Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (588)

Search Parameters:
Keywords = maintenance hosts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4119 KiB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Viewed by 43
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

14 pages, 2268 KiB  
Article
CD1d-Restricted NKT Cells Promote Central Memory CD8+ T Cell Formation via an IL-15-pSTAT5-Eomes Axis in a Pathogen-Exposed Environment
by Yingyu Qin, Yilin Qian, Jingli Zhang and Shengqiu Liu
Int. J. Mol. Sci. 2025, 26(15), 7272; https://doi.org/10.3390/ijms26157272 - 28 Jul 2025
Viewed by 232
Abstract
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized [...] Read more.
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized by restricted microbial exposure, may limit our understanding of physiologically relevant immune memory development. This study reveals that CD1d-restricted NKT cells regulate central memory T cell (TCM) generation exclusively in a microbe-rich (“dirty”) environment. Under non-SPF housing, CD1d+/ and Ja18+/ mice exhibited enhanced TCM formation compared to NKT-deficient controls (CD1d//Ja18/), demonstrating that microbial experience is required for NKT-mediated TCM regulation. Mechanistically, CD1d-restricted NKT cells increased IL-15Rα expression on CD4+ T cells in CD1d+/ mice, potentiating IL-15 trans-presentation and thereby activating the IL-15/pSTAT5/Eomes axis critical for TCM maintenance. Functional validation through adoptive transfer of CFSE-labeled OT-1 memory cells revealed an NKT cell-dependent survival advantage in CD1d+/ hosts. This provides direct evidence that microbiota-experienced niches shape immune memory. Collectively, these findings establish CD1d-restricted NKT cells as physiological regulators of TCM generation and suggest their potential utility as vaccine adjuvants to enhance protective immunity. Full article
Show Figures

Figure 1

18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 435
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

22 pages, 4596 KiB  
Article
Gut Microbiota Dysbiosis Remodels the Lysine Acetylome of the Mouse Cecum in Early Life
by Yubing Zeng, Jinying Shen, Xuejia He, Fan Liu, Yi Wang, Yi Wang, Yanan Qiao, Pei Pei and Shan Wang
Biology 2025, 14(8), 917; https://doi.org/10.3390/biology14080917 - 23 Jul 2025
Viewed by 253
Abstract
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. [...] Read more.
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. However, there are currently no reports on how gut microbiota dysbiosis affects host physiology in early life through global lysine acetylation. In this study, we constructed a mouse model of gut microbiota dysbiosis using antibiotic cocktail therapy (ABX). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the cecum, we analyzed the cecal lysine acetylome and proteome. As a result, we profiled the lysine acetylation landscape of the cecum and identified a total of 16,579 acetylation sites from 5218 proteins. Differentially acetylated proteins (DAPs) are involved in various metabolic pathways, including the citrate cycle (TCA cycle), butanoate metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis. Moreover, both glycolysis and gluconeogenesis are significantly enriched in acetylation and protein modifications. This study aimed to provide valuable insights into the epigenetic molecular mechanisms associated with host protein acetylation as influenced by early-life gut microbiota disturbances. It reveals potential therapeutic targets for metabolic disorders linked to gut microbiota dysbiosis, thereby establishing a theoretical foundation for the clinical prevention and treatment of diseases arising from such dysbiosis. Full article
Show Figures

Figure 1

25 pages, 3050 KiB  
Review
REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer
by Jamila Faivre, Hala Shalhoub, Tung Son Nguyen, Haishen Xie and Nicolas Moniaux
Cancers 2025, 17(14), 2395; https://doi.org/10.3390/cancers17142395 - 19 Jul 2025
Viewed by 424
Abstract
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. [...] Read more.
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. It also functions as a potent non-enzymatic antioxidant, protecting tissues from oxidative stress. REG3A expression is tightly regulated by inflammatory stimuli and is robustly induced during immune activation, where it limits microbial invasion, dampens tissue injury, and promotes epithelial repair. Beyond its antimicrobial and immunomodulatory properties, REG3A contributes to the resolution of inflammation and the maintenance of tissue homeostasis. However, its role in cancer is highly context-dependent. In some tumor types, REG3A fosters malignant progression by enhancing cell survival, proliferation, and invasiveness. In others, it acts as a tumor suppressor, inhibiting growth and metastatic potential. These opposing effects are likely dictated by a combination of factors, including the tissue of origin, the composition and dynamics of the tumor microenvironment, and the stage of disease progression. Additionally, the secreted nature of REG3A implies both local and systemic effects, further modulated by organ-specific physiology. Experimental variability may also reflect differences in methodologies, analytical tools, and model systems used. This review synthesizes current knowledge on the pleiotropic functions of REG3A, emphasizing its roles in epithelial defense, immune regulation, redox homeostasis, and oncogenesis. A deeper understanding of REG3A’s pleiotropic effects could open up new therapeutic avenues in both inflammatory disorders and cancer. Full article
(This article belongs to the Special Issue Lectins in Cancer)
Show Figures

