Non-Compliant Behaviour of Automated Vehicles in a Mixed Traffic Environment
Abstract
1. Introduction
2. Related Literature
3. Implementation of Automated Driving Functions in Microscopic Simulation
3.1. Trajectory Planning Algorithm
3.2. Non-Compliant Trajectories
3.2.1. Computation of Non-Compliant Trajectories
3.2.2. Following Non-Compliant Trajectories
3.3. Trajectory Evaluation
3.3.1. Cost Function for the Desired Velocity
3.3.2. Cost Function for the Desired Lane
3.4. Maneuver Execution
3.4.1. Longitudinal Control
3.4.2. Lateral Control
4. Experiment and Results
4.1. Scenario Setup
4.2. Simulation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azam, M.; Hassan, S.A.; Che Puan, O. Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis. Sustainability 2022, 14, 10743. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, X.; Li, H.; Wang, C.; Liu, Z. A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments. Sustainability 2022, 14, 7629. [Google Scholar] [CrossRef]
- United Nations Economic and Social Council. Proposal for the 01 series of amendments to UN Regulation No. 157 (Automated Lane Keeping Systems). ECE/TRANS/WP.29/2022/59/Rev.1. 2022. Available online: https://unece.org/sites/default/files/2025-03/ECE_TRANS_WP.29_2022_59_Rev.1e.pdf (accessed on 7 July 2025).
- Mattas, K.; Albano, G.; Donà, R.; Galassi, M.C.; Suarez-Bertoa, R.; Vass, S.; Ciuffo, B. Driver models for the definition of safety requirements of automated vehicles in international regulations. Application to motorway driving conditions. Accid. Anal. Prev. 2022, 174, 106743. [Google Scholar] [CrossRef]
- Farah, H.; Postigo, I.; Reddy, N.; Dong, Y.; Rydergren, C.; Raju, N.; Olstam, J. Modeling Automated Driving in Microscopic Traffic Simulations for Traffic Performance Evaluations: Aspects to Consider and State of the Practice. IEEE Trans. Intell. Transp. Syst. 2022, 24, 6558–6574. [Google Scholar] [CrossRef]
- Olstam, J.; Johansson, F.; Alessandrini, A.; Sukennik, P.; Lohmiller, J.; Friedrich, M. An Approach for Handling Uncertainties Related to Behaviour and Vehicle Mixes in Traffic Simulation Experiments with Automated Vehicles. J. Adv. Transp. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Huang, Y.; Lu, P. A Review of Car-Following Models and Modeling Tools for Human and Autonomous-Ready Driving Behaviors in Micro-Simulation. Smart Cities 2021, 4, 314–335. [Google Scholar] [CrossRef]
- Do, W.; Rouhani, O.M.; Miranda-Moreno, L. Simulation-Based Connected and Automated Vehicle Models on Highway Sections: A Literature Review. J. Adv. Transp. 2019, 2019, 9343705. [Google Scholar] [CrossRef]
- Al-Turki, M.; Ratrout, N.T.; Rahman, S.M.; Reza, I. Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives. Sustainability 2021, 13, 11052. [Google Scholar] [CrossRef]
- Wiedemann, R. Simulation des Straßenverkehrsflusses; Schriftenreihe des Instituts für Verkehrswesen der Universität Karlsruhe: Karlsruhe, Germany, 1974. [Google Scholar]
- Postigo, I.; Olstam, J.; Rydergren, C. Effects on Traffic Performance Due to Heterogeneity of Automated Vehicles on Motorways: A Microscopic Simulation Study. In Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems, Online, 28–30 April 2021; pp. 142–151. [Google Scholar] [CrossRef]
- Schakel, W.J.; van Arem, B.; Netten, B.D. Effects of Cooperative Adaptive Cruise Control on traffic flow stability. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Madeira, Portugal, 19–22 September 2010; pp. 759–764. [Google Scholar] [CrossRef]
- Schakel, W.J.; Knoop, V.L.; van Arem, B. Integrated Lane Change Model with Relaxation and Synchronization. Transp. Res. Rec. J. Transp. Res. Board 2012, 2316, 47–57. [Google Scholar] [CrossRef]
- Calvert, S.C.; Schakel, W.J.; van Lint, J.W.C. Will Automated Vehicles Negatively Impact Traffic Flow? J. Adv. Transp. 2017, 2017, 1–17. [Google Scholar] [CrossRef]
