Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
Abstract
:1. Introduction
- What are the dominant hydrochemical facies in the Témara Plain aquifer and their spatial distribution?
- What are the controlling factors, natural and anthropogenic, of the groundwater chemistry in the studied region?
- What is the vulnerability of the Témara Plain aquifer to seawater intrusion and agricultural contamination?
2. Study Area
2.1. Geological Setting
2.2. Land Use
3. Materials and Methods
3.1. Sampling and Analytical Methods
3.2. Study of Hydrochemical Facies
3.3. Spatial Distribution Analysis
3.4. Principal Component Analysis (PCA) of Hydrochemical Data
3.5. Groundwater Vulnerability Assessment
Parameters | Classes | Index (r) | Weight (w) |
---|---|---|---|
D | 10 | 5 | |
1.50–4.60 | 9 | ||
4.60–9.10 | 7 | ||
9.10–15.20 | 5 | ||
R | 0–51 | 1 | 4 |
A | Metamorphic/igneous rock | 2–5 (3) | 3 |
Altered metamorphic/igneous rocks | 3–5 (4) | ||
Sand and ballast | 4–9 (8) | ||
S | Thin or absent | 10 | 2 |
Sand | 9 | ||
Loam | 5 | ||
Clay loam | 3 | ||
Non-aggregated and non-expandable clay | 1 | ||
T | 10 | 2 | |
2–6 | 9 | ||
6–12 | 5 | ||
12–19 | 3 | ||
1 | |||
I | Metamorphic/igneous rock | 2–8 (4) | 5 |
Sand and ballast with significant silt andclay percentage | 4–8 (6) | ||
C | 1 | 3 | |
4.10–12.20 | 2 |
4. Results
4.1. Hydrochemical Facies
4.2. Electrical Conductivity (EC)
4.3. pH
4.4. Calcium (Ca2+)
4.5. Potassium (K+)
4.6. Magnesium (Mg2+)
4.7. Sodium (Na+)
4.8. Chloride (Cl−)
4.9. Bicarbonate Ions (HCO3−)
4.10. Nitrates (NO3−)
4.11. Sulfate (SO42−)
4.12. Principal Component Analysis (PCA) of Hydrochemical Data
4.13. Vulnerability Map
5. Discussion
5.1. Geological and Anthropogenic Controls on Groundwater Hydrochemistry
- The Influence of Geological Formations on the Chemical Composition of Water
- Factors Influencing Groundwater Contamination in the Témara Aquifer
- Marine Intrusion
- Contextualizing Témara Groundwater Quality: National and Regional Comparisons
5.2. Water Resource Management, Socio-Economic Impacts, and Environmental Health
5.2.1. Issues and Impacts on Water Resources in the Témara Plain
5.2.2. Sustainable Management Strategies and Best Practices
5.2.3. Stakeholder Engagement and Collaboration
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, E.R.; Bierkens, M.F.P.; van Vliet, M.T.H. Current and Future Global Water Scarcity Intensifies When Accounting for Surface Water Quality. Nat. Clim. Change 2024, 14, 629–635. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The Changing Nature of Groundwater in the Global Water Cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; van Beek, L.P.H.; Bierkens, M.F.P. Modelling Global Water Stress of the Recent Past: On the Relative Importance of Trends in Water Demand and Climate Variability. Hydrol. Earth Syst. Sci. 2011, 15, 3785–3808. [Google Scholar] [CrossRef]
- Das, A. Evaluation of Surface Water Quality in Brahmani River Basin, Odisha (India), for Drinking Purposes Using GIS-Based WQIs, Multivariate Statistical Techniques and Semi-Variogram Models. Innov. Infrastruct. Solut. 2024, 9, 484. [Google Scholar] [CrossRef]
- Custodio, E.; Cabrera, M.C.; Sánchez-García, D.; de la Hera-Portillo, A.; García-Aróstegui, J.L.; Jódar, J.; Martos-Rosillo, S.; Puga, L.O.; Queralt, E. Proposal of Groundwater Governance Indexes: Application to Nine Spanish Aquifers. Water Resour. Manag. 2025, 39, 1–19. [Google Scholar] [CrossRef]
- Khatita, A.M.A.; van Geldern, R.; Bamousa, A.O.; Alexakis, D.E.; Ismail, E.; Abdellah, W.R.; Babikir, I.A.A. Combining Hydro-Geochemistry and Environmental Isotope Methods to Evaluate Groundwater Quality and Health Risk (Middle Nile Delta, Egypt). Hydrology 2025, 12, 72. [Google Scholar] [CrossRef]
- Tallini, M.; Adinolfi Falcone, R.; Carucci, V.; Falgiani, A.; Parisse, B.; Petitta, M. Isotope Hydrology and Geochemical Modeling: New Insights into the Recharge Processes and Water–Rock Interactions of a Fissured Carbonate Aquifer (Gran Sasso, Central Italy). Environ. Earth Sci. 2014, 72, 4957–4971. [Google Scholar] [CrossRef]
- Liu, L.; Qi, S.; Wang, W. Groundwater Quality in Agricultural Lands Near a Rapidly Urbanized Area, South China. Int. J. Environ. Res. Public Health 2021, 18, 1783. [Google Scholar] [CrossRef]
