Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (492)

Search Parameters:
Keywords = managed aquifer recharges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10379 KB  
Article
Spatial Optimization of Urban-Scale Sponge Structures and Functional Areas Using an Integrated Framework Based on a Hydrodynamic Model and GIS Technique
by Mengxiao Jin, Quanyi Zheng, Yu Shao, Yong Tian, Jiang Yu and Ying Zhang
Water 2026, 18(2), 262; https://doi.org/10.3390/w18020262 - 19 Jan 2026
Viewed by 45
Abstract
Rapid urbanization has exacerbated urban-stormwater challenges, highlighting the critical need for coordinated surface-water and groundwater management through rainfall recharge. However, current sponge city construction methods often overlook the crucial role of underground aquifers in regulating the water cycle and mostly rely on simplified [...] Read more.
Rapid urbanization has exacerbated urban-stormwater challenges, highlighting the critical need for coordinated surface-water and groundwater management through rainfall recharge. However, current sponge city construction methods often overlook the crucial role of underground aquifers in regulating the water cycle and mostly rely on simplified engineering approaches. To address these limitations, this study proposes a spatial optimization framework for urban-scale sponge systems that integrates a hydrodynamic model (FVCOM), geographic information systems (GIS), and Monte Carlo simulations. This framework establishes a comprehensive evaluation system that synergistically integrates surface water inundation depth, geological lithology, and groundwater depth to quantitatively assess sponge city suitability. The FVCOM was employed to simulate surface water inundation processes under extreme rainfall scenarios, while GIS facilitated spatial analysis and data integration. The Monte Carlo simulation was utilized to optimize the spatial layout by objectively determining factor weights and evaluate result uncertainty. Using Shenzhen City in China as a case study, this research combined the “matrix-corridor-patch” theory from landscape ecology to optimize the spatial structure of the sponge system. Furthermore, differentiated planning and management strategies were proposed based on regional characteristics and uncertainty analysis. The research findings provide a replicable and verifiable methodology for developing sponge city systems in high-density urban areas. The core value of this methodology lies in its creation of a scientific decision-making tool for direct application in urban planning. This tool can significantly enhance a city’s climate resilience and facilitate the coordinated, optimal management of water resources amid environmental changes. Full article
(This article belongs to the Special Issue "Watershed–Urban" Flooding and Waterlogging Disasters)
Show Figures

Figure 1

22 pages, 2784 KB  
Article
ERA5-Land Data for Understanding Spring Dynamics in Complex Hydro-Meteorological Settings and for Sustainable Water Management
by Lucio Di Matteo, Costanza Cambi, Sofia Ortenzi, Alex Manucci, Sara Venturi, Davide Fronzi and Daniela Valigi
Sustainability 2026, 18(2), 970; https://doi.org/10.3390/su18020970 - 17 Jan 2026
Viewed by 110
Abstract
Springs fed by carbonate-fractured/karst aquifers support spring-dependent ecosystems and provide drinking water in the Italian Apennines, where complex hydro-meteorological environments are increasingly affected by prolonged droughts. The aim of this study was to investigate the hydrogeological behavior of two springs (Alzabove and Lupa) [...] Read more.
Springs fed by carbonate-fractured/karst aquifers support spring-dependent ecosystems and provide drinking water in the Italian Apennines, where complex hydro-meteorological environments are increasingly affected by prolonged droughts. The aim of this study was to investigate the hydrogeological behavior of two springs (Alzabove and Lupa) on the mountain ridge of Central Italy, using monthly reanalysis datasets to support sustainable water management. The Master Recession Curves based on the 1998–2023 recession periods highlighted a slightly higher average recession coefficient for Lupa (α = −0.0053 days−1) than for Alzabove (α = −0.0020 days−1). The hydrogeological settings of the Lupa recharge area led to a less resilient response to prolonged, extreme droughts as detected via the Standardized Precipitation-Evapotranspiration Index (SPEI) computed at different time scales using ERA-5 Land datasets. The SPEI computed at a 6-month scale (SPEI6) showed the best correlation with monthly spring discharge, with a 1-month delay time. A parsimonious linear regression model was built using the antecedent monthly spring discharge values and SPEI6 as independent variables. The best modeling performance was achieved for the Alzabove spring, with some overestimation of spring discharge during extremely dry conditions (e.g., 2002–2003 and 2012), especially for the Lupa spring. The findings are encouraging as they reflect the use of a simple tool developed to support decisions on the sustainable management of springs in mountain environments, although issues related to evapotranspiration underestimation during extreme droughts remain. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

