Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (982)

Search Parameters:
Keywords = maneuvering model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3620 KiB  
Article
Wind Tunnel Experimental Study on Dynamic Coupling Characteristics of Flexible Refueling Hose–Drogue System
by Yinzhu Wang, Jiangtao Huang, Qisheng Chen, Enguang Shan and Yufeng Guo
Aerospace 2025, 12(7), 646; https://doi.org/10.3390/aerospace12070646 - 21 Jul 2025
Viewed by 76
Abstract
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping [...] Read more.
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping phenomenon, which greatly limits the success rate and safety of aerial refueling operations. Based on a 2.4 m transonic wind tunnel, high-speed wind tunnel test technology of a flexible aerial refueling hose–drogue system was established to carry out experimental research on the coupling characteristics of aerodynamics and multi-body dynamics. Based on the aid of Videogrammetry Model Deformation (VMD), high-speed photography, dynamic balance, and other wind tunnel test technologies, the dynamic characteristics of the hose–drogue system in a high-speed airflow and during the approach of the receiver are obtained. Adopting flexible multi-body dynamics, a dynamic system of the tanker, hose, drogue, and receiver is modeled. The cable/beam model is based on an arbitrary Lagrange–Euler method, and the absolute node coordinate method is used to describe the deformation, movement, and length variation in the hose during both winding and unwinding. The aerodynamic forces of the tanker, receiver, hose, and drogue are modeled, reflecting the coupling influence of movement of the tanker and receiver, the deformation of the hose and drogue, and the aerodynamic forces on each other. The tests show that during the approach of the receiver (distance from 1000 mm to 20 mm), the sinking amount of the drogue increases by 31 mm; due to the offset of the receiver probe, the drogue moves sideways from the symmetric plane of the receiver. Meanwhile, the oscillation magnitude of the drogue increases (from 33 to 48 and from 48 to 80 in spanwise and longitudinal directions, respectively). The simulation results show that the shear force induced by the oscillation of the hose and the propagation velocity of both the longitudinal and shear waves are affected by the hose stiffness and Mach number. The results presented in this work can be of great reference to further increase the safety of aerial refueling. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

36 pages, 11687 KiB  
Article
Macroscopic-Level Collaborative Optimization Framework for IADS: Multiple-Route Terminal Maneuvering Area Scheduling Problem
by Chaoyu Xia, Minghua Hu, Xiuying Zhu, Yi Wen, Junqing Wu and Changbo Hou
Aerospace 2025, 12(7), 639; https://doi.org/10.3390/aerospace12070639 - 18 Jul 2025
Viewed by 95
Abstract
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an [...] Read more.
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an optimization challenge aimed at optimizing TMA interventions, such as rerouting, speed control, time-based metering, dynamic minimum time separation, and holding procedures; the objective function minimizes schedule deviations and the accumulated holding time. Furthermore, the problem is formulated as a mixed-integer linear program (MILP) to facilitate finding solutions. A rolling horizon control (RHC) dynamic optimization framework is also introduced to decompose the large-scale problem into manageable subproblems for iterative resolution. To demonstrate the applicability and effectiveness of the proposed scheduling models, a hub airport—Chengdu Tianfu International Airport (ICAO code: ZUTF) in the Cheng-Yu Metroplex—is selected for validation. Numerical analyses confirm the superiority of the proposed models, which are expected to reduce aircraft delays, shorten airborne and holding times, and improve airspace resource utilization. This study provides intelligent decision support and engineering design ideas for the macroscopic-level collaborative optimization framework of the Integrated Arrival–Departure and Surface (IADS) system. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
Show Figures