- Gómez-Navarro, O.; De Girolamo, A.M.; Lorenz, A.W.; Khadhar, S.; Debieche, T.-H.; Gentile, F.; Chiron, S.; Pérez, S. Characterization of Anthropogenic Impacts in Mediterranean Intermittent Rivers with Chemical, Ecological and Hydrological Indicators. J. Hazard. Mater. 2024, 480, 135951. [Google Scholar] [CrossRef]
- Palatnik, R.R.; Raviv, O.; Sirota, J.; Shechter, M. Water Scarcity and Food Security in the Mediterranean Region: The Role of Alternative Water Sources and Controlled-Environment Agriculture. Water Resour. Econ. 2025, 49, 100256. [Google Scholar] [CrossRef]
- Ceseracciu, C.; Nguyen, T.P.L.; Deriu, R.; Branca, G.; Vozinaki, A.-E.K.; Karatzas, G.P.; Mellah, T.; Akrout, H.; Yıldırım, Ü.; Kurt, M.A.; et al. Innovative Governance for Sustainable Management of Mediterranean Coastal Aquifers: Evidence from Sustain-COAST Living Labs. Environ. Sci. Policy 2025, 167, 104038. [Google Scholar] [CrossRef]
- Fidelibus, M.D.; Balacco, G.; Alfio, M.R.; Arfaoui, M.; Bassukas, D.; Güler, C.; Hamzaoui-Azaza, F.; Külls, C.; Panagopoulos, A.; Parisi, A.; et al. A Chloride Threshold to Identify the Onset of Seawater/Saltwater Intrusion and a Novel Categorization of Groundwater in Coastal Aquifers. J. Hydrol. 2025, 653, 132775. [Google Scholar] [CrossRef]
- Ibrahim, M.I.A.; El-Sawy, M.A.; Elgendy, A.R.; El-Sayed, H.M.; Mohamed, L.A.; Aly-Eldeen, M.A. Assessing Seawater Intrusion Impact on Groundwater Quality in El-Omayed Aquifers, Mediterranean Coast, Egypt Using Hydrogeochemical and Chemometric Analyses. Groundw. Sustain. Dev. 2025, 29, 101418. [Google Scholar] [CrossRef]
- Ait Haddou, M.; Bouchriti, Y.; Ikirri, M.; Wanaim, A.; Aydda, A.; Amarir, S.; Amiha, R.; El Boudribili, Y. Delineation of Groundwater Potential Zones in a Semi-Arid Region Using Remote Sensing and GIS: A Case Study of Argana Corridor (Morocco). In Advanced Technology for Smart Environment and Energy; Mabrouki, J., Mourade, A., Irshad, A., Chaudhry, S.A., Eds.; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2023; pp. 257–268. ISBN 978-3-031-25661-5. [Google Scholar] [CrossRef]
- Görlich, I.; Weigand, S.; Beuel, S.; Bouchaou, L.; Reichert, B. Statusanalyse von Meerwasserintrusionen und Grundwasserhaushaltsmodellierung des oberen Küstenaquifers in Agadir, Marokko. Grundwasser 2015, 20, 25–37. [Google Scholar] [CrossRef]
- Khattach, D.; El Gout, R.; Ziani, S.; Nouayti, A.; Nouayti, N.; Bouazza, M. Enhancing Subsurface Geological Imaging of Angad Basin (Northeastern Morocco) through the Integration of Gravity and Electrical Data: New Insights into the Jurassic Deep Aquifer for Groundwater Exploration and Development. Geophys. J. Int. 2025, 241, 1186–1203. [Google Scholar] [CrossRef]
- Olías, M.; Basallote, M.D.; Cánovas, C.R.; Pérez-Carral, C. Groundwater Divide Shifting Due to Pumping in a Sector of the Doñana Aquifer System (SW Spain): Environmental Implications. Environ. Monit. Assess. 2025, 197, 526. [Google Scholar] [CrossRef]
- Renau-Pruñonosa, A.; Esteller, M.V.; Aroba, J.; Grande, J.A.; Morell, I.; de la Torre, M.L.; García-Menéndez, O.; Ballesteros, B.J. Identification of Salinization Processes in Coastal Aquifers Using a Fuzzy Logic and Data Mining Based Methodology: Study Case in a Mediterranian Coastal Aquifer (Spain). Environ. Earth Sci. 2025, 84, 109. [Google Scholar] [CrossRef]
- Benyoussef, S.; Arabi, M.; El Yousfi, Y.; Makkaoui, M.; Gueddari, H.; El Ouarghi, H.; Abdaoui, A.; Ghalit, M.; Zegzouti, Y.F.; Azirar, M.; et al. Assessment of Groundwater Quality Using Hydrochemical Process, GIS and Multivariate Statistical Analysis at Central Rif, North Morocco. Environ. Earth Sci. 2024, 83, 515. [Google Scholar] [CrossRef]
- Zaland, R.A. Risk Assessment in Construction of Public Road Project in Afghanistan. J. Achiev. Mater. Manuf. Eng. 2022, 110, 70–85. [Google Scholar] [CrossRef]
- Kmoch, L.; Bou-Lahriss, A.; Plieninger, T. Drought Threatens Agroforestry Landscapes and Dryland Livelihoods in a North African Hotspot of Environmental Change. Landsc. Urban Plan. 2024, 245, 105022. [Google Scholar] [CrossRef]