24 pages, 4562 KB  
Article
Hydrochemical Appraisal of Groundwater Quality for Managed Aquifer Recharge (MAR) in Southern Punjab, Pakistan
by Ghulam Zakir-Hassan, Lee Baumgartner, Catherine Allan and Jehangir F. Punthakey
Geosciences 2026, 16(1), 43; https://doi.org/10.3390/geosciences16010043 - 14 Jan 2026
Viewed by 191
Abstract
Water quality assessment is crucial for the sustainable use and management of groundwater resources. This study was carried out in the irrigated plains of Vehari District, Punjab, Pakistan, to evaluate groundwater suitability for a managed aquifer recharge (MAR) project. Twenty groundwater samples were [...] Read more.
Water quality assessment is crucial for the sustainable use and management of groundwater resources. This study was carried out in the irrigated plains of Vehari District, Punjab, Pakistan, to evaluate groundwater suitability for a managed aquifer recharge (MAR) project. Twenty groundwater samples were collected in June 2021 from an area of 1522 km2 and analysed for major physicochemical parameters including electrical conductivity (EC), total dissolved solids (TDS), pH, turbidity, calcium (Ca), magnesium (Mg), chloride (Cl), alkalinity (Alk), bicarbonate (HCO3), hardness, potassium (K), sulphate (SO42−), sodium (Na), and nitrate (NO3). Water quality was assessed using WHO and PID standards, alongside derived hydrochemical indices such as sodium percentage (%Na), Kelly’s ratio (KR), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), and the water quality index (WQI). The dataset was interpreted using geo-statistical, geospatial, multivariate, and correlation analyses. Cations and anion dominance followed the order Na+ > Ca2+ > Mg2+ > K+ and HCO3 > SO42− > Cl > NO3. According to the WQI analysis, 35% of the water samples are classified as “poor,” half (50%) as “very poor,” and the remaining 15% as “unsuitable” for drinking purposes. However, irrigation suitability indices confirmed that groundwater is generally acceptable for agricultural use, though unfit for drinking. The outcomes of this study provide essential insights for groundwater management in the region, where the Punjab Irrigation Department (PID) has initiated a MAR project. Considering that the irrigation sector is the major groundwater consumer in the area, the compatibility of groundwater and surface water quality supports the implementation of MAR to enhance agricultural sustainability. Full article
Show Figures

Figure 1

24 pages, 7359 KB  
Article
Application of GIS-MCDA Methodology for Managed Aquifer Recharge Suitability Mapping in Poland
by Sławomir Sitek, Krzysztof Janik, Agnieszka Piechota, Hanna Rubin and Andrzej J. Witkowski
Water 2026, 18(2), 219; https://doi.org/10.3390/w18020219 - 14 Jan 2026
Viewed by 212
Abstract
Climate change and increasing groundwater demand underscore the urgency of sustainable water resource planning. Managed Aquifer Recharge (MAR) represents a promising strategy, yet its implementation depends on accurately identifying locations suited for specific MAR techniques. This study presents a GIS-based methodology developed under [...] Read more.
Climate change and increasing groundwater demand underscore the urgency of sustainable water resource planning. Managed Aquifer Recharge (MAR) represents a promising strategy, yet its implementation depends on accurately identifying locations suited for specific MAR techniques. This study presents a GIS-based methodology developed under the DEEPWATER-CE project for identifying suitable locations for six MAR techniques in Central Europe. The methodology integrates environmental, hydrological, and land use criteria in a two-stage approach: an initial screening to delineate potentially suitable areas, followed by a detailed classification of those areas into high, moderate, and low suitability categories. The approach was tested in the Polish part of the Dunajec River catchment (4835 km2), revealing that river or lake bank filtration, infiltration ditches, and underground dams are the most viable MAR options, suitable for 12.6%, 13%, and 15.6% of the catchment area, respectively. A focused analysis within the Tarnów agglomeration, identified as highly vulnerable to climate change and with intensive groundwater use, demonstrated that 83–87% of the area is moderately suitable for infiltration ditches and riverbank filtration techniques. This decision-support tool can inform water managers and planners regarding the best locations for implementing MAR to enhance aquifer resilience, ensure water availability, and mitigate the impacts of extreme weather events. The methodology is transferable to other regions facing similar hydroclimatic challenges. Full article
Show Figures