Figure 1

43 pages, 7260 KiB  
Article
A Solution Method for Non-Linear Underdetermined Equation Systems in Grounding Grid Corrosion Diagnosis Based on an Enhanced Hippopotamus Optimization Algorithm
by Jinhe Chen, Jianyu Qi, Yiyang Ao, Keying Wang and Xin Song
Biomimetics 2025, 10(7), 467; https://doi.org/10.3390/biomimetics10070467 - 16 Jul 2025
Viewed by 325
Abstract
As power grids scale and aging assets edge toward obsolescence, grounding grid corrosion has become a critical vulnerability. Conventional diagnosis must fit high-dimensional electrical data to a physical model, typically yielding a nonlinear under-determined system fraught with computational burden and uncertainty. We propose [...] Read more.
As power grids scale and aging assets edge toward obsolescence, grounding grid corrosion has become a critical vulnerability. Conventional diagnosis must fit high-dimensional electrical data to a physical model, typically yielding a nonlinear under-determined system fraught with computational burden and uncertainty. We propose the Enhanced Biomimetic Hippopotamus Optimization (EBOHO) algorithm, which distills the river-dwelling hippo’s ecological wisdom into three synergistic strategies: a beta-function herd seeding that replicates the genetic diversity of juvenile hippos diffusing through wetlands, an elite–mean cooperative foraging rule that echoes the way dominant bulls steer the herd toward nutrient-rich pastures, and a lens imaging opposition maneuver inspired by moonlit water reflections that spawn mirror candidates to avert premature convergence. Benchmarks on the CEC 2017 suite and four classical design problems show EBOHO’s superior global search, robustness, and convergence speed over numerous state-of-the-art meta-heuristics, including prior hippo variants. An industrial case study on grounding grid corrosion further confirms that EBOHO swiftly resolves the under-determined equations and pinpoints corrosion sites with high precision, underscoring its promise as a nature-inspired diagnostic engine for aging power system infrastructure. Full article
Show Figures

Figure 1

23 pages, 3056 KiB  
Article
Methodology for Evaluating Collision Avoidance Maneuvers Using Aerodynamic Control
by Desiree González Rodríguez, Pedro Orgeira-Crespo, Jose M. Nuñez-Ortuño and Fernando Aguado-Agelet
Remote Sens. 2025, 17(14), 2437; https://doi.org/10.3390/rs17142437 - 14 Jul 2025
Viewed by 138
Abstract
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and [...] Read more.
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and Control System (ADCS). By adjusting orientation, the satellite modifies its exposed surface area, altering atmospheric drag and lift forces to shift its orbit. This new approach integrates atmospheric modeling (NRLMSISE-00), aerodynamic coefficient estimation using the ADBSat panel method, and orbital simulations in Systems Tool Kit (STK). The LUME-1 CubeSat mission is used as a reference case, with simulations at three altitudes (500, 460, and 420 km). Results show that attitude-induced drag modulation can generate significant orbital displacements—measured by Horizontal and Vertical Distance Differences (HDD and VDD)—sufficient to reduce collision risk. Compared to constant-drag models, the panel method offers more accurate, orientation-dependent predictions. While lift forces are minor, their inclusion enhances modeling fidelity. This methodology supports the development of low-resource, autonomous collision avoidance systems for future CubeSat missions, particularly in remote sensing applications where orbital precision is essential. Full article
(This article belongs to the Special Issue Advances in CubeSat Missions and Applications in Remote Sensing)
Show Figures