- Treiber, M.; Hennecke, A.; Helbing, D. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 2000, 62, 1805–1824. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J. SUMO’s Lane-Changing Model. In Modeling Mobility with Open Data; Behrisch, M., Weber, M., Eds.; Lecture Notes in Mobility; Springer International Publishing: Cham, Switzerland, 2015; pp. 105–123. [Google Scholar] [CrossRef]
- Kavas-Torris, O.; Lackey, N.; Guvenc, L. Simulating the Effect of Autonomous Vehicles on Roadway Mobility in a Microscopic Traffic Simulator. Int. J. Automot. Technol. 2021, 22, 713–733. [Google Scholar] [CrossRef]
- Gipps, P.G. A behavioural car-following model for computer simulation. Transp. Res. Part B Methodol. 1981, 15, 105–111. [Google Scholar] [CrossRef]
- Miqdady, T.; de Ona, R.; Casas, J.; de Ona, J. Studying Traffic Safety During the Transition Period Between Manual Driving and Autonomous Driving: A Simulation-Based Approach. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6690–6710. [Google Scholar] [CrossRef]
- Milanés, V.; Shladover, S.E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp. Res. Part C Emerg. Technol. 2014, 48, 285–300. [Google Scholar] [CrossRef]
- Elmorshedy, L.; Abdulhai, B.; Kamel, I. Quantitative Evaluation of the Impacts of the Time Headway of Adaptive Cruise Control Systems on Congested Urban Freeways Using Different Car Following Models and Early Control Results. IEEE Open J. Intell. Transp. Syst. 2022, 3, 288–301. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhang, Z.; Zhou, W.; Hou, D.; Zhang, J. Evaluation of Mixed Traffic Flow Efficiency and Safety on Hard-Shoulder-Running Freeways. Appl. Sci. 2024, 14, 11137. [Google Scholar] [CrossRef]
- Porfyri, K.N.; Mintsis, E.; Mitsakis, E. Assessment of ACC and CACC Systems Using SUMO; EasyChair, EPiC Series in Engineering; EPIC Engineering: Heber City, UT, USA, 2018; pp. 82–93. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Huang, Z.; Halkias, J.; McHale, G.; James, R. Simulation of mixed traffic with cooperative lane changes. Comput.-Aided Civ. Infrastruct. Eng. 2021, 37, 1978–1996. [Google Scholar] [CrossRef]
- Fang, X.; Li, H.; Tettamanti, T.; Eichberger, A.; Fellendorf, M. Effects of Automated Vehicle Models at the Mixed Traffic Situation on a Motorway Scenario. Energies 2022, 15, 2008. [Google Scholar] [CrossRef]
- Li, H.; Ju, Y. Microscopic Simulation of Heterogeneous Traffic Flow on Multi-Lane Ring Roads and Highways. Appl. Sci. 2025, 15, 1453. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, E.; Oh, M.; Oh, C. Driving aggressiveness management policy to enhance the performance of mixed traffic conditions in automated driving environments. Transp. Res. Part A Policy Pract. 2019, 121, 136–146. [Google Scholar] [CrossRef]
- Khattak, Z.H.; Smith, B.L.; Park, H.; Fontaine, M.D. Cooperative lane control application for fully connected and automated vehicles at multilane freeways. Transp. Res. Part C Emerg. Technol. 2020, 111, 294–317. [Google Scholar] [CrossRef]
- Han, Y.; Ahn, S. Variable Speed Release (VSR): Speed Control to Increase Bottleneck Capacity. IEEE Trans. Intell. Transp. Syst. 2020, 21, 298–307. [Google Scholar] [CrossRef]
- Fellendorf, M.; Vortisch, P. Microscopic Traffic Flow Simulator VISSIM. In Fundamentals of Traffic Simulation; Barceló, J., Ed.; Springer: New York, NY, USA, 2010; Volume 145, pp. 63–93. [Google Scholar] [CrossRef]
- Kesting, A.; Treiber, M.; Schönhof, M.; Helbing, D. Extending Adaptive Cruise Control to Adaptive Driving Strategies. Transp. Res. Rec. J. Transp. Res. Board 2007, 2000, 16–24. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, M.; Liu, Y.; Wang, C.; Ma, X.; Liang, Y. Research on the weaving area capacity of freeways under man–machine mixed traffic flow. Phys. A Stat. Mech. Its Appl. 2023, 625, 129040. [Google Scholar] [CrossRef]
- SAE-Society of Automotive Engineers. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. 2021. Available online: https://saemobilus.sae.org/standards/j3016_202104-taxonomy-definitions-terms-related-driving-automation-systems-road-motor-vehicles (accessed on 7 July 2025).