Figure 1

28 pages, 9478 KB  
Article
Integrating Agro-Hydrological Modeling with Index-Based Vulnerability Assessment for Nitrate-Contaminated Groundwater
by Dawid Potrykus, Adam Szymkiewicz, Beata Jaworska-Szulc, Gianluigi Busico, Anna Gumuła-Kawęcka, Wioletta Gorczewska-Langner and Micol Mastrocicco
Sustainability 2026, 18(2), 729; https://doi.org/10.3390/su18020729 - 10 Jan 2026
Viewed by 240
Abstract
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices [...] Read more.
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices in the context of groundwater vulnerability to contamination. In this study we present a method to assess groundwater vulnerability to nitrate pollution based on a combination of the SWAT agro-hydrological model and the DRASTIC index method. SWAT modeling was applied to assess different scenarios of agricultural practices and identify solutions for sustainable management of soil and groundwater and reduction of nitrate pollution. The developed method was implemented for groundwater resources in a study area (Puck Bay region, southern Baltic coast), which represented a complex multi-aquifer system formed in Quaternary fluvioglacial deposits (sand and gravel) separated by moraine tills. In order to investigate the effects of different agricultural practices, 12 scenarios have been defined, which were grouped into four classes: crop type, fertilizer management, tillage, and grazing. An overlay index structure was applied, and ratings and weights to several factors were assigned. All analyses were processed using GIS tools, and the results are presented in the form of maps, which categorize groundwater vulnerability to nitrate pollution into five classes, ranging from very low to very high. The results reveal significant variability in groundwater vulnerability to nitrate pollution in the study area. Agricultural practices have a very strong influence on groundwater vulnerability by controlling both recharge rates and nitrogen losses from the soil profile. The most pronounced increases in vulnerability were associated with scenarios involving excessive fertilization and intensive grazing. Among crop types, potato cultivation appears to pose the greatest risk to groundwater quality. Full article
Show Figures

Figure 1

28 pages, 8219 KB  
Article
Rainfall–Groundwater Correlations Using Statistical and Spectral Analyses: A Case Study on the Coastal Plain of Al-Hsain Basin, Syria
by Mahmoud Ahmad, Katalin Bene and Richard Ray
Hydrology 2026, 13(1), 25; https://doi.org/10.3390/hydrology13010025 - 8 Jan 2026
Viewed by 350
Abstract
Climate change and irregular precipitation patterns have increasingly threatened groundwater sustainability in semi-arid regions like the Eastern Mediterranean. Specifically, in coastal Syria, the lack of quantitative understanding regarding aquifer recharge mechanisms hinders effective water resource management. To address this, this study investigates the [...] Read more.
Climate change and irregular precipitation patterns have increasingly threatened groundwater sustainability in semi-arid regions like the Eastern Mediterranean. Specifically, in coastal Syria, the lack of quantitative understanding regarding aquifer recharge mechanisms hinders effective water resource management. To address this, this study investigates the dynamic relationship between rainfall and groundwater levels in the Al-Hsain Basin coastal plain using 48 months of monitoring data (2020–2024) from 35 wells. We employed a unified analytical framework combining statistical methods (correlation, regression) with advanced time–frequency techniques (Wavelet Coherence) to capture recharge behavior across diverse Quaternary, Neogene, and Cretaceous strata. The results indicate strong climatic control on groundwater dynamics, particularly in shallow Quaternary wells, which exhibit rapid recharge responses (lag < 1 month). In contrast, deeper aquifers showed delayed and buffered responses. A dual-variable model incorporating temperature significantly improved prediction accuracy (R2 = 0.97), highlighting the role of evapotranspiration. These findings provide a transferable diagnostic framework for identifying recharge zones and supporting adaptive groundwater governance in data-scarce semi-arid environments. Full article
Show Figures