Figure 1

27 pages, 6174 KiB  
Article
Non-Compliant Behaviour of Automated Vehicles in a Mixed Traffic Environment
by Marlies Mischinger-Rodziewicz, Felix Hofbaur, Michael Haberl and Martin Fellendorf
Appl. Sci. 2025, 15(14), 7852; https://doi.org/10.3390/app15147852 - 14 Jul 2025
Viewed by 127
Abstract
Legal requirements for minimum distances between vehicles are often not met for short periods of time, especially when changing lanes on multi-lane roads. These situations are typically non-hazardous, as human drivers anticipate surrounding traffic, allowing for shorter headways and improved traffic flow. Automated [...] Read more.
Legal requirements for minimum distances between vehicles are often not met for short periods of time, especially when changing lanes on multi-lane roads. These situations are typically non-hazardous, as human drivers anticipate surrounding traffic, allowing for shorter headways and improved traffic flow. Automated vehicles (AVs), however, are typically designed to maintain strict headway limits, potentially reducing traffic efficiency. Therefore, legal questions arise as to whether mandatory gap and headway limits for AVs may be violated during periods of non-compliance. While traffic flow simulation is a common method for analyzing AV impacts, previous studies have typically modeled AV behavior using driver models originally designed to replicate human driving. These models are not well suited for representing clearly defined, structured non-compliant maneuvers, as they cannot simulate intentional, rule-deviating strategies. This paper addresses this gap by introducing a concept for AV non-compliant behavior and implementing it as a module within a pre-existing AV driver model. Simulations were conducted on a three-lane highway with an on-ramp under varying traffic volumes and AV penetration rates. The results showed that, with an AV-penetration rate of more than 25%, road capacity at highway entrances could be increased and travel times reduced by over 20%, provided that AVs were allowed to merge with a legal gap of 0.9 s and a minimum non-compliant gap of 0.6 s lasting up to 3 s. This suggests that performance gains are achievable under adjusted legal requirements. In addition, the proposed framework can serve as a foundation for further development of AV driver models aiming at improving traffic efficiency while maintaining regulatory compliance. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

58 pages, 38117 KiB  
Article
Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design
by Janani Priyadharshini Veeraperumal Senthil Nathan, Martin Navamani Chellapandian, Vijayanandh Raja, Parvathy Rajendran, It Ee Lee, Naveen Kumar Kulandaiyappan, Beena Stanislaus Arputharaj, Subhav Singh and Deekshant Varshney
Machines 2025, 13(7), 604; https://doi.org/10.3390/machines13070604 - 14 Jul 2025
Viewed by 320
Abstract
Flying wing Unmanned Aerial Vehicles (UAVs) are an interesting flight configuration, considering its benefits over aerodynamic, structural and added stealth aspects. The existing configurations are thoroughly studied from the literature survey and useful observations with respect to design and analysis are obtained. The [...] Read more.
Flying wing Unmanned Aerial Vehicles (UAVs) are an interesting flight configuration, considering its benefits over aerodynamic, structural and added stealth aspects. The existing configurations are thoroughly studied from the literature survey and useful observations with respect to design and analysis are obtained. The proposed design method includes distinct calculations of the UAV and modelling using 3D experience. The created innovative models are simulated with the help of computational fluid dynamics techniques in ANSYS Fluent to obtain the aerodynamic parameters such as forces, pressure and velocity. The optimization process continues to add more desired modifications to the model, to finalize the best design of flying wing frame for the chosen application and mission profile. In total, nine models are developed starting with the base model, then leading to the conventional, advanced and nature inspired configurations such as the falcon and dragonfly models, as it has an added advantage of producing high maneuverability and lift. Following this, fluid structure interaction analysis has been performed for the best performing configurations, resulting in the determination of variations in the structural behavior with the imposition of advanced composite materials, namely, boron, Kevlar, glass and carbon fiber-reinforced polymers. In addition to this, a hybrid material is designed by combining two composites that resulted in superior material performance when imposed. Control dynamic study is performed for the maneuvers planned as per mission profile, to ensure stability during flight. All the resulting parameters obtained are compared with one another to choose the best frame of the flying wing body, along with the optimum material to be utilized for future analysis and development. Full article
(This article belongs to the Special Issue Design and Application of Bionic Robots)
Show Figures