- ISO 15622; Intelligent Transport Systems—Adaptive Cruise Control Systems—Performance Requirements and Test Procedures. ISO: Geneva, Switzerland, 2018.
- Katrakazas, C.; Quddus, M.A.; Chen, W.; Deka, L. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transp. Res. Part C-Emerg. Technol. 2015, 60, 416–442. [Google Scholar]
- Dixit, S.; Fallah, S.; Montanaro, U.; Dianati, M.; Stevens, A.; Mccullough, F.; Mouzakitis, A. Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annu. Rev. Control 2018, 45, 76–86. [Google Scholar] [CrossRef]
- Paden, B.; Čáp, M.; Yong, S.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [Google Scholar] [CrossRef]
- Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Autonomous Vehicles. Annu. Rev. Control. Robot. Auton. Syst. 2018, 1, 187–210. [Google Scholar] [CrossRef]
- Hult, R.; Tabar, R. Path Planning for Highly Automated Vehicles. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2013. [Google Scholar]
- Rupp, A. Trajectory Planning and Formation Control for Automated Driving on Highways. Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2018. [Google Scholar]
- Hofinger, F.; Mischinger-Rodziewicz, M.; Haberl, M.; Fellendorf, M. Lane Change Model for Automated Vehicles on Multi-Lane Highways in Mixed Traffic. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 2004–2009. [Google Scholar] [CrossRef]
- Choudhury, C.; Ben-Akiva, M.E.; Toledo, T.; Rao, A.; Lee, G. State Dependence in Lane Changing Models 1 PAPER: 196 State Dependence in Lane Changing Models. In Proceedings of the 17th International Symposium on Transportation and Traffic Theory, London, UK, 23–25 July 2007; Elsevier: London, UK, 2007. [Google Scholar]
- Leyn, U.; Vortisch, P. Calibrating VISSIM for the German Highway Capacity Manual. Transp. Res. Rec. J. Transp. Res. Board 2015, 2483, 74–79. [Google Scholar] [CrossRef]
- Hofinger, F.; Haberl, M.; Fellendorf, M.; Rosenkranz, P.; Mischinger, M.; Brandenburg, A.; Hoser, M. 3-step calibration process of a microscopic traffic flow simulation platform for mixed traffic scenarios. Transp. Res. Procedia 2023, 72, 1778–1785. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, G.; Calvert, S.C.; van Cranenburgh, S.; van Lint, H. Beyond behavioural change: Investigating alternative explanations for shorter time headways when human drivers follow automated vehicles. Transp. Res. Part C Emerg. Technol. 2024, 164, 104673. [Google Scholar] [CrossRef]
- Hartmann, M.; Motamedidehkordi, N.; Krause, S.; Hoffmann, S.; Vortisch, P.; Busch, F. Impact of Automated Vehicles on Capacity of the German Freeway Network. In ITS World Congress 2017 Compendium of Papers; ITS World Congress: Montreal, QC, Canada, 2017. [Google Scholar]
- Lytrivis, P.; Manganiaris, S.; Tötzl, D.; Berghäuser, G.; Mischinger, M.; Rudigier, M.; Solmaz, S.; Wimmer, Y.; Pintsuk, A.; Porcuna, D.; et al. INFRAMIX Deliverable. 5.3: Evaluation, impact analysis and new safety performance criteria. 2020; Available online: https://www.inframix.eu/wp-content/uploads/INFRAMIX_D5.3_1.0-final.pdf (accessed on 7 July 2025).
