Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (235)

Search Parameters:
Keywords = major essential minerals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6356 KiB  
Article
Tectonic Rift-Related Manganese Mineralization System and Its Geophysical Signature in the Nanpanjiang Basin
by Daman Cui, Zhifang Zhao, Wenlong Liu, Haiying Yang, Yun Liu, Jianliang Liu and Baowen Shi
Remote Sens. 2025, 17(15), 2702; https://doi.org/10.3390/rs17152702 - 4 Aug 2025
Abstract
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several [...] Read more.
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several medium to large deposits such as Dounan, Baixian, and Yanzijiao. However, the geological processes that control manganese mineralization in this region remain insufficiently understood. Understanding the tectonic evolution of the basin is therefore essential to unravel the mechanisms of Middle Triassic metallogenesis. This study investigates how rift-related tectonic activity influences manganese ore formation. This study integrates global gravity and magnetic field models (WGM2012, EMAG2v3), audio-frequency magnetotelluric (AMT) profiles, and regional geological data to investigate ore-controlling structures. A distinct gravity low–magnetic high belt is delineated along the basin axis, indicating lithospheric thinning and enhanced mantle-derived heat flow. Structural interpretation reveals a rift system with a checkerboard pattern formed by intersecting NE-trending major faults and NW-trending secondary faults. Four hydrothermal plume centers are identified at these fault intersections. AMT profiles show that manganese ore bodies correspond to stable low-resistivity zones, suggesting fluid-rich, hydrothermally altered horizons. These findings demonstrate a strong spatial coupling between hydrothermal activity and mineralization. This study provides the first identification of the internal rift architecture within the Nanpanjiang Basin. The basin-scale rift–graben system exerts first-order control on sedimentation and manganese metallogenesis, supporting a trinity model of tectonic control, hydrothermal fluid transport, and sedimentary enrichment. These insights not only improve our understanding of rift-related manganese formation in southeastern Yunnan but also offer a methodological framework applicable to similar rift basins worldwide. Full article
Show Figures

Figure 1

15 pages, 768 KiB  
Article
Dysmagnesemia in the ICU: A Comparative Analysis of Ionized and Total Magnesium Levels and Their Clinical Associations
by Jawahar H. Al Noumani, Juhaina Salim Al-Maqbali, Mohammed Al Maktoumi, Qasim Sultan AL-Maamari, Abdul Hakeem Al-Hashim, Mujahid Al-Busaidi, Henrik Falhammar and Abdullah M. Al Alawi
Metabolites 2025, 15(8), 498; https://doi.org/10.3390/metabo15080498 - 24 Jul 2025
Viewed by 314
Abstract
Background: Magnesium (Mg) is an essential mineral that plays a vital role in various physiological processes, including enzyme regulation, neuromuscular function, and cardiovascular health. Dysmagnesemia has been associated with arrhythmias, neuromuscular dysfunction, and poor outcomes in intensive care unit (ICU) settings, representing diagnostic [...] Read more.
Background: Magnesium (Mg) is an essential mineral that plays a vital role in various physiological processes, including enzyme regulation, neuromuscular function, and cardiovascular health. Dysmagnesemia has been associated with arrhythmias, neuromuscular dysfunction, and poor outcomes in intensive care unit (ICU) settings, representing diagnostic and therapeutic challenges. However, the relationship between dysmagnesemia and health outcomes in the ICU remains inadequately defined. Aim/Objective: This study aimed to assess the prevalence of dysmagnesemia and evaluate the correlation between total (tMg) and ionized magnesium (iMg) levels in a cohort of ICU and high dependency unit (HDU) patients. It also sought to evaluate patient characteristics and relevant health outcomes by comparing both concentrations of iMg and tMg. Methods: This prospective study was conducted among adult patients admitted to the ICU and the high dependency unit (HDU). Results: Among the 134 included patients, the median age was 63.5 years (IQR: 52.0–77.0). The majority, 91.0%, required mechanical ventilation. Additionally, 50.0% were diagnosed with diabetes, 28.4% had chronic kidney disease, and proton pump inhibitors (PPIs) were administered to 67.2% of the patients. The prevalence of hypomagnesemia, as measured by iMg, was 6.7%, while hypermagnesemia was at 39.6%. When measured by tMg, hypomagnesemia and hypermagnesemia were observed at rates of 14.9% and 22.4%, respectively. The iMg measurements showed an association between the incidence of atrial fibrillation and hypomagnesemia (p = 0.015), whereas tMg measurements linked hypomagnesemia with longer hospital stays. Notably, only a few patients identified with iMg-measured hypomagnesemia received magnesium replacement during their ICU stay. Conclusions: Dysmagnesemia is prevalent among critically ill patients, with discordance between iMg and tMg measurements. iMg appears more sensitive in detecting arrhythmia risk, while tMg correlates with length of stay. These findings support the need for larger studies and suggest considering iMg in magnesium monitoring and replacement strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