Figure 1

30 pages, 8543 KiB  
Article
Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets
by Xin Wang, Jing Yang and Yong Luo
Remote Sens. 2025, 17(14), 2430; https://doi.org/10.3390/rs17142430 - 13 Jul 2025
Viewed by 178
Abstract
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the [...] Read more.
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the increasing demands for resolution and robustness, modern ISAR systems are evolving toward wideband and multi-channel architectures. In particular, multi-channel configurations based on large-scale receiving arrays have gained significant attention. In such systems, each receiving element functions as an independent spatial channel, acquiring observations from distinct perspectives. These multi-angle measurements enrich the available echo information and enhance the robustness of target imaging. However, this setup also brings significant challenges, including inter-channel coupling, high-dimensional joint signal modeling, and non-Gaussian, mixed-mode interference, which often degrade image quality and hinder reconstruction performance. To address these issues, this paper proposes a Hybrid Variational Bayesian Multi-Interference (HVB-MI) imaging algorithm based on a hierarchical Bayesian framework. The method jointly models temporal correlations and inter-channel structure, introducing a coupled processing strategy to reduce dimensionality and computational complexity. To handle complex noise environments, a Gaussian mixture model (GMM) is used to represent nonstationary mixed noise. A variational Bayesian inference (VBI) approach is developed for efficient parameter estimation and robust image recovery. Experimental results on both simulated and real-measured data demonstrate that the proposed method achieves significantly improved image resolution and noise robustness compared with existing approaches, particularly under conditions of sparse sampling or strong interference. Quantitative evaluation further shows that under the continuous sparse mode with a 75% sampling rate, the proposed method achieves a significantly higher Laplacian Variance (LV), outperforming PCSBL and CPESBL by 61.7% and 28.9%, respectively and thereby demonstrating its superior ability to preserve fine image details. Full article
Show Figures

Graphical abstract

21 pages, 29238 KiB  
Article
Distributed Impulsive Multi-Spacecraft Approach Trajectory Optimization Based on Cooperative Game Negotiation
by Shuhui Fan, Xiang Zhang and Wenhe Liao
Aerospace 2025, 12(7), 628; https://doi.org/10.3390/aerospace12070628 - 12 Jul 2025
Viewed by 159
Abstract
A cooperative game negotiation strategy considering multiple constraints is proposed for distributed impulsive multi-spacecraft approach missions in the presence of defending spacecraft. It is a dual-stage decision-making method that includes offline trajectory planning and online distributed negotiation. In the trajectory planning stage, a [...] Read more.
A cooperative game negotiation strategy considering multiple constraints is proposed for distributed impulsive multi-spacecraft approach missions in the presence of defending spacecraft. It is a dual-stage decision-making method that includes offline trajectory planning and online distributed negotiation. In the trajectory planning stage, a relative orbital dynamics model is first established based on the Clohessy–Wiltshire (CW) equations, and the state transition equations for impulsive maneuvers are derived. Subsequently, a multi-objective optimization model is formulated based on the NSGA-II algorithm, utilizing a constraint dominance principle (CDP) to address various constraints and generate Pareto front solutions for each spacecraft. In the distributed negotiation stage, the negotiation strategy among spacecraft is modeled as a cooperative game. A potential function is constructed to further analyze the existence and global convergence of Nash equilibrium. Additionally, a simulated annealing negotiation strategy is developed to iteratively select the optimal comprehensive approach strategy from the Pareto fronts. Simulation results demonstrate that the proposed method effectively optimizes approach trajectories for multi-spacecraft under complex constraints. By leveraging inter-satellite iterative negotiation, the method converges to a Nash equilibrium. Additionally, the simulated annealing negotiation strategy enhances global search performance, avoiding entrapment in local optima. Finally, the effectiveness and robustness of the dual-stage decision-making method were further demonstrated through Monte Carlo simulations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras
by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang and Guoteng Ren
Sensors 2025, 25(14), 4366; https://doi.org/10.3390/s25144366 - 12 Jul 2025
Viewed by 260
Abstract
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors [...] Read more.
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors in complex space environments. In contrast, event cameras—drawing inspiration from biological vision—can capture brightness changes at ultrahigh speeds and output a series of asynchronous events, thereby demonstrating enormous potential for space detection applications. Based on this, this paper proposes an event data extraction method for weak, high-dynamic space targets to enhance the performance of event cameras in detecting space targets under high-dynamic maneuvers. In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. During the target extraction stage, we introduce the DBSCAN clustering algorithm to achieve the subpixel-level extraction of target centroids. Moreover, to address issues of target trajectory distortion and data discontinuity in certain ultrahigh-dynamic scenarios, we construct a camera motion model based on real-time motion data from an inertial measurement unit (IMU) and utilize it to effectively compensate for and correct the target’s trajectory. Finally, a ground-based simulation system is established to validate the applicability and superior performance of the proposed method in real-world scenarios. Full article
Show Figures