Figure 1

27 pages, 4653 KB  
Article
Groundwater Quality and Heavy Metal Variability in Post-Conflict Mosul, Iraq: Seasonal and Annual Assessment (2022–2023) and Implications for Environmental Sustainability
by Zena Altahaan and Daniel Dobslaw
Sustainability 2026, 18(2), 603; https://doi.org/10.3390/su18020603 - 7 Jan 2026
Viewed by 144
Abstract
This study examines the post-war evolution of groundwater quality in Mosul by evaluating the seasonal and annual behavior of physicochemical parameters and heavy metals, while differentiating the responses of shallow and deep aquifers and determining whether groundwater conditions during the early recovery period [...] Read more.
This study examines the post-war evolution of groundwater quality in Mosul by evaluating the seasonal and annual behavior of physicochemical parameters and heavy metals, while differentiating the responses of shallow and deep aquifers and determining whether groundwater conditions during the early recovery period (2022–2023) indicate natural improvement or continued deterioration. Groundwater samples from shallow (W5–W8) and deep (W1–W4) wells were collected across four sampling campaigns representing both wet and dry seasons. Shallow wells exhibited marked seasonal increases, with pH, electrical conductivity (EC), and total dissolved solids (TDS) increasing during the dry season, driven by evaporation and limited recharge. Nutrient concentrations (PO43−, NO3, SO42−) showed similar seasonal rises but declined slightly in 2023 following reduced rainfall. Heavy metals (Cd, Pb, Cr, Ni, Zn) displayed pronounced seasonal peaks in the wet season and higher annual averages in 2023, suggesting delayed mobilization from contaminated soils. In contrast, deep wells remained relatively stable, reflecting the buffering capacity of deeper geological formations. Statistical analyses supported these patterns: shallow wells demonstrated significant seasonal variability (p < 0.05) across most parameters, whereas deep wells exhibited limited seasonal differences and no significant annual variation. These findings indicate that shallow aquifers—particularly those constructed during the conflict—are more vulnerable to post-war environmental stresses, while deeper aquifers retain greater resilience. Overall, the study underscores progressive degradation of shallow groundwater linked to post-conflict conditions and highlights the need for sustained monitoring, stricter regulation of groundwater use, and targeted remediation strategies to protect drinking and irrigation resources in conflict-affected regions. These insights are crucial for developing sustainable groundwater management strategies in post-war urban environments. Full article
Show Figures

Figure 1

25 pages, 5847 KB  
Article
Conjunctive-Use Frameworks Driven by Surface Water Operations: Integrating Concentrated and Distributed Strategies for Groundwater Recharge and Extraction
by Chia-Wen Wu, Frederick N.-F. Chou and Yu-Wen Chen
Water 2026, 18(1), 130; https://doi.org/10.3390/w18010130 - 5 Jan 2026
Viewed by 361
Abstract
This study develops a conjunctive-use framework that couples a surface water allocation model with the MODFLOW groundwater model to evaluate the interactions between surface water operations and groundwater recharge and pumping. The framework enables coordinated surface–groundwater management through iterative feedback between allocation decisions [...] Read more.
This study develops a conjunctive-use framework that couples a surface water allocation model with the MODFLOW groundwater model to evaluate the interactions between surface water operations and groundwater recharge and pumping. The framework enables coordinated surface–groundwater management through iterative feedback between allocation decisions and groundwater responses. Three representative managed aquifer recharge cases in Taiwan are examined, each reflecting a distinct operational logic: (1) a space-for-time strategy that extends wet-season benefits through distributed recharge using irrigation surplus; (2) a centralized support–distributed feedback approach in subsidence-prone areas, where concentrated surface water is delivered to targeted zones while maintaining flexibility for upstream allocation; and (3) a time-for-volume mechanism that converts short-duration flood events into stable, long-term baseflow supply. The simulation results show that these strategies reduce downstream irrigation deficit ratios (e.g., from 0.58 to 0.22), raise groundwater levels by up to approximately 3.5 m in subsidence-sensitive zones, and substantially enhance drought resilience by reducing extreme reservoir depletion during prolonged dry periods. Overall, the proposed framework provides quantitative evidence and a practical planning tool for surface water-oriented conjunctive use, supporting more sustainable and resilient multi-source water management. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