15 pages, 1546 KiB  
Article
Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines
by Luciano M. Guardianelli, María V. Salinas, María C. Puppo, Alyssa Hidalgo and Gabriella Pasini
Foods 2025, 14(13), 2386; https://doi.org/10.3390/foods14132386 - 5 Jul 2025
Viewed by 461
Abstract
Wine production generates by-products that require proper management and reuse to minimize their environmental impact. Grape pomace, a by-product of winemaking, holds significant nutritional and bioactive potential. This study evaluated the nutritional and antioxidant profiles of pomace from Isabella grapes (La Plata, Argentina) [...] Read more.
Wine production generates by-products that require proper management and reuse to minimize their environmental impact. Grape pomace, a by-product of winemaking, holds significant nutritional and bioactive potential. This study evaluated the nutritional and antioxidant profiles of pomace from Isabella grapes (La Plata, Argentina) and Cabernet grapes (Veneto, Italy). Both varieties contain high levels of dietary fiber, especially Cabernet. However, Cabernet showed lower protein and lipid levels than Isabella. Calcium, potassium, and phosphorus were the major minerals in both by-products. Isabella exhibited a higher content of essential polyunsaturated fatty acids, particularly α-linoleic acid, while Cabernet shows a greater proportion of saturated and monounsaturated fatty acids. Additionally, Isabella exhibited significantly higher levels of caffeic acid derivatives (506.4 vs. 38.2 mg/kg dry weight), catechin (1613.2 vs. 294.8 mg/kg dry weight), epicatechin (1229.2 vs. 230.3 mg/kg dry weight), and total anthocyanins (2649 vs. 607.5 mg kuromanin/kg dry weight), as well as a greater total polyphenol content and antioxidant activity compared to Cabernet. These results highlight grape pomace’s potential as a valuable functional ingredient. Full article
Show Figures

Figure 1

22 pages, 1380 KiB  
Review
Carbon Mineralization in Basaltic Rocks: Mechanisms, Applications, and Prospects for Permanent CO2 Sequestration
by Ernest Ansah Owusu, Jiyue Wu, Elizabeth Akonobea Appiah, William Apau Marfo, Na Yuan, Xiaojing Ge, Kegang Ling and Sai Wang
Energies 2025, 18(13), 3489; https://doi.org/10.3390/en18133489 - 2 Jul 2025
Viewed by 679
Abstract
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an [...] Read more.
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an effective and durable solution for carbon dioxide sequestration. Basaltic rocks are widely used for road and building construction and insulation, soil amendment, and in carbon storage. There is a need to understand the parameters that affect this process in order to achieve efficient carbon mineralization. This review systematically analyzes peer-reviewed studies and project reports published over the past two decades to assess the mechanisms, effectiveness, and challenges of carbon mineralization in basaltic formations. Key factors such as mineral composition, pH, temperature and pressure are evaluated for their impact on mineral dissolution and carbonate precipitation kinetics. The presence of olivine and basaltic glass also accelerates cation release and carbonation rates. The review includes case studies from major field projects (e.g., CarbFix and Wallula) and laboratory experiments to illustrate how mineralization performs in different geological environments. It is essential to maximize mineralization kinetics while ensuring the formation of stable carbonate phases in order to achieve efficient and permanent carbon dioxide storage in basaltic rock. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