Figure 1

17 pages, 2514 KiB  
Article
Forecasting Transient Fuel Consumption Spikes in Ships: A Hybrid DGM-SVR Approach
by Junhao Chen and Yan Peng
Eng 2025, 6(7), 151; https://doi.org/10.3390/eng6070151 - 3 Jul 2025
Viewed by 222
Abstract
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient [...] Read more.
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient peaks that conventional models often fail to capture accurately, particularly the abrupt peaks. In this study, a hybrid prediction model, DGM-SVR, is presented, combining a rolling dynamic grey model (DGM (1,1)) with support vector regression (SVR). The DGM (1,1) adapts to the dynamic fuel consumption baseline and trends via a rolling window mechanism, while the SVR learns and predicts the residual sequence generated by the DGM, specifically addressing the high-amplitude fuel spikes triggered by maneuvers. Validated on a simulated dataset reflecting typical fuel spike characteristics during high-speed maneuvers, the DGM-SVR model demonstrated superior overall prediction accuracy (MAPE and RMSE) compared to standalone DGM (1,1), moving average (MA), and SVR models. Notably, DGM-SVR reduced the test set’s MAPE and RMSE by approximately 21% and 34%, respectively, relative to the next-best DGM model, and significantly improved the predictive accuracy, magnitude, and responsiveness in predicting fuel consumption spikes. The findings indicate that the DGM-SVR hybrid strategy effectively fuses DGM’s trend-fitting strength with SVR’s proficiency in capturing spikes from the residual sequence, offering a more reliable and precise method for dynamic ship fuel consumption forecasting, with considerable potential for ship energy efficiency management and intelligent operational support. This study lays a foundation for future validation on real-world operational data. Full article
Show Figures

Figure 1

21 pages, 6036 KiB  
Article
Investigation of the Asymmetric Features of X-Rudder Underwater Vehicle Vertical Maneuvring and Novel Motion Prediction Technology
by Yinghua Li, Ziying Pan, Yongcheng Li, Changyou Song, Minghui Zhang and Mengchen Ren
J. Mar. Sci. Eng. 2025, 13(7), 1288; https://doi.org/10.3390/jmse13071288 - 30 Jun 2025
Viewed by 179
Abstract
An X-rudder underwater vehicle’s hydrodynamic force acting on its rudder will display asymmetrical characteristics during vertical movement that are absent from a cross-rudder vehicle. This paper presents a novel hydrodynamic expression method based on rotational hydrodynamic transformation through a detailed analysis of the [...] Read more.
An X-rudder underwater vehicle’s hydrodynamic force acting on its rudder will display asymmetrical characteristics during vertical movement that are absent from a cross-rudder vehicle. This paper presents a novel hydrodynamic expression method based on rotational hydrodynamic transformation through a detailed analysis of the local flow characteristics around the tail attachment during the vertical plane maneuvering of the X-rudder vehicle, given that the conventional Taylor expansion-based hydrodynamic expression method is unable to characterize this asymmetric characteristic. With the help of this technique, a novel expression that can precisely describe the asymmetric hydrodynamic properties during the X-rudder vehicle’s underwater vertical plane maneuvering is created. This paper next concentrates on common vertical plane maneuvering motion situations and performs simulation predictions using both new and conventional expressions based on Taylor expansion. The asymmetric characteristics of the X-rudder underwater vehicle in vertical plane maneuvering have been experimentally confirmed, and the asymmetric characteristics become more pronounced as the speed increases, according to the results, which are compared with those of tests using self-driving models. Overall, the new model accurately describes the asymmetric features of the X-rudder vehicle’s vertical maneuvering motion and correlates well with the experimental findings. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 4569 KiB  
Article
Orbit Determination for Continuously Maneuvering Starlink Satellites Based on an Unscented Batch Filtering Method
by Anqi Lang and Yu Jiang
Sensors 2025, 25(13), 4079; https://doi.org/10.3390/s25134079 - 30 Jun 2025
Viewed by 321
Abstract
Orbit determination for non-cooperative low Earth orbit (LEO) objects undergoing continuous low-thrust maneuvers remains a significant challenge, particularly for large satellite constellations like Starlink. This paper presents a method that integrates the unscented transformation into a batch filtering framework with an optimized rho-minimum [...] Read more.
Orbit determination for non-cooperative low Earth orbit (LEO) objects undergoing continuous low-thrust maneuvers remains a significant challenge, particularly for large satellite constellations like Starlink. This paper presents a method that integrates the unscented transformation into a batch filtering framework with an optimized rho-minimum sigma points sampling strategy. The proposed approach uses a reduced dynamics model that considers Earth’s non-spherical gravity and models the combined effects of low-thrust and atmospheric drag as an equivalent along-track acceleration. Numerical simulations under different measurement noise levels, initial state uncertainties, and across multiple satellites confirm the method’s reliable convergence and favorable accuracy, even in the absence of prior knowledge of the along-track acceleration. The method consistently converges within 10 iterations and achieves 24 h position predictions with root mean square errors of less than 3 km under realistic noise conditions. Additional validation using a higher-fidelity model that explicitly accounts for atmospheric drag demonstrates improved accuracy and robustness. The proposed method can provide accurate orbit knowledge for space situational awareness associated with continuously maneuvering Starlink satellites. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