25 pages, 5120 KB  
Article
Application of a Hybrid CNN-LSTM Model for Groundwater Level Forecasting in Arid Regions: A Case Study from the Tailan River Basin
by Shuting Hu, Mingliang Du, Jiayun Yang, Yankun Liu, Ziyun Tuo and Xiaofei Ma
ISPRS Int. J. Geo-Inf. 2026, 15(1), 6; https://doi.org/10.3390/ijgi15010006 - 21 Dec 2025
Viewed by 403
Abstract
Accurate forecasting of groundwater level dynamics poses a critical challenge for sustainable water management in arid regions. However, the strong spatiotemporal heterogeneity inherent in groundwater systems and their complex interactions between natural processes and human activities often limit the effectiveness of conventional prediction [...] Read more.
Accurate forecasting of groundwater level dynamics poses a critical challenge for sustainable water management in arid regions. However, the strong spatiotemporal heterogeneity inherent in groundwater systems and their complex interactions between natural processes and human activities often limit the effectiveness of conventional prediction methods. To address this, a hybrid CNN-LSTM deep learning model is constructed. This model is designed to extract multivariate coupled features and capture temporal dependencies from multi-variable time series data, while simultaneously simulating the nonlinear and delayed responses of aquifers to groundwater abstraction. Specifically, the convolutional neural network (CNN) component extracts the multivariate coupled features of hydro-meteorological driving factors, and the long short-term memory (LSTM) network component models the temporal dependencies in groundwater level fluctuations. This integrated architecture comprehensively represents the combined effects of natural recharge–discharge processes and anthropogenic pumping on the groundwater system. Utilizing monitoring data from 2021 to 2024, the model was trained and tested using a rolling time-series validation strategy. Its performance was benchmarked against traditional models, including the autoregressive integrated moving average (ARIMA) model, recurrent neural network (RNN), and standalone LSTM. The results show that the CNN-LSTM model delivers superior performance across diverse hydrogeological conditions: at the upstream well AJC-7, which is dominated by natural recharge and discharge, the Nash–Sutcliffe efficiency (NSE) coefficient reached 0.922; at the downstream well AJC-21, which is subject to intensive pumping, the model maintained a robust NSE of 0.787, significantly outperforming the benchmark models. Further sensitivity analysis reveals an asymmetric response of the model’s predictions to uncertainties in pumping data, highlighting the role of key hydrogeological processes such as delayed drainage from the vadose zone. This study not only confirms the strong applicability of the hybrid deep learning model for groundwater level prediction in data-scarce arid regions but also provides a novel analytical pathway and mechanistic insight into the nonlinear behavior of aquifer systems under significant human influence. Full article
Show Figures

Figure 1

8 pages, 3130 KB  
Proceeding Paper
Propagation of Climate Model Variability to Coastal Groundwater Simulations Under Climate Change
by Aikaterini Lyra, Athanasios Loukas, Pantelis Sidiropoulos and Nikitas Mylopoulos
Environ. Earth Sci. Proc. 2024, 31(1), 24; https://doi.org/10.3390/eesp2025032024 - 19 Dec 2025
Viewed by 195
Abstract
This study investigates the propagation of climate model variability to coastal groundwater systems under the high-emission RCP8.5 scenario, focusing on the Almyros Basin in Greece. Using Med-CORDEX bias-corrected climate projections, an Integrated Modelling System (IMS) combines UTHBAL (surface hydrology) and MODFLOW (groundwater hydrology) [...] Read more.
This study investigates the propagation of climate model variability to coastal groundwater systems under the high-emission RCP8.5 scenario, focusing on the Almyros Basin in Greece. Using Med-CORDEX bias-corrected climate projections, an Integrated Modelling System (IMS) combines UTHBAL (surface hydrology) and MODFLOW (groundwater hydrology) to simulate future conditions, including precipitation, temperature, evapotranspiration, groundwater recharge, water balance, and seawater intrusion (as a quantity). The analysis quantifies both central tendencies and inter-model spread, revealing substantial declines in groundwater recharge and intensified seawater intrusion, while highlighting the uncertainty introduced by climate model projections. These findings provide critical insights for adaptive water resource management and planning in Mediterranean coastal aquifers under climate change. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Forests)
Show Figures