18 pages, 473 KiB  
Systematic Review
Calcium Supplementation in Pregnancy: A Systematic Review of Clinical Studies
by Angeliki Gerede, Panayiota Papasozomenou, Sofoklis Stavros, Anastasios Potiris, Ekaterini Domali, Nikolaos Nikolettos, Makarios Eleftheriades and Menelaos Zafrakas
Medicina 2025, 61(7), 1195; https://doi.org/10.3390/medicina61071195 - 30 Jun 2025
Viewed by 1215
Abstract
Background and Objectives: Calcium is an essential mineral that plays a vital role in fetal development and maternal health during pregnancy. The World Health Organization recommends a daily calcium intake of 1.5–2 g for pregnant adult women. Calcium deficiency during gestation may [...] Read more.
Background and Objectives: Calcium is an essential mineral that plays a vital role in fetal development and maternal health during pregnancy. The World Health Organization recommends a daily calcium intake of 1.5–2 g for pregnant adult women. Calcium deficiency during gestation may lead to complications, such as gestational hypertension, preeclampsia, loss of bone mineral density, impaired fetal development, and other adverse pregnancy outcomes. The aim of the present review is to evaluate the current clinical evidence on calcium intake during pregnancy. Methods: The present systematic review was conducted according to the PRISMA 2020 statement by searching two major databases, PubMed and Mendeley. The study protocol was registered in the Open Science Framework (DOI: osf.io/rvj7z). Inclusion criteria were clinical trials on calcium supplementation during pregnancy. Exclusion criteria were clinical guidelines, reviews, case reports, case series, letters, and commentaries. The Newcastle–Ottawa Scale was used to assess the risk of bias in the included studies. Results: Initially, 451 publications were identified, and after removal of duplicates and screening of titles and/or abstracts and/or full texts, 34 studies were included. The number of participants ranged between 30 and 22,000 women. Calcium supplementation was associated with lower incidence of and less severe gestational hypertension and preeclampsia, lower risk of preterm birth, longer pregnancy duration and higher neonatal birth weight, and improved maternal bone mineral density postpartum. When the doses were split up into smaller doses, the benefits were strongest with high-dose regimens (1.5–2 g/day). Conclusions: Calcium supplementation during pregnancy has beneficial effects on maternal and neonatal health, especially in populations with insufficient dietary daily calcium intake and women at high risk of hypertensive disorders. Daily dose may vary according to individual needs, daily dietary calcium intake, and general health status. Further large-scale randomized controlled trials (RCTs) are necessary to confirm these findings. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

13 pages, 25033 KiB  
Article
Ultrastructural Aspects of Physiological Mineralization: A Comparative Study in Different Hard Tissues
by Marina Borgese, Mario Raspanti, Marina Protasoni, Piero Antonio Zecca, Fulvia Ortolani and Marcella Reguzzoni
Biomolecules 2025, 15(7), 932; https://doi.org/10.3390/biom15070932 - 26 Jun 2025
Viewed by 325
Abstract
The calcified tissues of vertebrates are essentially represented by bone, cartilage, dentin and calcified tendons. In all these tissues a major hallmark of mineralization is the deposition of the inorganic phase on a pre-existing collagen template, but evident differences exist among these materials [...] Read more.
The calcified tissues of vertebrates are essentially represented by bone, cartilage, dentin and calcified tendons. In all these tissues a major hallmark of mineralization is the deposition of the inorganic phase on a pre-existing collagen template, but evident differences exist among these materials and the molecular details of the process are still incompletely understood. In this study, the ultrastructural aspects of the mineral phase of these tissues were investigated by means of high-resolution scanning electron microscopy (HR-SEM) after low-temperature thermal deproteination, a technique allowing a direct, unrestricted visualization of the mineral component. Each tissue showed distinctive features. In most cases, calcification proceeds in a discontinuous way through the formation of clumps or clusters of mineralized tissue; in all cases, except cartilage, the mineral phase shows an evident relationship with the layout and/or the D-period of the collagen fibrils. Our results highlight the peculiar aspect of the mineralization process in the cartilage with respect to the other tissues, all of them containing collagen type I instead of type II, and suggest that a different molecular mechanism may be at work. It is still unclear whether and how this may be related to the content, exclusive of cartilage, of collagen type II. The identification of the tissue-specific features exhibited by cartilage versus those shared by all the other three tissues, although from different species, requires further research on physiological calcification. Full article
(This article belongs to the Special Issue Tissue Calcification in Normal and Pathological Environments)
Show Figures

Graphical abstract

34 pages, 7396 KiB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Viewed by 809
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