- Richardson, C.M.; Davis, K.L.; Ruiz-González, C.; Guimond, J.A.; Michael, H.A.; Paldor, A.; Moosdorf, N.; Paytan, A. The Impacts of Climate Change on Coastal Groundwater. Nat. Rev. Earth Environ. 2024, 5, 100–119. [Google Scholar] [CrossRef]
- Azemzi, H. Governance and Policy Approaches for Addressing Water Scarcity: Insights from Morocco. Euro-Mediterr. J. Environ. Integr. 2025, 10, 1–12. [Google Scholar] [CrossRef]
- Boukhari, S.; Khalil, A.; Zouhri, L.; El Adnani, M. Geographic Information System-Based Database for Monitoring and Assessing Mining Impacts on Water Resources and Environmental Systems at National Scale: A Case Study of Morocco (North Africa). Water 2025, 17, 924. [Google Scholar] [CrossRef]
- El Baroudi, H.; Ouazzani, C.; Moustaghfir, A.; Er-Ramly, A.; Essebbahi, I.; El Baroudi, Y.; Dami, A.; Balouch, L. Evaluation of Drinking Water Quality and Potential Health Risks on the Population in Morocco. Desalination Water Treat. 2024, 320, 100715. [Google Scholar] [CrossRef]
- Nassri, I.; Harmouzi, H.; Tahri, L.; El Ouali, A.; Khattabi Rifi, S. Hydrogeochemical Assessment and Spatial Analysis of Groundwater Quality Parameters in North West of Morocco. J. Saudi Soc. Agric. Sci. 2024, 23. [Google Scholar] [CrossRef]
- Elmotawakkil, A.; Sadiki, A.; Enneya, N. Predicting Groundwater Level Based on Remote Sensing and Machine Learning: A Case Study in the Rabat-Kénitra Region. J. Hydroinformatics 2024, 26, 2639–2667. [Google Scholar] [CrossRef]
- Bahir, M.; El Mountassir, O.; Behnassi, M. Effect of Climate Change on Sea Water Intrusion in the Essaouira Basin Coastal Aquifer. In The Water, Climate, and Food Nexus; Springer: Cham, Switzerland, 2024; pp. 167–200. ISBN 978-3-031-50962-9. [Google Scholar] [CrossRef]
- Karroum, M.; Elgettafi, M.; Elmandour, A.; Wilske, C.; Himi, M.; Casas, A. Geochemical Processes Controlling Groundwater Quality under Semi Arid Environment: A Case Study in Central Morocco. Sci. Total Environ. 2017, 609, 1140–1151. [Google Scholar] [CrossRef]
- Qurtobi, M.; Hssaisoune, M.; Kumar, U.S.; Bouchaou, L. Multienvironmental Tracers in Coastal Aquifer (Morocco): A Window into Groundwater Mixing and Risk to Contamination. Water Environ. Res. 2024, 96, e10995. [Google Scholar] [CrossRef]
- Zarati, A.; Zinedine, A.; Bakkali, F.; Rahim, S.; Bellali, F.; Bennani, M. Assessment of Groundwater Quality and Public Health Risks: Physicochemical and Bacteriological Analysis in the Casablanca-Settat Region, Morocco. Int. J. Environ. Stud. 2025, 82, 586–602. [Google Scholar] [CrossRef]
- Kuriqi, A.; Abd-Elaty, I. Groundwater Salinization Risk in Coastal Regions Triggered by Earthquake-Induced Saltwater Intrusion. Stoch. Environ. Res. Risk Assess. 2024, 38, 3093–3108. [Google Scholar] [CrossRef]
- Gonçalves, V.; Albuquerque, A.; Almeida, P.G.; Cavaleiro, V. DRASTIC Index GIS-Based Vulnerability Map for the Entre-Os-Rios Thermal Aquifer. Water 2022, 14, 2448. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, J.; Chen, X.; Shi, X.; Feng, Z.; Meng, Y.; Chen, W.; Liu, Y. Comparative Study on Different Interpolation Methods and Source Analysis of Soil Toxic Element Pollution in Cangxi County, Guangyuan City, China. Sustainability 2024, 16, 3545. [Google Scholar] [CrossRef]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-7617-7. [Google Scholar]
- Aman, H.; Doost, Z.H.; Hejran, A.W.; Mehr, A.D.; Szczepanek, R.; Gilja, G. Survey on The Challenges for Achieving SDG 6: Clean Water and Sanitation: A Global Insight. Knowl.-Based Eng. Sci. 2024, 5, 21–42. [Google Scholar] [CrossRef]
- Mousazadeh, H. Unraveling the Nexus between Community Development and Sustainable Development Goals: A Comprehensive Mapping. Community Dev. 2025, 56, 276–302. [Google Scholar] [CrossRef]
- Nandi, S.; Swain, S. Role of Groundwater Systems in Fulfilling Sustainable Development Goals: A Focus on SDG6 and SDG13. Curr. Opin. Environ. Sci. Health 2024, 42, 100576. [Google Scholar] [CrossRef]
- Choubert, G.; El Azzouzi, M.; Boudad, M.; Lahouari, M. The Jurassic and Cretaceous of the Témara Region (Morocco): Stratigraphy and Paleogeography. Rev. Paléobiologie 1981, 75–90. [Google Scholar]
- Vidal, G.; Roussel, J.; Dupont, P.; Martin, L. Carte Géologique de La Région de Romani à L’échelle 1:100,000; Bureau de Recherches Géologiques et Minières: Paris, France, 1989.