Figure 1

17 pages, 1694 KiB  
Article
Gut Microbiota Shifts After a Weight Loss Program in Adults with Obesity: The WLM3P Study
by Vanessa Pereira, Amanda Cuevas-Sierra, Victor de la O, Rita Salvado, Inês Barreiros-Mota, Inês Castela, Alexandra Camelo, Inês Brandão, Christophe Espírito Santo, Ana Faria, Conceição Calhau, Marta P. Silvestre and André Moreira-Rosário
Nutrients 2025, 17(14), 2360; https://doi.org/10.3390/nu17142360 - 18 Jul 2025
Viewed by 436
Abstract
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss [...] Read more.
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss outcomes and long-term health. Objective: This study investigated the effects of the multicomponent Weight Loss Maintenance 3 Phases Program (WLM3P), which integrates caloric restriction, a high-protein low-carbohydrate diet, time-restricted eating (10h TRE), dietary supplementation (prebiotics and phytochemicals), and digital app-based support on gut microbiota composition compared to a standard low-carbohydrate diet (LCD) in adults with obesity. The analysis focused exclusively on the 6-month weight loss period corresponding to Phases 1 and 2 of the WLM3P intervention. Methods: In this sub-analysis of a randomized controlled trial (ClinicalTrials.gov Identifier: NCT04192357), 58 adults with obesity (BMI 30.0–39.9 kg/m2) were randomized to the WLM3P (n = 29) or LCD (n = 29) groups. Stool samples were collected at baseline and 6 months for 16S rRNA sequencing. Alpha and beta diversity were assessed, and genus-level differential abundance was determined using EdgeR and LEfSe. Associations between microbial taxa and clinical outcomes were evaluated using regression models. Results: After 6-month, the WLM3P group showed a significant increase in alpha diversity (p = 0.03) and a significant change in beta diversity (p < 0.01), while no significant changes were observed in the LCD group. Differential abundance analysis revealed specific microbial signatures in WLM3P participants, including increased levels of Faecalibacterium. Notably, higher Faecalibacterium abundance was associated with greater reductions in fat mass (kg, %) and visceral adiposity (cm2) in the WLM3P group compared to LCD (p < 0.01). Conclusions: These findings suggest a potential microbiota-mediated mechanism in weight loss, where Faecalibacterium may enhance fat reduction effectiveness in the context of the WLM3P intervention. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

18 pages, 6166 KiB  
Article
Conserved Yet Divergent Smc5/6 Complex Degradation by Mammalian Hepatitis B Virus X Proteins
by Maya Shofa, Yuri V Fukushima and Akatsuki Saito
Int. J. Mol. Sci. 2025, 26(14), 6786; https://doi.org/10.3390/ijms26146786 - 15 Jul 2025
Viewed by 409
Abstract
Hepatitis B virus (HBV), belonging to the genus Orthohepadnavirus, can cause chronic hepatitis and hepatocarcinoma in humans. HBV ensures optimal replication by encoding X, a multifunctional protein responsible for degrading the structural maintenance of chromosomes (Smc) 5/6 complex, an anti-HBV factor in [...] Read more.
Hepatitis B virus (HBV), belonging to the genus Orthohepadnavirus, can cause chronic hepatitis and hepatocarcinoma in humans. HBV ensures optimal replication by encoding X, a multifunctional protein responsible for degrading the structural maintenance of chromosomes (Smc) 5/6 complex, an anti-HBV factor in hepatocytes. Previous studies suggest that degradation of the Smc5/6 complex is conserved among viruses from the genus Orthohepadnavirus. Recently, a novel hepadnavirus in cats, domestic cat HBV (DCHBV), has been identified as genetically close to HBV. However, it remains unclear whether the DCHBV X protein possesses similar Smc5/6 complex-degrading properties. Here, we investigated the degradation of the Smc5/6 complex by X proteins from viruses of the genus Orthohepadnavirus, including DCHBV, in cells derived from primates and cats. We found that the DCHBV X protein degraded the Smc5/6 complex in the cells of several host species, and the degree of its anti-Smc5/6 complex activity differed depending on the host species. Furthermore, the DCHBV X protein degraded Smc6 independently of DNA-binding protein 1 (DDB1), which is a critical host factor for HBV X-mediated Smc6 degradation. Our findings highlight the conserved yet divergent degradation machinery for Smc6 of mammalian hepatitis B virus X proteins. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Japan)
Show Figures

