highlight the utility of machine learning in developing effective predictive tools for monitoring and managing marine litter contamination in marine environments, thereby contributing to sustainable economic practices. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

24 pages, 3039 KiB  
Article
Cold Ironing Impact on Voyage Carbon Intensity in Container Shipping: Economic and Regulatory Insights
by Coşkan Sevgili, Murat Bayraktar, Alper Seyhan and Onur Yuksel
Sustainability 2025, 17(12), 5556; https://doi.org/10.3390/su17125556 - 17 Jun 2025
Viewed by 466
Abstract
The Carbon Intensity Indicator (CII) plays a critical role in assessing vessel efficiency. This study examines the impact of cold ironing (CI) on CII performance by analyzing 183 voyages of container ships. The research evaluates the attained CII values, CII ratings, and a [...] Read more.
The Carbon Intensity Indicator (CII) plays a critical role in assessing vessel efficiency. This study examines the impact of cold ironing (CI) on CII performance by analyzing 183 voyages of container ships. The research evaluates the attained CII values, CII ratings, and a Levelized Cost of Energy (LCOE) under different voyage data of container ships between 2023 and 2030. Results show that while 90.7% of voyages met the CII reference value in 2023, this rate decreased to 68.9% and 19.7% by 2026 and 2030, underscoring the increasing challenge of regulatory compliance, if no energy efficiency measures can be taken. Seasonal variations significantly influenced the CII, especially in March and May. With the implementation of CI on container ships, 6441.95 tons of heavy fuel oil and 6101.77 tons of marine gas oil consumption have been eliminated during port stays based on voyage data. Economic analysis indicates that CI increases the LCOE by 13.76%–19.65%, with a discounted payback period ranging from 4.69 to 24 years. This study highlights CI as a viable short-term measure for reducing maritime emissions and enhancing CII compliance, emphasizing the need for optimized economic models. Full article
(This article belongs to the Special Issue Sustainable Energy Systems and Renewable Generation—Second Edition)
Show Figures

Figure 1

38 pages, 11886 KiB  
Article
The Estimation of Suspended Solids Concentration from an Acoustic Doppler Current Profiler in a Tidally Dominated Continental Shelf Sea Setting and Its Use as a Numerical Modelling Validation Technique
by Shauna Creane, Michael O’Shea, Mark Coughlan and Jimmy Murphy
Water 2025, 17(12), 1788; https://doi.org/10.3390/w17121788 - 14 Jun 2025
Viewed by 405
Abstract
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment [...] Read more.
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment transport numerical modelling approaches allow engineers and scientists to investigate the physical interactions involved in these projects both in the near and far field. However, a lack of confidence in simulated sediment transport results is evident in many coastal and offshore studies, mainly due to limited access to validation datasets. This study addresses the need for cost-effective sediment validation datasets by investigating the applicability of four new suspended load validation techniques to a 2D model of the south-western Irish Sea. This involves integrating an estimated spatial time series of suspended solids concentration (SSCsolids) derived from acoustic Doppler current profiler (ADCP) acoustic backscatter with several in situ water sample-based SSCsolids datasets. Ultimately, a robust spatial time series of ADCP-based SSCsolids was successfully calculated in this offshore, tidally dominated setting, where the correlation coefficient between estimated SSCsolids and directly measured SSCsolids is 0.87. Three out of the four assessed validation techniques are deemed advantageous in developing an accurate 2D suspended sediment transport model given the assumptions of the depth-integrated approach. These recommended techniques include (i) the validation of 2D modelled suspended sediment concentration (SSCsediment) using water sample-based SSCsolids, (ii) the validation of the flood–ebb characteristics of 2D modelled suspended load transport and SSCsediment using ADCP-based datasets, and (iii) the validation of the 2D modelled peak SSCsediment over a spring–neap cycle using the ADCP-based SSCsolids. Overall, the multi-disciplinary method of collecting in situ metocean and sediment dynamic data via acoustic instruments (ADCPs) is a cost-effective in situ data collection method for future ORE developments and other engineering and scientific projects. Full article
Show Figures