- Bucci, A.; Petrella, E.; Celico, F.; Naclerio, G. Use of Molecular Approaches in Hydrogeological Studies: The Case of Carbonate Aquifers in Southern Italy. Hydrogeol. J. 2017, 25, 1017–1031. [Google Scholar] [CrossRef]
- Arabi, M.; Mechkirrou, L.; El Malki, M.; Alaoui, K.; Chaieb, A.; Maaroufi, F.; Karmich, S. Overview of Ecological Dynamics in Morocco—Biodiversity, Water Scarcity, Climate Change, Anthropogenic Pressures, and Energy Resources—Navigating Towards Ecosolutions and Sustainable Development. In Proceedings of the 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4), Oujda, Morocco, 23–24 February 2024; In E3S Web of Conferences Volume. EDP Sciences: Paris, France, 2024; Volume 527, p. 01001. [Google Scholar] [CrossRef]
- Schilling, J.; Freier, K.P.; Hertig, E.; Scheffran, J. Climate Change, Vulnerability and Adaptation in North Africa with Focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- Kalinin, V.V.; Kazak, A.V. Methods of Measuring Electric Conductivity of Surface Natural Water: Experimental Results. Moscow Univ. Geol. Bull. 2008, 63, 178–184. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality [Electronic Resource]: Incorporating 1st and 2nd Addenda, Vol.1, Recommendations, 3rd ed.; World Health Organization: Geneva, Switzerland, 2008; ISBN 978-92-4-154761-1. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Waters; Forgotten Books: London, UK, 2018. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-415-36421-8. [Google Scholar]
- Drever, J.I. The Geochemistry of Natural Waters, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; ISBN 978-0-13-351396-7. [Google Scholar]
- Hounslow, A.W. Water Quality Data: Analysis and Interpretation, 1st ed.; Taylor & Francis Group: Bosa Roca, FL, USA, 1995; ISBN 978-0-87371-676-5. [Google Scholar]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; U.S. Department of the Interior: Washington, DC, USA, 1959.
- Alemu, C.M.; Aycheh, Y.F.; Angualie, G.S.; Engidayehu, S.S. Modeling on Comprehensive Evaluation of Groundwater Quality Status Using Geographic Information System (GIS) and Water Quality Index (WQI): A Case Study of Bahir Dar City, Amhara, Ethiopia. Water Pract. Technol. 2024, 19, 1084–1098. [Google Scholar] [CrossRef]
- Caloiero, T.; Pellicone, G.; Modica, G.; Guagliardi, I. Comparative Analysis of Different Spatial Interpolation Methods Applied to Monthly Rainfall as Support for Landscape Management. Appl. Sci. 2021, 11, 9566. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Q.; Fu, D.; Guo, S.; Liu, P.; Zeng, Y. Comparison of Spatial Interpolation Methods for the Estimation of Precipitation Patterns at Different Time Scales to Improve the Accuracy of Discharge Simulations. Hydrol. Res. 2020, 51, 583–601. [Google Scholar] [CrossRef]
- Scavia, D.; Field, J.C.; Boesch, D.F.; Buddemeier, R.W.; Burkett, V.; Cayan, D.R.; Fogarty, M.; Harwell, M.A.; Howarth, R.W.; Mason, C.; et al. Climate Change Impacts on U.S. Coastal and Marine Ecosystems. Estuaries 2002, 25, 149–164. [Google Scholar] [CrossRef]
- Igaz, D.; Šinka, K.; Varga, P.; Vrbičanová, G.; Aydın, E.; Tárník, A. The Evaluation of the Accuracy of Interpolation Methods in Crafting Maps of Physical and Hydro-Physical Soil Properties. Water 2021, 13, 212. [Google Scholar] [CrossRef]
- Tan, Q.; Xu, X. Comparative Analysis of Spatial Interpolation Methods: An Experimental Study. Sens. Transducers 2014, 165, 155–163. [Google Scholar]
- Wang, H.; Cao, H.; Yang, L. Machine Learning-Driven Multidomain Nanomaterial Design: From Bibliometric Analysis to Applications. ACS Appl. Nano Mater. 2024, 7, 26579–26600. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Leng, D.; Fang, S.; Yang, Y.; Du, Y. Machine Learning Applications in Nanomaterials: Recent Advances and Future Perspectives. Chem. Eng. J. 2024, 500, 156687. [Google Scholar] [CrossRef]