Simulation Platform and Applied AV Models | Network | AV Functionalities | AV Rates | Evaluation Criteria | Study |
---|---|---|---|---|---|
PTV Vissim CF: Wiedemann99 [10] LC: not mentioned | Motorway On-/Off-Ramp | cautious/normal/ all-knowing AVs | 0–100% (20% steps) | max. traffic volume, average delay | [11] |
not mentioned CF: IDM+ [12] LC: LMRS [13] | Motorway On-Ramp | low-level AVs ACC | 0–100% (10% steps) | travel time, max. traffic volume | [14] |
SUMO CF: IDM [15] LC: LC2013 [16] | Road networks | AVs of SAE L2, L3, L4 | 0%, 100% and 2 mixed traffic- scenarios | average speed, delay | [17] |
Aimsun CF: Gipps [18] LC: Gipps [18] | Motorway On-Ramp | CAVs of SAE L1, L2, L3, L4 | 0–100% (9 scenarios) | travel flow dynamics, number of traffic conflicts | [19] |
Aimsun CF: IDM [15] and ACC-model [20] integrated via MicroSDK tool LC: not mentioned | Motorway On-Ramp | ACC | 0–100% (25% steps) | max. traffic volume, delay differences, speed differences | [21] |
PTV Vissim CF: Wiedemann99 [10] LC: Vissim default model | Motorway hard-shoulder opening scenario | CAV | 0%, 10%, 30%, 50%, 70%, 90%, 100% | kilometers traveled per time unit | [22] |
SUMO CF: ACC, CACC-model [20] LC: not mentioned | Motorway and urban ring road | ACC CACC | 0–100% (25% steps) | max. traffic volume, average speed, spatiotemporal speed-profiles | [23] |
PTV Vissim CF: ACC-model [20] LC: new CAV LC model integrated via DLL-interface | Motorway On-/Off-Ramp | CAV | 0%, 10%, 20%, 50%, 70%, 100% | max. traffic volume, average speed, number of lane changes | [24] |
PTV Vissim CF: new AV/ACC model LC: new AV LC model CF and LC integrated via DLL-interface | Motorway On-/Off-Ramp | CAV HAV (highly automated vehicles) | 0–100% (20% steps) | throughput, average speed, number of lane changes | [25] |
SUMO CF: Sumo ACC/C-ACC LC: SUMO LC 2013 [16] | Motorway on-ramp and ring-road | AV CAV | Multiple scenarios 0–90% | travel time, number of lane changes | [26] |
PTV Vissim CF: Wiedemann99 [10] LC: Vissim default model | Motorway lane closure scenario | AV with 9 different aggressiveness levels | 10–90% (10% steps) | average speed, number of detected crashes | [27] |
PTV Vissim CF: new ACC/Platooning model; LC: new lane change strategy and Vissim default model; CF and LC strategy integrated via DLL-interface | Motorway lane closure scenario | CAV-enabled lane change signalization strategy | 0% CAVs and 3 signalization scenarios with 100% CAVs | traffic volume, average speed | [28] |
PTV Vissim CF: Wiedemann99 LC: Vissim default model | Motorway lane closure scenario | CAVs reacting on speed control strategy | 0%, 30%, 50%, 70% | traffic volume, spatiotemporal speed-profiles | [29] |
AV Driving Function | Main Road | On-Ramp |
---|---|---|
C-ACC Connected-Adaptive Cruise Control | CF: C-ACC model LC: Vissim | CF: C-ACC model LC: Vissim |
C-HC Connected-Highway Chauffeur | CF: C-HC model LC: C-HC model | CF: C-HC model LC: Vissim |
C-HP Connected-Highway Pilot | CF: C-HP model LC: C-HP model | CF: C-HP model LC: C-HP model |
Car-Following Parameters | |
---|---|
ISO 15622 [34]: minimum selectable time gap [s] | |
ISO 15622: minimum clearance under steady state conditions for all speeds [m] | |
safe distance to lead vehicles [m] | |
ego vehicle velocity [m/s] | |
lag vehicle velocity [m/s] | |
Lane-change parameters | |
accepted deceleration of the lag vehicle [] | |
accepted deceleration of the ego vehicle [] | |
Non-compliant trajectories | |
minimum selectable time gap during non-compliant mode [s] | |