Figure 1

20 pages, 5929 KiB  
Article
Eutrophication Monitoring for Sustainable Development in Nha Trang Marine Protected Area, Vietnam
by Phan Minh-Thu, Ho Van The, Hoang Xuan Ben, Nguyen Minh Hieu, Le Hung Phu, Le Trong Dung, Pham Hong Ngoc, Vo Tran Tuan Linh, Pham Thi Mien, Tran Thanh Ha, Nguyen Thi Xuan Thang, Hoang Thanh Vinh and Dao Viet Ha
Sustainability 2025, 17(11), 5128; https://doi.org/10.3390/su17115128 - 3 Jun 2025
Viewed by 709
Abstract
Environmental monitoring is essential to assess and, if possible, anticipate the consequences of various marine economic developments. This study describes progress in environmental monitoring by developing and applying a eutrophication index (EI) for marine protected areas (MPAs). The EI combines available data, such [...] Read more.
Environmental monitoring is essential to assess and, if possible, anticipate the consequences of various marine economic developments. This study describes progress in environmental monitoring by developing and applying a eutrophication index (EI) for marine protected areas (MPAs). The EI combines available data, such as biological oxygen demands, dissolved inorganic nitrogen and phosphorus, and chlorophyll-a, with the weighting factors calculated from principal component analysis to assess environmental quality. Its effectiveness was tested using nearly three decades of environmental data (since 1996) from the Nha Trang MPA in Vietnam. The EI revealed clear trends in environmental quality. In the period 1996–2006, environmental conditions deteriorated, negatively impacting aquaculture. In the later period, 2007–2024, improved environmental protection policies, technological developments, expanding tourism, and heightened public awareness contributed to a reversal of this trend. During the earlier period, the EI indicated poor environmental quality (Level V), while in the later years, it improved significantly, approaching Level II. This study also identified the spatial eutrophication patterns and helped to determine the causes of specific eutrophication levels. These included port development, aquaculture activities, and domestic waste discharge. These findings highlight the close relationship between environmental quality and economic activities in the bay. Overall, the new EI and its sensitivity maps enhance environmental monitoring capabilities. They provide valuable tools for decision-makers, aiding in the strategic planning of marine economic development, ecosystem protection, and sustainable resource use. The approach supports long-term environmental stewardship and more informed, adaptive management of coastal and marine areas. Full article
Show Figures

Figure 1

23 pages, 2955 KiB  
Article
Numerical Simulations of Scaling of the Chamber Dimensions of the Liquid Piston Compressor for Hydrogen Applications
by Marina Konuhova, Valerijs Bezrukovs, Vladislavs Bezrukovs, Deniss Bezrukovs, Maksym Buryi, Nikita Gorbunovs and Anatoli I. Popov
Technologies 2025, 13(6), 226; https://doi.org/10.3390/technologies13060226 - 3 Jun 2025
Viewed by 1185
Abstract
Hydrogen compression is a critical process in hydrogen storage and distribution, particularly for energy infrastructure and transportation. As hydrogen technologies expand beyond limited industrial applications, they are increasingly supporting the green economy, including offshore energy systems, smart ports, and sustainable marine industries. Efficient [...] Read more.
Hydrogen compression is a critical process in hydrogen storage and distribution, particularly for energy infrastructure and transportation. As hydrogen technologies expand beyond limited industrial applications, they are increasingly supporting the green economy, including offshore energy systems, smart ports, and sustainable marine industries. Efficient compression technologies are essential for ensuring reliable hydrogen storage and distribution across these sectors. This study focuses on optimizing hydrogen compression using a Liquid Piston Hydrogen Compressor through numerical simulations and scaling analysis. The research examines the influence of compression chamber geometry, including variations in radius and height, on thermal behavior and energy efficiency. A computational model was developed using COMSOL Multiphysics® 6.0, incorporating Computational Fluid Dynamics (CFD) and heat transfer modules to analyze thermodynamic processes. The results highlight temperature distribution in hydrogen, working fluid, and chamber walls at different initial pressures (3.0 MPa and 20.0 MPa) and compression stroke durations. Larger chamber volumes lead to higher temperature increases but reach thermal stabilization. Increasing the chamber volume allows for a significant increase in the performance of the hydraulic compression system with a moderate increase in the temperature of hydrogen. These findings provide insights into optimizing hydrogen compression for enhanced production and broader applications. Full article
Show Figures