- Grace N, V.A.; Aldehim, G.; Alruwais, N.; T.N., P. Novel PCA-Driven Extreme Machine Learning for Comprehensive Modelling of Metropolitan Wastewater Treatment Systems. Desalination Water Treat. 2025, 321, 101037. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, W.; Chen, S.; Yao, R.; Yang, C.; Zhang, X.; Li, J.; Wang, Y.; Zhang, Y. Machine Learning Approaches to Identify Hydrochemical Processes and Predict Drinking Water Quality for Groundwater Environment in a Metropolis. J. Hydrol. Reg. Stud. 2025, 58, 102227. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Bafrouei, H.B.; Vazirian, M. Insight into Groundwater Level Prediction with Feature Effectiveness: Comparison of Machine Learning and Numerical Methods. Hydrol. Res. 2024, 56, 74–92. [Google Scholar] [CrossRef]
- Albuquerque, A.; Scalize, P.S.; Ferreira, N.C.; Silva, F. Multi-Criteria Analysis for Site Selection for the Reuse of Reclaimed Water and Biosolids. Rev. Ambient. Água 2015, 10, 22–34. [Google Scholar] [CrossRef]
- Teixeira, J.; Chaminé, H.I.; Carvalho, J.M.; Pérez-Alberti, A.; Rocha, F. Hydrogeomorphological Mapping as a Tool in Groundwater Exploration. J. Maps 2013, 9, 263–273. [Google Scholar] [CrossRef]
- Aller, L.; Lehr, J.H.; Petty, R.; Bennett, T. DRASTIC: A Standardized System to Evaluate Groundwater Pollution Potential Using Hydrogeologic Setting. J. Geol. Soc. India 1987, 29, 23–37. [Google Scholar] [CrossRef]
- Al-Zabet, T. Evaluation of Aquifer Vulnerability to Contamination Potential Using the DRASTIC Method. Env. Geol. 2002, 43, 203–208. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, Y.; Ran, L.; Chen, M.; Zou, J.; Fan, Z.; Fu, Y. Sources and Transformation of Nitrate in Shallow Groundwater in the Three Gorges Reservoir Area: Hydrogeochemistry and Isotopes. Water 2024, 16, 3299. [Google Scholar] [CrossRef]
- Al-Aizari, H.S.; Aslaou, F.; Al-Aizari, A.R.; Al-Odayni, A.-B.; Al-Aizari, A.-J.M. Evaluation of Groundwater Quality and Contamination Using the Groundwater Pollution Index (GPI), Nitrate Pollution Index (NPI), and GIS. Water 2023, 15, 3701. [Google Scholar] [CrossRef]
- Zaryab, A.; Farahmand, A.; Jafari, Z.; Ali, S.; Alijani, F.; Nassery, H.R. Geochemical Evolution of Spring Waters in Carbonate Dominated Aquifer in Upper Shirin Tagab Sub-Basin, Northern Afghanistan. Groundw. Sustain. Dev. 2024, 25, 101102. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, A.; Gao, L.; Wang, Z.; Hu, X.; Li, Y.; Zhang, F.; Ma, C. Cation Exchange and Leakage as Dominant Processes in Controlling Salinity and Strontium in Sandy and Argillaceous Coastal Aquifer: Insights from Hydrochemistry and Multi-Isotopes. J. Hydrol. 2024, 638, 131529. [Google Scholar] [CrossRef]
- Boualem, B.; Egbueri, J.C. Graphical, Statistical and Index-Based Techniques Integrated for Identifying the Hydrochemical Fingerprints and Groundwater Quality of In Salah, Algerian Sahara. Environ. Geochem. Health 2024, 46, 158. [Google Scholar] [CrossRef]
- Liu, N.; Chen, M.; Gao, D.; Wu, Y.; Wang, X. Identification of Hydrogeochemical Processes in Shallow Groundwater Using Multivariate Statistical Analysis and Inverse Geochemical Modeling. Environ. Monit. Assess. 2025, 197, 135. [Google Scholar] [CrossRef]
- Zheng, H.; Mao, X.; Peng, H.; Cai, W.; Yuan, Y.; Zha, X.; Zhao, Z.; Liu, J. The Impacts of Evaporites on the Hydrogeochemical Processes of Brackish Groundwater in the Huangshui River Basin, Northwest China. Hydrol. Process. 2024, 38, e70041. [Google Scholar] [CrossRef]