19 pages, 2222 KiB  
Review
Volcanic Rejuvenation and Hydrothermal Systems: Implications for Conservation and Resource Assessment in the Southeastern Tyrrhenian Sea
by Salvatore Passaro, Mattia Vallefuoco, Stella Tamburrino, Riccardo De Ritis and Mario Sprovieri
Appl. Sci. 2025, 15(11), 6174; https://doi.org/10.3390/app15116174 - 30 May 2025
Viewed by 553
Abstract
The Southeastern Tyrrhenian Sea is a back-arc basin characterized by the onset of volcanism over the past ~11 million years and the development of numerous volcanic seamounts. Hydrothermal venting is predominantly concentrated in the southeastern sector, encompassing the Aeolian volcanic arc and major [...] Read more.
The Southeastern Tyrrhenian Sea is a back-arc basin characterized by the onset of volcanism over the past ~11 million years and the development of numerous volcanic seamounts. Hydrothermal venting is predominantly concentrated in the southeastern sector, encompassing the Aeolian volcanic arc and major volcanic edifices, such as Palinuro and Marsili. These systems frequently exhibit zones of localized magnetic depletion (demagnetization) within otherwise magnetized volcanic structures, often linked to hydrothermal alteration. Notably, volcanic rejuvenation phases are commonly associated with active hydrothermal circulation. In response to mounting ecological concerns, the Italian government has delineated extensive Ecological Protection Zones (EPZs), including those in the Eastern Tyrrhenian sector. These EPZs encompass a series of prominent seamounts—Palinuro, Marsili, Vercelli, Vavilov, Magnaghi, Enarete, and Anchise—that exhibit morphological evidence of rejuvenation and magnetic anomalies consistent with hydrothermal modification. Such features are indicative of potentially mineralized systems, relevant for future resource exploration. A comprehensive evaluation of both the ecological significance and the mineral potential of these areas is now imperative. Balancing environmental conservation with the strategic assessment of deep-sea mining prospects will be essential to mitigate biodiversity loss while promoting the sustainable use of marine mineral resources. Full article
(This article belongs to the Special Issue Advances in Geophysical Approaches in Volcanic and Geothermal Areas)
Show Figures

Figure 1

16 pages, 3315 KiB  
Article
Using Machine Learning to Assess the Effects of Biochar-Based Fertilizers on Crop Production and N2O Emissions in China
by Yuan Zeng, Sujuan Chen, Yunpeng Li, Li Xiong, Cheng Liu, Muhammad Azeem, Xiaoting Jie, Mei Chen, Longjiang Zhang and Jianfei Sun
Agronomy 2025, 15(5), 1238; https://doi.org/10.3390/agronomy15051238 - 19 May 2025
Viewed by 642
Abstract
The growing global population and increasing agricultural demands have made nitrogen fertilizers essential for modern agriculture. However, nearly 50% of applied nitrogen fertilizers are lost to the environment, causing pollution and greenhouse gas (GHG) emissions. Biochar-based fertilizers (BBFs), combining biochar with chemical fertilizers, [...] Read more.
The growing global population and increasing agricultural demands have made nitrogen fertilizers essential for modern agriculture. However, nearly 50% of applied nitrogen fertilizers are lost to the environment, causing pollution and greenhouse gas (GHG) emissions. Biochar-based fertilizers (BBFs), combining biochar with chemical fertilizers, enhance nutrient efficiency, boost crop yields, and reduce N2O emissions. However, comprehensive field studies on BBF impacts remain limited. This study uses a global dataset of BBF field experiments to build predictive models with three machine learning algorithms for crop yields and N2O emissions, and to assess BBFs’ potential to increase yields and mitigate emissions in China’s major crops. The artificial neural network (ANN) model outperformed random forest (RF) and support vector machine (SVM) in predicting N2O emissions (R2: 0.99; EF: 0.99), while all models showed high accuracy for crop yields (R2, EF: 0.98–0.99). Variable importance analysis revealed that BBF C/N and BBF N/Mineral N explained 4.25% and 3.95% of yield variation, and 3.19% and 0.55% of N2O emission variation, respectively. BBFs could increase China’s major crop yields by 4.3–5.0% and reduce N2O emissions by 3.7–6.3%, based on simulations. Challenges like high costs and limited adaptability persist, necessitating optimized production, standardized protocols, and expanded trials. Full article
(This article belongs to the Special Issue New Pathways Towards Carbon Neutrality in Agricultural Systems)
Show Figures