Figure 1

30 pages, 12551 KB  
Article
Numerical Groundwater Flow Modeling in a Tropical Aquifer Under Anthropogenic Pressures: A Case Study in the Middle Magdalena Valley, Colombia
by Boris Lora-Ariza, Luis Silva Vargas, Juan Pescador, Mónica Vaca, Juan Landinez, Adriana Piña and Leonardo David Donado
Water 2025, 17(24), 3579; https://doi.org/10.3390/w17243579 - 17 Dec 2025
Viewed by 767
Abstract
Groundwater is one of the main sources of water supply in tropical developing countries; however, its integrated management is often constrained by limited hydrogeological information and increasing anthropogenic pressures on aquifer systems. This study presents the numerical modeling of groundwater flow in the [...] Read more.
Groundwater is one of the main sources of water supply in tropical developing countries; however, its integrated management is often constrained by limited hydrogeological information and increasing anthropogenic pressures on aquifer systems. This study presents the numerical modeling of groundwater flow in the Neogene–Quaternary aquifer system of the Middle Magdalena Valley (Colombia), focusing on the rural area of Puerto Wilches, which is characterized by strong surface–groundwater interactions, particularly with the Yarirí wetland and the Magdalena River. A three-dimensional model was implemented and calibrated in FEFLOW v.8.1 under steady-state and transient conditions, integrating both primary and secondary data. The dataset included piezometric levels measured with water level meters and automatic loggers, hydrometeorological records, 21 physicochemical and microbiological parameters analyzed in 45 samples collected during three field campaigns under contrasting hydrological conditions, 79 pumping tests, detailed lithological columns from drilled wells, and complementary geological and geophysical models. The results indicate a predominant east–west groundwater flow from the Eastern Cordillera toward the Magdalena River, with seasonal recharge and discharge patterns controlled by the bimodal rainfall regime. Microbiological contamination (total coliforms in 69% of groundwater samples) and nitrate concentrations above 10 mg/L in 21% of wells were detected, mainly due to agricultural fertilizers and domestic wastewater infiltration. Particle tracking revealed predominantly horizontal flow paths, with transit times of up to 800 years in intermediate units of the Real Group and around 60 years in shallow Quaternary deposits, highlighting the differential vulnerability of the system to contamination. These findings provide scientific foundations for strengthening integrated groundwater management in tropical regions under agroindustrial and hydrocarbon pressures and emphasize the need to consolidate monitoring networks, promote sustainable agricultural practices, and establish preventive measures to protect groundwater quality. Full article
(This article belongs to the Special Issue Groundwater Flow and Contaminant Transport Modeling)
Show Figures

Figure 1

25 pages, 5230 KB  
Article
Climate Change and Groundwater Sustainability in the Berrechid Aquifer (Morocco): Projections to 2050 Under Regulated Abstraction Scenario
by Adil Zerouali, Mohamed Jalal El Hamidi, Abdelkader Larabi, Mohamed Faouzi and Omar Chafik
Water 2025, 17(24), 3488; https://doi.org/10.3390/w17243488 - 10 Dec 2025
Viewed by 649
Abstract
The Berrechid aquifer, located in the Berrechid region of Morocco, represents one of the main groundwater resources used for drinking water supply, irrigation, and industrial activities. It also plays a vital role in supporting domestic and agricultural needs. However, the aquifer faces major [...] Read more.
The Berrechid aquifer, located in the Berrechid region of Morocco, represents one of the main groundwater resources used for drinking water supply, irrigation, and industrial activities. It also plays a vital role in supporting domestic and agricultural needs. However, the aquifer faces major challenges, including overexploitation, water quality degradation, and seawater intrusion. This study examines the impacts of climate change on the Berrechid aquifer and evaluates the most appropriate groundwater-withdrawal management strategies to ensure sustainable use of the resource and maintain aquifer stability. To investigate this, we employed the Groundwater Modeling System (GMS) software to conduct both steady-state and transient simulations. Climate change impacts were incorporated through projections of natural recharge derived from climate models. Following calibration, the model provided projections of aquifer behavior up to 2050 under optimistic scenarios. The results offer valuable insights into the evolution of the Berrechid aquifer under climate change. They highlight the potential impacts on recharge rates and groundwater availability. Such information is crucial for guiding decision-making and developing sustainable strategies for managing this essential resource in the face of future climatic uncertainties. Full article
(This article belongs to the Special Issue Advance in Groundwater in Arid Areas)
Show Figures