- Wijerathne, D.; Samarasekara, R.S.M.; Satanarachchi, N.; Vithanage, M.; Lakmal, H.M.A. Evaluating the Environmental Impacts of Hard Coastal Engineering Structures on Groundwater Salinity and Salinity Intrusion: Insights from the Marawila Coastal Zone, Sri Lanka. Environ. Chall. 2025, 19, 101145. [Google Scholar] [CrossRef]
- Ait Lemkademe, A.; El Ghorfi, M.; Zouhri, L.; Heddoun, O.; Khalil, A.; Maacha, L. Origin and Salinization Processes of Groundwater in the Semi-Arid Area of Zagora Graben, Southeast Morocco. Water 2023, 15, 2172. [Google Scholar] [CrossRef]
- El Mountassir, O.; Bahir, M. The Assessment of the Groundwater Quality in the Coastal Aquifers of the Essaouira Basin, Southwestern Morocco, Using Hydrogeochemistry and Isotopic Signatures. Water 2023, 15, 1769. [Google Scholar] [CrossRef]
- Rivett, M.O.; Budimir, L.; Mannix, N.; Miller, A.V.M.; Addison, M.J.; Moyo, P.; Wanangwa, G.J.; Phiri, O.L.; Songola, C.E.; Nhlema, M.; et al. Responding to Salinity in a Rural African Alluvial Valley Aquifer System: To Boldly Go beyond the World of Hand-Pumped Groundwater Supply? Sci. Total Environ. 2019, 653, 1005–1024. [Google Scholar] [CrossRef] [PubMed]
- Mastrocicco, M.; Colombani, N. The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Verruijt, A. A Note on the Ghyben-Herzberg Formula. Int. Assoc. Sci. Hydrology. Bull. 1968, 13, 43–46. [Google Scholar] [CrossRef]
- Su, Q.; Kambale, R.D.; Tzeng, J.-H.; Amy, G.L.; Ladner, D.A.; Karthikeyan, R. The Growing Trend of Saltwater Intrusion and Its Impact on Coastal Agriculture: Challenges and Opportunities. Sci. Total Environ. 2025, 966, 178701. [Google Scholar] [CrossRef]
- Cherkaoui, T.-E.; El Hassani, A. Seismicity and Seismic Hazard in Morocco. Bull. L’institut Sci. 2012, 34, 45–55. [Google Scholar]
- Argamasilla, M.; Barberá, J.A.; Andreo, B. Factors Controlling Groundwater Salinization and Hydrogeochemical Processes in Coastal Aquifers from Southern Spain. Sci. Total Environ. 2017, 580, 50–68. [Google Scholar] [CrossRef]
- Ziani, D.; Boudoukha, A.; Boumazbeur, A.; Benaabidate, L.; Fehdi, C. Investigation of Groundwater Hydrochemical Characteristics Using the Multivariate Statistical Analysis in Ain Djacer Area, Eastern Algeria. Desalination Water Treat. 2016, 57, 26993–27002. [Google Scholar] [CrossRef]
- Moussaoui, Z.; Gentilucci, M.; Wederni, K.; Hidouri, N.; Hamedi, M.; Dhaoui, Z.; Hamed, Y. Hydrogeochemical and Stable Isotope Data of the Groundwater of a Multi-Aquifer System in the Maknessy Basin (Mediterranean Area, Central Tunisia). Hydrology 2023, 10, 32. [Google Scholar] [CrossRef]
- Bahir, M.; Ouazar, D.; Ouhamdouch, S. Hydrogeochemical Investigation and Groundwater Quality in Essaouira Region, Morocco. Mar. Freshw. Res. 2019, 70, 1317–1332. [Google Scholar] [CrossRef]
- Bahir, M.; Carreira, P.; Oliveira Da Silva, M.; Fernandes, P. Caractérisation Hydrodynamique, Hydrochimique et Isotopique Du Système Aquifère de Kourimat (Bassin d’Essaouira, Maroc). Estud. Geol. 2008, 64, 61–73. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: A Review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- UN-Water. World Water Development Report; UN-Water: New York, NY, USA, 2020. [Google Scholar]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The Processes and Global Significance of Aquifer Degradation. Phil. Trans. R. Soc. Lond. B 2003, 358, 1957–1972. [Google Scholar] [CrossRef] [PubMed]
- Gouahi, S.; Hssaisoune, M.; Qurtobi, M.; Nehmadou, M.; Bouaakaz, B.; Boudhair, H.; Bouchaou, L. Managed Aquifer Recharge in a Semi-Arid Basin: A Case Study from the Souss Aquifer, Morocco. In Managed Groundwater Recharge and Rainwater Harvesting; Saha, D., Villholth, K.G., Shamrukh, M., Eds.; Water Resources Development and Management; Springer Nature: Singapore, 2024; pp. 129–150. ISBN 978-981-99-8756-6. [Google Scholar]
- Plan National 2020-2050. Morocco.