maximum allowed time for non-compliant mode [s] |
Current Lane = Desired Lane | Cost |
---|---|
desired lane cost for keep lane | 1 |
desired lane cost for lane change left | 2 |
desired lane cost for lane change right | 3 |
Current Lane < Desired Lane | Cost |
desired lane cost for keep lane | 2 |
desired lane cost for lane change left | 1 |
desired lane cost for lane change right | 3 |
Current Lane > Desired Lane | Cost |
desired lane cost for keep lane | 2 |
desired lane cost for lane change left | 3 |
desired lane cost for lane change right | 1 |
S | HVs | AVs | Traffic Regulation | AV Parameters | ||||
---|---|---|---|---|---|---|---|---|
C-ACC | C-HC | C-HP | ||||||
A0 | 100% | 0% | - | - | ||||
0% | 0% | 0% | ||||||
A1 | 75% | 25% | NC prohibited | 0.90 s | - | - | ||
50% | 30% | 20% | ||||||
A2 | 75% | 25% | NC prohibited | 1.35 s | - | - | ||
50% | 30% | 20% | ||||||
A3 | 75% | 25% | NC prohibited | 1.80 s | - | - | ||
50% | 30% | 20% | ||||||
B1 | 75% | 25% | NC permissible at on-ramp | 0.90 s | 3.00 s | 0.60 s | ||
50% | 30% | 20% | ||||||
B2 | 75% | 25% | NC permissible at on-ramp | 1.35 s | 4.00 s | 0.80 s | ||
50% | 30% | 20% | ||||||
B3 | 75% | 25% | NC permissible at on-ramp | 1.80 s | 5.00 s | 1.00 s | ||
50% | 30% | 20% | ||||||
C1 | 50% | 50% | NC prohibited | 0.90 s | - | - | ||
50% | 30% | 20% | ||||||
C2 | 50% | 50% | NC prohibited | 1.35 s | - | - | ||
50% | 30% | 20% | ||||||
C3 | 50% | 50% | NC prohibited | 1.80 s | - | - | ||
50% | 30% | 20% | ||||||
D1 | 50% | 50% | NC permissible at on-ramp | 0.90 s | 3.00 s | 0.60 s | ||
50% | 30% | 20% | ||||||
D2 | 50% | 50% | NC permissible at on-ramp | 1.35 s | 4.00 s | 0.80 s | ||
50% | 30% | 20% | ||||||
D3 | 50% | 50% | NC permissible at on-ramp | 1.80 s | 5.00 s | 1.00 s | ||
50% | 30% | 20% |
S | MR Travel Time | MR Congestion Length [km] | MR Congestion Duration [min] | OR Congestion Length [km] | OR Congestion Duration [min] | |
---|---|---|---|---|---|---|
A0 | 213.3 | ( | 1.75 | 52.2 | 0.78 | 32.6 |
A1 | 195.6 | ( | 1.47 | 47.7 | 1.05 | 37.9 |
A2 | 232.1 | ( | 1.93 | 63.7 | 1.38 | 47.5 |
A3 | 274.0 | ( | 2.57 | 72.7 | 1.48 | 56.2 |
B1 | 198.2 | ( | 1.24 | 48.9 | 1.05 | 36.9 |
B2 | 233.0 | ( | 2.16 | 63.6 | 1.18 | 47.9 |
B3 | 275.9 | ( | 2.66 | 72.7 | 1.11 | 46.6 |
C1 | 165.0 | ( | 0.76 | 36.2 | 0.95 | 22.7 |
C2 | 205.1 | ( | 1.18 | 60.6 | 1.77 | 42.6 |
C3 | 300.4 | ( | 2.75 | 86.3 | 1.89 | 69.5 |
D1 | 165.6 | ( | 0.70 | 37.2 | 1.10 | 24.3 |
D2 | 212.6 | ( | 1.80 | 60.6 | 1.37 | 41.7 |
D3 | 303.6 | ( | 2.75 | 87.3 | 1.54 | 58.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mischinger-Rodziewicz, M.; Hofbaur, F.; Haberl, M.; Fellendorf, M. Non-Compliant Behaviour of Automated Vehicles in a Mixed Traffic Environment. Appl. Sci. 2025, 15, 7852. https://doi.org/10.3390/app15147852
Mischinger-Rodziewicz M, Hofbaur F, Haberl M, Fellendorf M. Non-Compliant Behaviour of Automated Vehicles in a Mixed Traffic Environment. Applied Sciences. 2025; 15(14):7852. https://doi.org/10.3390/app15147852
Chicago/Turabian StyleMischinger-Rodziewicz, Marlies, Felix Hofbaur, Michael Haberl, and Martin Fellendorf. 2025. "Non-Compliant Behaviour of Automated Vehicles in a Mixed Traffic Environment" Applied Sciences 15, no. 14: 7852. https://doi.org/10.3390/app15147852
APA StyleMischinger-Rodziewicz, M., Hofbaur, F., Haberl, M., & Fellendorf, M. (2025). Non-Compliant Behaviour of Automated Vehicles in a Mixed Traffic Environment. Applied Sciences, 15(14), 7852. https://doi.org/10.3390/app15147852