Figure 1

18 pages, 3011 KiB  
Article
Consequences of Micro- and Macronutrient Deficiencies on Physiological and Growth Metrics in Hydroponic ‘Thompson Seedless’ Grapevines
by Maoxiang Zhao, Jianjun He, Jiebu Suolang, Luyao Liu, Faisal Hayat, Shipping Wang, Hafiz Umer Javed and Lei Wang
Horticulturae 2025, 11(5), 543; https://doi.org/10.3390/horticulturae11050543 - 18 May 2025
Viewed by 586
Abstract
(1) Background: Mineral nutrient deficiencies are a major constraint on grapevine growth and productivity, yet the clear identification of deficiency symptoms and their physiological impacts remains challenging. (2) Methods: In this study, ‘Thompson Seedless’ grapevines were grown hydroponically under the controlled omission of [...] Read more.
(1) Background: Mineral nutrient deficiencies are a major constraint on grapevine growth and productivity, yet the clear identification of deficiency symptoms and their physiological impacts remains challenging. (2) Methods: In this study, ‘Thompson Seedless’ grapevines were grown hydroponically under the controlled omission of ten essential nutrients (N, P, K, Ca, Mg, Fe, Mn, B, Zn, Cu) to assess their impact on growth, leaf morphology, chlorophyll content, photosynthesis, respiration, and tissue nutrient concentrations. (3) Results: Deficiencies in N, P, K, Mn, and B caused distinct leaf symptoms: nitrogen (N) deficiency led to pale leaves with bluish-green veins, phosphorus (P) deficiency caused yellowing in apical leaves followed by interveinal chlorosis, and potassium (K) deficiency induced pale yellow discoloration, curling, and rotting of the leaves. Manganese (Mn) and boron (B) deficiencies showed symptoms such as irregular leaf shapes and brittle, glossy leaves, respectively. These deficiencies resulted in reduced dry matter accumulation, decreased shoot length, and lower chlorophyll content. In contrast, iron (Fe) and copper (Cu) deficiencies had minimal effects, closely resembling those of the control conditions with only slight growth suppression. Notably, N, B, and Mg deficiencies led to significant reductions in Cu, Mg, B, and N levels, particularly evident through distinct symptoms in newly formed leaves. (4) Conclusions: Deficiencies in N, P, K, Mg, and B significantly affect grapevine growth, physiological processes, and nutritional quality. These findings emphasize the importance of maintaining balanced mineral nutrition for optimal grapevine health and productivity. Full article
(This article belongs to the Special Issue Research Progress on Grape Genetic Diversity)
Show Figures