32 pages, 5154 KiB  
Article
A Hierarchical Reinforcement Learning Framework for Multi-Agent Cooperative Maneuver Interception in Dynamic Environments
by Qinlong Huang, Yasong Luo, Zhong Liu, Jiawei Xia, Ming Chang and Jiaqi Li
J. Mar. Sci. Eng. 2025, 13(7), 1271; https://doi.org/10.3390/jmse13071271 - 29 Jun 2025
Viewed by 411
Abstract
To address the challenges of real-time decision-making and resource optimization in multi-agent cooperative interception tasks within dynamic environments, this paper proposes a hierarchical framework for reinforcement learning-based interception algorithm (HFRL-IA). By constructing a hierarchical Markov decision process (MDP) model based on dynamic game [...] Read more.
To address the challenges of real-time decision-making and resource optimization in multi-agent cooperative interception tasks within dynamic environments, this paper proposes a hierarchical framework for reinforcement learning-based interception algorithm (HFRL-IA). By constructing a hierarchical Markov decision process (MDP) model based on dynamic game equilibrium theory, the complex interception task is decomposed into two hierarchically optimized stages: dynamic task allocation and distributed path planning. At the high level, a sequence-to-sequence reinforcement learning approach is employed to achieve dynamic bipartite graph matching, leveraging a graph neural network encoder–decoder architecture to handle dynamically expanding threat targets. At the low level, an improved prioritized experience replay multi-agent deep deterministic policy gradient algorithm (PER-MADDPG) is designed, integrating curriculum learning and prioritized experience replay mechanisms to effectively enhance the interception success rate against complex maneuvering targets. Extensive simulations in diverse scenarios and comparisons with conventional task assignment strategies demonstrate the superiority of the proposed algorithm. Taking a typical scenario of 10 agents intercepting as an example, the HFRL-IA algorithm achieves a 22.51% increase in training rewards compared to the traditional end-to-end MADDPG algorithm, and the interception success rate is improved by 26.37%. This study provides a new methodological framework for distributed cooperative decision-making in dynamic adversarial environments, with significant application potential in areas such as maritime multi-agent security defense and marine environment monitoring. Full article
(This article belongs to the Special Issue Dynamics and Control of Marine Mechatronics)
Show Figures