- Margat, J.; van der Gun, J. Groundwater Around the World: A Geographic Synopsis; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-1-138-00034-6. [Google Scholar]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water Balance of Global Aquifers Revealed by Groundwater Footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Basraoui, N.; Ben-Tahar, R.; Basraoui, Y.; EL Guerrouj, B.; Chafi, A. Water Quality Assessment in the Moulouya Estuary (Northeastern Morocco): The Effect of Wastewater on Microbiological and Physicochemical Properties. Reg. Stud. Mar. Sci. 2024, 78, 103736. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.C.; Stonestrom, D.A.; Prudic, D.E.; Dennehy, K.F. Impact of Land Use and Land Cover Change on Groundwater Recharge and Quality in the Southwestern US. Glob. Change Biol. 2005, 11, 1577–1593. [Google Scholar] [CrossRef]
Chemical Parameter | Units | Minimum | Maximum | Mean | WHO Drinking Water Guidelines (2011) |
---|---|---|---|---|---|
pH | - | 6.69 | 7.89 | 7.27 | 6.5–8.5 |
E.C | (µS/cm) | 2741 | 4817 | 3877.31 | 500–1000 |
Ca2+ | (mg/L) | 9.14 | 123.4 | 41.30 | 200 |
Mg2+ | (mg/L) | 13.9 | 56.9 | 34.62 | 50 |
Na+ | (mg/L) | 4.32 | 360 | 130.06 | 200 |
K+ | (mg/L) | 1.55 | 98.1 | 26.82 | 200 |
HCO3− | (mg/L) | 87 | 594 | 359.15 | 500 |
Cl− | (mg/L) | 68.2 | 721 | 349.60 | 250 |
SO42− | (mg/L) | 17.6 | 94.5 | 40.93 | 250 |
NO3− | (mg/L) | 0.29 | 152.3 | 50.22 | 45 |
Parameter | Method | R2 (Cross-Validation) | RMSE |
---|---|---|---|
EC | IDW | 0.87 | 310 |
EC | Kriging | 0.84 | 340 |
NO3− | IDW | 0.79 | 18.4 |
NO3− | Kriging | 0.77 | 19.6 |
Cl− | IDW | 0.75 | 27.1 |
Cl− | Kriging | 0.81 | 19.2 |
Wells | pH | EC (µS cm−1) at 25 °C | Ca2+ (mg L−1) | Mg2+ (mg L−1) | Na+ (mg L−1) | K+ (mg L−1) | HCO3− (mg L−1) | Cl− (mg L−1) | SO42− (mg L−1) | NO3− (mg L−1) |
---|---|---|---|---|---|---|---|---|---|---|
Z1 | 7.01 | 2950 | 19.1 | 38.4 | 281.5 | 4.24 | 280 | 614 | 22.8 | 8.77 |
Z2 | 6.95 | 2988 | 47 | 39.8 | 194.3 | 5.12 | 354 | 355.8 | 37.9 | 17.16 |
Z3 | 7.15 | 2895 | 18.9 | 25.1 | 190.7 | 5.66 | 394 | 398.6 | 41.5 | 18.05 |
Z4 | 7.53 | 2741 | 12.8 | 30.1 | 215.9 | 7.14 | 469 | 480 | 55.6 | 16.55 |
Z5 | 7.59 | 3250 | 20.7 | 36.5 | 360 | 21.7 | 470 | 590 | 45.9 | 0.29 |
Z6 | 7.08 | 3189 | 16.8 | 40.6 | 211 | 23.9 | 510 | 482 | 37.4 | 2.55 |
Z7 | 6.88 | 3546 | 20.11 | 13.9 | 189 | 15.8 | 388 | 486 | 47.9 | 10.5 |
Z8 | 7.89 | 3015 | 14.8 | 19.8 | 265 | 17.9 | 452 | 510 | 44.6 | 5.14 |
Z9 | 6.69 | 3022 | 15.4 | 22.8 | 354 | 18.2 | 476 | 524 | 27.1 | 6.88 |
Z10 | 7.11 | 3210 | 19.1 | 18.4 | 248 | 4.24 | 482 | 617 | 20.2 | 8.77 |
Z11 | 7.4 | 3340 | 13.6 | 24.1 | 245.3 | 5.13 | 423 | 340 | 24.6 | 16.8 |
Z12 | 7.88 | 3250 | 14.56 | 17.8 | 136.8 | 8.9 | 500 | 403 | 44.8 | 20.1 |
Z13 | 7.88 | 2978 | 9.14 | 24.7 | 138.9 | 1.55 | 409 | 407 | 44.8 | 36.5 |
Z14 | 6.91 | 3215 | 17.8 | 14.9 | 245.3 | 11.2 | 416 | 433 | 25.9 | 17.2 |
Z15 | 6.94 | 3088 | 26.4 | 15.6 | 189 | 29.8 | 470 | 698 | 35.6 | 25.6 |
Z16 | 7.19 | 3214 | 24.8 | 20.7 | 153.8 | 35.4 | 397 | 655.4 | 33.7 | 40.1 |
Z17 | 7.3 | 3102 | 50.1 | 25.4 | 139.8 | 7.88 | 433 | 470 | 38.6 | 22.6 |
Z18 | 7.55 | 3076 | 19.8 | 35.6 | 140.1 | 15.9 | 400 | 536 | 42.8 | 36.5 |
Z19 | 7.19 | 3491 | 10.7 | 30.6 | 145.6 | 12.3 | 453 | 419 | 48.6 | 58.9 |
Z20 | 7.2 | 3150 | 15.4 | 33.9 | 149 | 15.8 | 400 | 549 | 46.9 | 51.8 |
Z21 | 6.88 | 4112 | 15.7 | 24.6 | 6.7 | 13.2 | 594 | 90.5 | 23.4 | 15.5 |
Z22 | 7.06 | 4013 | 12.3 | 21.7 | 5.44 | 17.6 | 546 | 88.4 | 36.7 | 23.9 |
Z23 | 7.4 | 4235 | 22.1 | 34.6 | 7.55 | 12.9 | 501 | 117 | 33.8 | 34.6 |
Z24 | 7.63 | 4002 | 18.9 | 29.1 | 8.26 | 16.9 | 546 | 96.3 | 40.8 | 26.4 |
Z25 | 7.8 | 4250 | 24.9 | 35 | 9.4 | 20 | 492 | 120 | 40 | 36 |
Z26 | 7.56 | 4310 | 22.7 | 30.7 | 8.55 | 14.6 | 479 | 115.4 | 37.6 | 29.8 |