Figure 1

34 pages, 2775 KiB  
Article
Production of Red Beetroot (Beta vulgaris L.) Pestil as an Alternative Healthy Snack: Effects of Traditional, Thermosonication, and Microwave Pretreatments on Physicochemical, Sensorial, Nutritional, and Chemometric Profiles
by Neslihan Ersoyak, Busra Acoglu Celik, Elif Koc Alibasoglu, Erturk Bekar, Taha Turgut Unal, Ersin Yetan, Senem Kamiloglu, Arzu Akpinar Bayizit, Omer Utku Copur, Irmak Aral Baskaya and Perihan Yolci Omeroglu
Foods 2025, 14(10), 1784; https://doi.org/10.3390/foods14101784 - 17 May 2025
Viewed by 669
Abstract
Red beetroot (Beta vulgaris L.) is a nutritionally rich root vegetable. It is a potential alternative raw material for pestil, a traditional fruit-based snack. This study aimed to develop a healthy beetroot-based pestil using traditional boiling (95 °C) and novel pretreatment methods, [...] Read more.
Red beetroot (Beta vulgaris L.) is a nutritionally rich root vegetable. It is a potential alternative raw material for pestil, a traditional fruit-based snack. This study aimed to develop a healthy beetroot-based pestil using traditional boiling (95 °C) and novel pretreatment methods, including thermosonication and microwave processing, with and without additional concentration steps. The effects of these methods on heat treatment period, hydroxymethylfurfural (HMF) formation, and the physicochemical, sensorial, nutritional, and chemometric profiles of pestils were evaluated. The beetroot-based snack formulated in this study was hedonically acceptable (≥5/9) and rich in essential minerals (Ca, K, Na, P, Mg) and trace elements (Zn, Fe, Mn), as determined by inductively coupled plasma–mass spectrometry. Total antioxidant capacity (CUPRAC) ranged from 113.11 to 870.78 mg Trolox® equivalent/100 g dry matter (DM). Total phenolic, flavonoid, and betalain contents varied between 220.6–313.8 mg gallic acid equivalent/100 g DM, 365.08–517.46 mg rutin equivalent/100 g DM, and 314.40–488.66 mg/kg, respectively. Major flavonoids identified and quantified included epicatechin, rutin, isoquercitrin, taxifolin, and quercetin, while major phenolic acids identified were chlorogenic acid, ferulic acid, caffeic acid, o-salicylic acid, p-coumaric acid, and vanillin, using liquid chromatography–electrospray tandem mass spectrometry. Reducing the soluble solids content of the pestil pulp from 40 to 20 Brix degrees, in combination with thermosonication and microwave treatments, significantly shortened the processing time by 10–67%. This approach also reduced the HMF content to the limit of quantification (LOQ). Pretreatment methods significantly (p < 0.05) affected the levels of minerals and bioactive compounds in the pestils. These findings highlight the importance of process optimization to improve overall safety and the nutritional quality of the pestil. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 2052 KiB  
Article
Optimizing Oilfield-Produced Water Reuse for Sustainable Irrigation: Impacts on Soil Quality and Mineral Accumulation in Plants
by Khaled Al-Jabri, Ahmed Al-Busaidi, Mushtaque Ahmed, Rhonda R. Janke and Alexandros Stefanakis
Water 2025, 17(10), 1497; https://doi.org/10.3390/w17101497 - 16 May 2025
Viewed by 1856
Abstract
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW [...] Read more.
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW undergoes partial treatment in constructed wetlands vegetated with buffelgrass (Cenchrus ciliaris). This study investigated the reuse potential of treated PW for irrigation through two parallel field experiments conducted at Sultan Qaboos University (SQU) and the Nimr wetlands site. At the SQU site, native halophytic plants were irrigated with three water sources: treated municipal wastewater, underground water (from an on-site well), and treated produced water. At the Nimr site, irrigation was conducted using underground water and treated PW. Two soil types were used: well-draining control soil and Nimr soil from southern Oman. The treatments included: (i) PW + control soil, (ii) PW + Nimr soil, (iii) PW + gypsum (3.5 g/kg soil), (iv) PW + biochar (10 g/kg soil), (v) underground water + control soil, and (vi) treated municipal wastewater + control soil. Biochar, produced from locally sourced buffelgrass via low-temperature pyrolysis (300 °C for 3 h), and gypsum (46.57% acid-extractable sulfate) were mixed into the soil before sowing. The impact of each treatment was assessed in terms of soil quality (salinity, boron, major cations), plant physiological responses, and mineral accumulation. PW irrigation (TDS ~ 6500–7000 mg/L) led to a sixfold increase in soil sodium and raised boron levels in plant tissues to over 200 mg/kg, exceeding livestock feed safety limits. Copper remained within acceptable thresholds (≤9.5 mg/kg). Biochar reduced boron uptake, but gypsum showed limited benefit. Neither amendment improved plant growth under PW irrigation. These findings highlight the need for regulated PW reuse, emphasizing the importance of soil management strategies and alternating water sources to mitigate salinity stress. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Water Conservation)
Show Figures

Graphical abstract

29 pages, 8699 KiB  
Article
Lemon Dietary Fibre-Based Powder as a Promising Ingredient for the Food Industry: Enhancing Mortadella Nutritional Quality
by Daniela Magalhães, Cristina V. Rodrigues, Carmen Botella-Martinez, Nuria Muñoz-Tebar, José Angel Pérez-Álvarez, Manuel Viuda-Martos, Paula Teixeira and Manuela Pintado
Foods 2025, 14(10), 1693; https://doi.org/10.3390/foods14101693 - 10 May 2025
Viewed by 804
Abstract
Lemon co-products are valuable due to their high dietary fibre, making them significant for valorisation. This research aimed to characterise an innovative lemon dietary fibre (LDF) obtained through integrated extraction (of essential oil, phenolic compounds (PCs), and pectin) by evaluating its chemical, physicochemical, [...] Read more.
Lemon co-products are valuable due to their high dietary fibre, making them significant for valorisation. This research aimed to characterise an innovative lemon dietary fibre (LDF) obtained through integrated extraction (of essential oil, phenolic compounds (PCs), and pectin) by evaluating its chemical, physicochemical, structural, techno-functional, total phenolic content, and antioxidant and antibacterial properties. The effects of incorporating LDF (3% and 6%) into mortadella, a bologna-type sausage, on chemical, physicochemical, technological, and sensory properties were analysed. LDF exhibited a total dietary fibre content of 85.79%, mainly insoluble (52.55%). Hesperidin (89.97–894.44 mg/100 g DW) and eriocitrin (68.75–146.35 mg/100 g DW) were the major free PCs. The major bound PCs were vanillin (5.90–9.16 mg/100 g DW) and apigenin-7-O-glucoside (8.82 mg/100 g DW). This functional ingredient demonstrated antioxidant and antibacterial activity. LDF significantly influenced mortadella’s colour, texture, and mineral composition. Higher levels of LDF result in a paler colour and increased hardness and contribute to reducing sodium levels of the final product. It also decreased residual nitrite levels, although this reduction was followed by a slight increase in lipid oxidation, which remained below the rancidity threshold (≥1.0), ensuring acceptable product quality. Sensory evaluation revealed positive feedback, favouring the 3% LDF formulation. Full article
Show Figures