Figure 1

20 pages, 2719 KB  
Article
Impacts of Snowmelt Recharge on Groundwater Table Fluctuations in a Cold Region Unconfined Aquifer
by Hesham H. Mahmoud, Fred A. Antwi and Taufique H. Mahmood
Earth 2025, 6(4), 154; https://doi.org/10.3390/earth6040154 - 8 Dec 2025
Viewed by 585
Abstract
Snowmelt recharge critically affects water table fluctuations in cold-region unconfined aquifers, where it serves as a primary source of groundwater. This study investigates the temporal and spatial variations in water table responses to snowmelt events in the Oakes Aquifer, North Dakota. Climatic data, [...] Read more.
Snowmelt recharge critically affects water table fluctuations in cold-region unconfined aquifers, where it serves as a primary source of groundwater. This study investigates the temporal and spatial variations in water table responses to snowmelt events in the Oakes Aquifer, North Dakota. Climatic data, including winter snowfall and temperature, were collected from the North Dakota Agricultural Weather Network (NDAWN), as well as the National Weather Service (NWS) and National Oceanic and Atmospheric Administration (NOAA) stations. Observation well data (1991–2023) were analyzed, and Inverse Distance Weighting (IDW) interpolation in ArcGIS Pro 3.6 was used to generate continuous spatial maps of groundwater level rises during spring. Results indicate that snowmelt significantly drives water table fluctuations, with higher snowfall associated with larger rises. Spatial variability in responses reflects differences in soil permeability, and land cover, with high-permeability soils showing more pronounced increases. Temperature strongly influenced the magnitude of snowmelt-induced groundwater rise, with warmer winters generally associated with greater recharge, while colder periods limited infiltration, likely due to frozen soil effects. These findings underscore the role of snowmelt as a key recharge source in cold-region unconfined aquifers, with variations controlled by local hydrogeological and climatic conditions. Understanding these dynamics is critical for groundwater management, particularly under changing climate scenarios. Future studies should focus on long-term monitoring, climate modeling, and cross-regional comparisons to improve predictions of snowmelt-driven recharge. Full article
Show Figures