Figure 1

18 pages, 7348 KiB  
Article
Augmenting Coral Growth on Breakwaters: A Shelter-Based Approach
by Almog Ben Natan, Natalie Chernihovsky and Nadav Shashar
Coasts 2025, 5(2), 18; https://doi.org/10.3390/coasts5020018 - 28 May 2025
Viewed by 508
Abstract
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically [...] Read more.
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically composed of hard units designed to block and divert wave and current energy, often fail to support diverse and abundant marine communities because of their impact on current and sediment transport, the introduction of invasive species, and the loss of natural habitats. Marine ecoengineering aims at increasing CDS ecological services and the development of marine organisms on them. In this study, carried out in a coral reef environment, we examined the relationship between coral colony protection levels and three factors related to their development, namely, coral fragment survival rate, larval settlement, and water motion (flow rate), across three distinct niches: Exposed, Semi-sheltered, and Sheltered. Coral survivability was assessed through fragment planting, while recruitment was monitored using ceramic settlement tiles. Water motion was measured in all defined niches using plaster of Paris Clod-Cards. Additionally, concrete barrier structures were placed in Exposed niches to test whether artificially added protective elements could enhance coral fragment survival. No differences were found in coral settlement between the niches. Flow rate patterns remained similar in Exposed and Sheltered niches due to vortex formation in the Sheltered zones. Survival analysis revealed variability between niches, with the addition of artificial shelter barriers leading to the highest coral fragment survival on the breakwater. This study contributes to the development of ways to enhance coral development with the goal of transforming artificial barriers into functional artificial reefs. Full article
Show Figures

Figure 1

29 pages, 1302 KiB  
Article
Analysis of Emergency Cooperative Strategies in Marine Oil Spill Response: A Stochastic Evolutionary Game Approach
by Feifan He, Yuanyuan Xu, Pengjun Zheng, Guiyun Liu and Dan Zhao
Sustainability 2025, 17(11), 4920; https://doi.org/10.3390/su17114920 - 27 May 2025
Viewed by 403
Abstract
Marine oil spills significantly adversely affect the socio-economic environment and marine ecosystems. Establishing an efficient emergency cooperation mechanism that enables swift and coordinated responses from all stakeholders is crucial to mitigate the harmful consequences of such spills and protect regional security. This study [...] Read more.
Marine oil spills significantly adversely affect the socio-economic environment and marine ecosystems. Establishing an efficient emergency cooperation mechanism that enables swift and coordinated responses from all stakeholders is crucial to mitigate the harmful consequences of such spills and protect regional security. This study uses stochastic evolutionary game theory to develop an emergency cooperation model, focusing on the strategic interactions and dynamic evolution between three main parties: the local government, port enterprises, and specialized oil spill cleanup units. The findings indicate the following: (1) The strategy choice of the local government plays a dominant role in the three-party game and has a significant guiding effect on the behavioral decisions of port enterprises and specialized oil spill cleanup units. (2) The strength of the government’s reward and punishment mechanism directly affects the cooperation tendency of the port enterprises and specialized oil spill cleanup units. (3) When the emergency response is more efficient and the cooperation effect is significant, the cleanup units may choose negative cooperation based on payoff maximization in order to prolong the cleaning time. (4) In the process of system evolution, the strategies of local governments and port enterprises are more stable and less affected by random perturbations, while the strategy fluctuations of cleanup units are more sensitive. The findings enrich the theoretical framework for handling marine oil spill emergencies and provide valuable insights for developing efficient collaborative mechanisms and formulating well-grounded regulatory incentive policies. Full article
Show Figures

Figure 1

20 pages, 6387 KiB  
Article
Denoising and Feature Enhancement Network for Target Detection Based on SAR Images
by Cheng Yang, Chengyu Li and Yongfeng Zhu
Remote Sens. 2025, 17(10), 1739; https://doi.org/10.3390/rs17101739 - 16 May 2025
Cited by 2 | Viewed by 669
Abstract
Synthetic aperture radar (SAR) is characterized by its all-weather monitoring capabilities and high-resolution imaging. It plays a crucial role in operations such as marine salvage and strategic deployments. However, existing vessel detection technologies face challenges such as occlusion and deformation of targets in [...] Read more.
Synthetic aperture radar (SAR) is characterized by its all-weather monitoring capabilities and high-resolution imaging. It plays a crucial role in operations such as marine salvage and strategic deployments. However, existing vessel detection technologies face challenges such as occlusion and deformation of targets in multi-scale target detection and significant interference noise in complex scenarios like coastal areas and ports. To address these issues, this paper proposes an algorithm based on YOLOv8 for detecting ship targets in complex backgrounds using SAR images, named DFENet (Denoising and Feature Enhancement Network). First, we design a background suppression and target enhancement module (BSTEM), which aims to suppress noise interference in complex backgrounds. Second, we further propose a feature enhancement attention module (FEAM) to enhance the network’s ability to extract edge and contour features, as well as to improve its dynamic awareness of critical areas. Experiments conducted on public datasets demonstrate the effectiveness and superiority of DFENet. In particular, compared with the benchmark network, the detection accuracy of mAP75 on the SSDD and HRSID is improved by 2.3% and 2.9%, respectively. In summary, DFENet demonstrates excellent performance in scenarios with significant background interference or high demands for positioning accuracy, indicating strong potential for various applications. Full article
Show Figures

Figure 1

Back to TopTop