Z27 | 7.05 | 4066 | 20.1 | 31.4 | 8.15 | 9.24 | 503 | 107 | 34.6 | 25.9 |
Z28 | 6.84 | 3954 | 17.9 | 34 | 4.6 | 13.8 | 574 | 109 | 32.6 | 19.6 |
Z29 | 7.09 | 4008 | 24.3 | 34.2 | 8.04 | 15.7 | 544 | 106 | 37.6 | 31.7 |
Z30 | 7.14 | 4090 | 19.6 | 18.4 | 11.8 | 16.4 | 498 | 96.8 | 37.8 | 32.4 |
Z31 | 6.94 | 4077 | 25.6 | 34.7 | 12.4 | 18 | 415 | 96.4 | 30.6 | 31.8 |
Z32 | 7.6 | 4255 | 21.7 | 34.9 | 9.6 | 16.7 | 433 | 118 | 26.8 | 35.2 |
Z33 | 7.13 | 4211 | 45.6 | 35.6 | 131.8 | 19.2 | 160 | 112 | 23.7 | 90.7 |
Z34 | 7.44 | 4356 | 70.1 | 46.5 | 118 | 36.8 | 180 | 544 | 29.7 | 74.3 |
Z35 | 7.18 | 4076 | 76.4 | 40.1 | 236.7 | 44.8 | 244 | 526 | 18.6 | 84.3 |
Z36 | 7.71 | 4263 | 70.2 | 49.3 | 186.4 | 36.9 | 213 | 648 | 55.6 | 112.5 |
Z37 | 6.98 | 4056 | 72.6 | 56.9 | 141.2 | 14.3 | 109 | 315 | 44.3 | 114.6 |
Z38 | 7.4 | 4122 | 70.4 | 51.2 | 116.4 | 45.3 | 173 | 681 | 31.6 | 132.6 |
Z39 | 7.44 | 4256 | 80.1 | 42.1 | 146 | 32.5 | 188 | 316 | 55.6 | 96.8 |
Z40 | 7.41 | 4521 | 65.8 | 49.9 | 156.7 | 29.3 | 326 | 278 | 27.5 | 88.6 |
Z41 | 7.8 | 4460 | 69.8 | 48.6 | 162.1 | 41.7 | 318 | 290 | 31.8 | 90.4 |
Z42 | 7.45 | 4311 | 66.9 | 45.7 | 265.8 | 51.2 | 379 | 315 | 17.6 | 91.4 |
Z43 | 7.84 | 4250 | 68.9 | 50.1 | 160.1 | 49.6 | 403 | 327 | 23.8 | 98.5 |
Z44 | 6.98 | 4002 | 64.1 | 46.7 | 41.2 | 39.8 | 369 | 279 | 19.7 | 99.3 |
Z45 | 7.12 | 4611 | 65.1 | 44.1 | 223 | 22.3 | 378 | 460 | 25.4 | 152.3 |
Z46 | 7.32 | 4325 | 76.5 | 39.7 | 246 | 77.8 | 400 | 655 | 36.4 | 123 |
Z47 | 6.98 | 4466 | 86.4 | 49.8 | 287 | 56.9 | 398 | 721 | 32.7 | 106 |
Z48 | 7.5 | 4817 | 102 | 46.2 | 148 | 69.5 | 367 | 708 | 44.9 | 98.5 |
Z49 | 7.39 | 4435 | 90.4 | 50.7 | 190.4 | 18.9 | 382 | 685 | 22.8 | 84.6 |
Z50 | 7.26 | 4274 | 77.8 | 47.9 | 188.6 | 86.9 | 309 | 415 | 37.1 | 99.4 |
Z51 | 7.24 | 4109 | 123.4 | 51.2 | 211.5 | 88.7 | 412 | 436 | 41.8 | 89.7 |
Z52 | 7.17 | 4026 | 84.5 | 55.2 | 194.2 | 98.1 | 419 | 386 | 39.1 | 87.6 |
Z53 | 7.02 | 3987 | 98.6 | 52.3 | 123.4 | 76 | 377 | 496 | 45.6 | 97.1 |
Z54 | 7.46 | 4386 | 94.5 | 47.9 | 166.5 | 74.9 | 346 | 401 | 54.6 | 102.5 |
Z55 | 6.88 | 4022 | 14.6 | 17.4 | 4.65 | 11.4 | 87 | 68.2 | 70.4 | 7.54 |
Z56 | 7.12 | 3956 | 18.6 | 22.1 | 4.32 | 10.4 | 96 | 115 | 84.6 | 6.45 |
Z57 | 7.21 | 4076 | 18.4 | 20.4 | 4.69 | 14.2 | 106 | 76.9 | 74.1 | 4.56 |
Z58 | 7.13 | 4123 | 20.1 | 23.4 | 5.63 | 14.7 | 115 | 125.4 | 94.5 | 9.64 |
F1 | F2 | F3 | F4 | F5 | F6 | |
---|---|---|---|---|---|---|
Eigenvalue | 4.069 | 2.118 | 1.323 | 1.009 | 0.579 | 0.279 |
Variability (%) | 40.692 | 21.180 | 13.228 | 10.089 | 5.793 | 2.790 |
Cumulative % | 40.692 | 61.872 | 75.100 | 85.189 | 90.982 | 93.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Alaoui, A.; Haidara, I.; Bouya, N.; Moussaid, B.; Faqeih, K.Y.; Alamri, S.M.; Alamery, E.R.; AlAmri, A.R.; Moussaid, Y.; Ait Haddou, M. Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment. Sustainability 2025, 17, 5392. https://doi.org/10.3390/su17125392
El Alaoui A, Haidara I, Bouya N, Moussaid B, Faqeih KY, Alamri SM, Alamery ER, AlAmri AR, Moussaid Y, Ait Haddou M. Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment. Sustainability. 2025; 17(12):5392. https://doi.org/10.3390/su17125392
Chicago/Turabian StyleEl Alaoui, Abdessamia, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid, and Mohamed Ait Haddou. 2025. "Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment" Sustainability 17, no. 12: 5392. https://doi.org/10.3390/su17125392
APA StyleEl Alaoui, A., Haidara, I., Bouya, N., Moussaid, B., Faqeih, K. Y., Alamri, S. M., Alamery, E. R., AlAmri, A. R., Moussaid, Y., & Ait Haddou, M. (2025). Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment. Sustainability, 17(12), 5392. https://doi.org/10.3390/su17125392