Graphical abstract

18 pages, 17857 KiB  
Article
Construction of Knowledge Graphs for the Constituent Elements and Mineralization Process of Urban Minerals: A Case of Iron and Steel Resources
by Youliang Chen, Lifen Zhang, Lin Chen and Yan Shi
Sustainability 2025, 17(9), 4136; https://doi.org/10.3390/su17094136 - 2 May 2025
Viewed by 498
Abstract
Urban minerals are secondary resources with economic value that can be recycled and utilized, including iron and steel, non-ferrous metals, rubber, and others. Accurately estimating the quantities of various components is a critical element in the urban mining operations that support sustainable resource [...] Read more.
Urban minerals are secondary resources with economic value that can be recycled and utilized, including iron and steel, non-ferrous metals, rubber, and others. Accurately estimating the quantities of various components is a critical element in the urban mining operations that support sustainable resource management. To achieve this, ontology construction was employed to systematically define and structure the relationships among different entities in the domain. Knowledge graphs were developed to identify the constituent elements and mineralization process of iron and steel, contributing to improved sustainability in urban resource utilization. The knowledge graphs were constructed using a top-down approach and stored in a Neo4j database. When a knowledge graph of iron and steel components is constructed, the iron and steel products are classified into 5 major categories and 14 subcategories. The knowledge graph of the iron and steel mineralization process is divided into five iron and steel mineralization stages and combines industrialization and urbanization to represent the factors that play a role in the iron and steel mineralization process. By leveraging ontology construction, the knowledge graph can improve the efficiency of refining and analyzing data in urban mineral-related fields. This, in turn, provides an essential data basis for establishing a circular economic system for iron and steel industry resources and advancing sustainability-oriented urban mining practices. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

37 pages, 9660 KiB  
Review
Fungi for Sustainable Pharmaceutical Remediation: Enzymatic Innovations, Challenges, and Applications—A Review
by Mohd Faheem Khan
Processes 2025, 13(4), 1034; https://doi.org/10.3390/pr13041034 - 31 Mar 2025
Cited by 5 | Viewed by 1808
Abstract
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation [...] Read more.
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation of pharmaceuticals, offers a promising and sustainable approach to mitigate pharmaceutical pollution. Studies have reported that certain fungal species, including Trametes versicolor and Pleurotus ostreatus, can degrade up to 90% of pharmaceutical contaminants, such as diclofenac, carbamazepine, and ibuprofen, within days to weeks, depending on environmental conditions. Fungi produce a range of extracellular enzymes, such as laccases and peroxidases, alongside intracellular enzymes like cytochrome P450 monooxygenases, which catalyze the transformation of complex pharmaceutical compounds. These enzymes play an essential role in modifying, detoxifying, and mineralizing xenobiotics, thereby reducing their environmental persistence and toxicity. The effectiveness of fungal biotransformation is influenced by factors such as substrate specificity, enzyme stability, and environmental conditions. Optimal degradation typically occurs at pH 4.5–6.0 and temperatures of 20–30 °C. Recent advancements in enzyme engineering, immobilization techniques, and bioreactor design have improved catalytic efficiency and process feasibility. However, scaling up fungal-based remediation systems for large-scale applications remains a challenge. Addressing these limitations with synthetic biology, metabolic engineering, and other biotechnological innovations could further enhance the enzymatic degradation of pharmaceuticals. This review highlights the enzymatic innovations, applications, and challenges of pharmaceutical mycoremediation, emphasizing the potential of fungi as a transformative solution for sustainable pharmaceutical waste management. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

Back to TopTop