Figure 1

23 pages, 2596 KiB  
Article
Adaptive Longitudinal Speed Control for Heavy-Duty Vehicles Considering Actuator Constraints and Disturbances Using Simulation Validation
by Junyoung Lee, Taeyoung Oh and Jinwoo Yoo
Appl. Sci. 2025, 15(13), 7327; https://doi.org/10.3390/app15137327 - 29 Jun 2025
Viewed by 348
Abstract
Heavy-duty vehicles (HDVs), such as buses and commercial trucks, display unique dynamic characteristics due to their high mass and specific actuator properties. These factors make HDVs particularly sensitive to changes in vehicle load and road gradient, which significantly affect their longitudinal control performance. [...] Read more.
Heavy-duty vehicles (HDVs), such as buses and commercial trucks, display unique dynamic characteristics due to their high mass and specific actuator properties. These factors make HDVs particularly sensitive to changes in vehicle load and road gradient, which significantly affect their longitudinal control performance. In other words, such variations present considerable challenges in maintaining stable and efficient longitudinal control of HDVs. To address these challenges, this study proposes a model reference adaptive control (MRAC) framework explicitly designed for HDVs. The control system utilizes a state predictor to mitigate actuator load problems caused by high-frequency components in the adaptive control input. In addition, when input constraints are present, the reference model is modified using the μ-modification technique. The system satisfies Lyapunov stability conditions and ensures stable longitudinal control performance across a range of driving conditions. The proposed closed-loop longitudinal control system was evaluated by implementing the controller using the vehicle dynamics simulation software IPG TruckMaker 12.0.1 and integrated with MATLAB/Simulink R2022b. The test scenarios included repetitive speed change maneuvers, which accounted for uncertainties such as road gradients, headwinds, and vehicle load conditions. The simulation results show that the control system not only effectively suppresses disturbances but also enables stable longitudinal speed tracking by considering actuator load and constraints, outperforming conventional MRAC. These results suggest that the proposed closed-loop longitudinal control system can be effectively applied to HDVs. The findings suggest that the proposed closed-loop longitudinal control system can be effectively applied to HDVs, ensuring improved stability and performance under real-world driving conditions. Full article
(This article belongs to the Special Issue Advanced Control Systems and Control Engineering)
Show Figures

Figure 1

22 pages, 2586 KiB  
Article
Model Predictive Control for Autonomous Ship Navigation with COLREG Compliance and Chart-Based Path Planning
by Primož Potočnik
J. Mar. Sci. Eng. 2025, 13(7), 1246; https://doi.org/10.3390/jmse13071246 - 28 Jun 2025
Viewed by 387
Abstract
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach [...] Read more.
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach for local trajectory tracking and COLREG-compliant collision avoidance. The method generates feasible reference routes using maritime charts and predefined waypoints, while the MPC controller ensures precise path following and dynamic re-planning in response to nearby vessels and coastal obstacles. Coastal features and shorelines are modeled using Global Self-consistent, Hierarchical, High-resolution Geography data, enabling MPC to treat landmasses as static obstacles. Other vessels are represented as dynamic obstacles with varying speeds and headings, and COLREG rules are embedded within the MPC framework to enable rule-compliant maneuvering during encounters. To address real-time computational constraints, a simplified MPC formulation is introduced, balancing predictive accuracy with computational efficiency, making the approach suitable for embedded implementations. The navigation framework is implemented in a MATLAB-based simulation with real-time visualization supporting multi-vessel scenarios and COLREG-aware vessel interactions. Simulation results demonstrate robust performance across diverse maritime scenarios—including complex multi-ship encounters and constrained coastal navigation—while maintaining the shortest safe routes. By seamlessly integrating chart-aware path planning with COLREG-compliant, MPC-based collision avoidance, the proposed framework offers an effective, scalable, and robust solution for autonomous maritime navigation. Full article
Show Figures

Figure 1

Back to TopTop