Figure 1

20 pages, 10791 KB  
Article
Developing Integrated Supersites to Advance the Understanding of Saltwater Intrusion in the Coastal Plain Between the Brenta and Adige Rivers, Italy
by Luigi Tosi, Marta Cosma, Pablo Agustín Yaciuk, Iva Aljinović, Andrea Artuso, Jadran Čarija, Cristina Da Lio, Lorenzo Frison, Veljko Srzić, Fabio Tateo and Sandra Donnici
J. Mar. Sci. Eng. 2025, 13(12), 2328; https://doi.org/10.3390/jmse13122328 - 8 Dec 2025
Viewed by 292
Abstract
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we [...] Read more.
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we propose “integrated coastal supersites”: wells equipped with multiparametric sensors and multilevel piezometers that couple high-resolution vertical conductivity–temperature–depth (CTD) profiling with continuous hydro-meteorological time series to monitor the hydrodynamic behavior of coastal aquifers and saltwater intrusion. This study describes the installation of two supersites and presents early insights from the first monitoring period, which, despite a short observation window limited to the summer season (July–September 2025), demonstrate the effectiveness of this approach. Two contrasting supersites were deployed in the coastal plain between the Brenta and Adige Rivers (Italy): Gorzone, characterized by a thick, laterally persistent aquitard, and Buoro, where the aquitard is thinner and discontinuous. Profiles and fixed sensors at both sites reveal a consistent fresh-to-saline transition in the phreatic aquifers and a secondary freshwater lens capping the confined systems. At Gorzone, the confining layer hydraulically isolates the deeper aquifer, preserving low salinity beneath a saline, tidally constrained phreatic zone. Groundwater heads oscillate by about 0.2 m, and rainfall events do not dilute salinity; instead, pressure transients—amplified by drainage regulation and inland-propagating tides—induce short-lived EC increases via upconing. Buoro shows smaller water-level variations, not always linked to rainfall, and, in contrast, exhibits partial vertical connectivity and faster dynamics: phreatic heads respond chiefly to internal drainage and local recharge, with rises rapidly damped by pumping, while salinity remains steady without episodic peaks. The confined aquifer shows buffered, delayed responses to surface forcings. Although the monitoring window is currently limited to 2025 through the summer season, these results offer compelling evidence that coastal supersites are reliable, scalable, and management-critical relevance platforms for groundwater calibration, forecasting, and long-term assessment. Full article
(This article belongs to the Special Issue Monitoring Coastal Systems and Improving Climate Change Resilience)
Show Figures

Graphical abstract

16 pages, 3012 KB  
Article
Contribution of Hydrogeochemical and Isotope (δ2H and δ18O) Studies to Update the Conceptual Model of the Hyposaline Natural Mineral Waters of Ribeirinho and Fazenda Do Arco (Castelo de Vide, Central Portugal)
by José M. Marques, Paula M. Carreira and Manuel Antunes da Silva
Water 2025, 17(23), 3443; https://doi.org/10.3390/w17233443 - 4 Dec 2025
Viewed by 524
Abstract
In this paper, the conceptual hydrogeological circulation model of natural mineral waters from Ribeirinho and Fazenda do Arco hydromineral concession (Castelo de Vide) is updated. These waters are exploited by the Super Bock Group, as bottled waters, and are commercially labeled as Água [...] Read more.
In this paper, the conceptual hydrogeological circulation model of natural mineral waters from Ribeirinho and Fazenda do Arco hydromineral concession (Castelo de Vide) is updated. These waters are exploited by the Super Bock Group, as bottled waters, and are commercially labeled as Água Vitalis. The physico-chemical data (2004–2024) of these waters were processed regarding their joint interpretation with recent isotopic (δ2H and δ18O) data. The study region is dominated by the Castelo de Vide syncline, which develops along the southern limit of the Central Iberian Zone. These natural mineral waters have low electrical conductivity (EC) mean values (42.80 < ECmean < 54.45 μS/cm) and a slightly acidic pH (5.14 < pHmean < 5.46), making them hyposaline waters. The recharge area of this aquifer system coincides fundamentally with the outcrops of Lower Ordovician quartzites. The updated conceptual circulation model presented in this work is essentially developed on the basis of the chloride–sodium signatures of these waters, explained by the preferential recharge of meteoric waters (δ2H and δ18O) and low water–rock interaction temperature. Such isotopic results seem to indicate the non-existence of a flow continuity between the two blocks (NW and SE) of the quartzite ridges, separated by a fault with a local orientation approximately N-S, as indicated by the most enriched isotopic values of the waters from borehole AC22 (δ18O = −5.90‰ vs. V-SMOW) located in the SE block, compared to the average isotopic value of the waters from the other boreholes (Vitalis I, II, III, IV, V and VI) located in the NW block (δ18Omean = −6.30‰ vs. V-SMOW). This study enhances the understanding of the hydrogeological and geochemical processes controlling low-mineralized (hyposaline) natural mineral waters, widely used for therapeutic and commercial purposes. Despite their global importance, detailed hydrogeological and isotopic studies of such systems are still scarce, making this conceptual model a valuable reference for their sustainable management. Full article
(This article belongs to the Special Issue Research on Isotope Investigations in Groundwater Studies)
Show Figures

Figure 1

Back to TopTop