Figure 1

17 pages, 1258 KiB  
Review
Design and Applications of Extracellular Matrix Scaffolds in Tissue Engineering and Regeneration
by Sylvia Mangani, Marios Vetoulas, Katerina Mineschou, Konstantinos Spanopoulos, Maria dM. Vivanco, Zoi Piperigkou and Nikos K. Karamanos
Cells 2025, 14(14), 1076; https://doi.org/10.3390/cells14141076 - 15 Jul 2025
Viewed by 1199
Abstract
Tissue engineering is a growing field with multidisciplinary players in cell biology, engineering, and medicine, aiming to maintain, restore, or enhance functions of tissues and organs. The extracellular matrix (ECM) plays fundamental roles in tissue development, maintenance, and repair, providing not only structural [...] Read more.
Tissue engineering is a growing field with multidisciplinary players in cell biology, engineering, and medicine, aiming to maintain, restore, or enhance functions of tissues and organs. The extracellular matrix (ECM) plays fundamental roles in tissue development, maintenance, and repair, providing not only structural support, but also critical biochemical and biomechanical cues that regulate cell behavior and signaling. Although its specific composition varies across different tissue types and developmental stages, matrix molecules influence various cell functional properties in every tissue. Given the importance of ECM in morphogenesis, tissue homeostasis, and regeneration, ECM-based bioscaffolds, developed through tissue engineering approaches, have emerged as pivotal tools for recreating the native cellular microenvironment. The aim of this study is to present the main categories of these scaffolds (i.e., natural, synthetic, and hybrid), major fabrication techniques (i.e., tissue decellularization and multidimensional bioprinting), while highlighting the advantages and disadvantages of each category, focusing on biological activity and mechanical performance. Scaffold properties, such as mechanical strength, elasticity, biocompatibility, and biodegradability are essential to their function and integration into host tissues. Applications of ECM-based bioscaffolds span a range of engineering and regenerative strategies, including cartilage, bone, cardiac tissue engineering, and skin wound healing. Despite promising advances, challenges remain in standardization, scalability, and immune response modulation, with future directions directed towards improving ECM-mimetic platforms. Full article
(This article belongs to the Special Issue Role of Extracellular Matrix in Cancer and Disease)
Show Figures

Figure 1

29 pages, 5679 KiB  
Article
Blood-Epigenetic Biomarker Associations with Tumor Immunophenotype in Patients with Urothelial Carcinoma from JAVELIN Bladder 100
by Thomas Powles, Srikala S. Sridhar, Joaquim Bellmunt, Cora N. Sternberg, Petros Grivas, Ewan Hunter, Matthew Salter, Ryan Powell, Ann Dring, Jayne Green, Alexandre Akoulitchev, Roy Ronen, Janusz Dutkowski, Robert Amezquita, Chao-Hui Huang, Diane Fernandez, Robbin Nameki, Keith A. Ching, Jie Pu, Michelle Saul, Shibing Deng, Alessandra di Pietro and Craig B. Davisadd Show full author list remove Hide full author list
Cancers 2025, 17(14), 2332; https://doi.org/10.3390/cancers17142332 - 14 Jul 2025
Viewed by 651
Abstract
Background/Objectives: Response to immune checkpoint inhibitors (ICIs) is associated with several biological pathways, including tumor immunogenicity and antitumor immunity. Identifying host factors involved in these pathways may guide personalized ICI treatment. Methods: We describe the application of chromatin conformation assays to blood from [...] Read more.
Background/Objectives: Response to immune checkpoint inhibitors (ICIs) is associated with several biological pathways, including tumor immunogenicity and antitumor immunity. Identifying host factors involved in these pathways may guide personalized ICI treatment. Methods: We describe the application of chromatin conformation assays to blood from patients with advanced urothelial carcinoma from the phase 3 JAVELIN Bladder 100 trial (NCT02603432). This trial demonstrated a significant survival benefit with avelumab maintenance plus best supportive care (BSC) vs. BSC alone following non-progression with platinum-based chemotherapy as first-line therapy. Blood-based chromatin conformation markers (CCMs) were screened for associations with high/low immune effector gene expression in tumors and for interactions with outcomes and tumor mutation burden. Results: Candidate CCMs included genes involved in several immune response pathways, such as POU2F2, which encodes a transcription factor that regulates B-cell maturation. Conclusions: Our findings suggest that polygenic host factors may affect response to ICIs and support further investigation of chromatin conformation assays. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

23 pages, 1088 KiB  
Review
The Role of Type I Interferons in Tuberculosis and in Tuberculosis-Risk-Associated Comorbidities
by Florence Mutua, Ruey-Chyi Su, Terry Blake Ball and Sandra Kiazyk
Infect. Dis. Rep. 2025, 17(4), 81; https://doi.org/10.3390/idr17040081 - 8 Jul 2025
Viewed by 352
Abstract
The identification of a type I interferon-induced transcriptomic signature in active tuberculosis suggests a potential role for these interferons in the pathogenesis of tuberculosis. Comorbidities such as human immunodeficiency virus, diabetes, systemic lupus erythematosus, end-stage renal disease, and coronavirus disease are epidemiologically linked [...] Read more.
The identification of a type I interferon-induced transcriptomic signature in active tuberculosis suggests a potential role for these interferons in the pathogenesis of tuberculosis. Comorbidities such as human immunodeficiency virus, diabetes, systemic lupus erythematosus, end-stage renal disease, and coronavirus disease are epidemiologically linked to an increased risk for reactivation of latent tuberculosis infection. Notably, type I interferons are also implicated in the pathogenesis of these conditions, with a recognizable type I interferon transcriptomic signature. The mechanisms by which type I interferons in tuberculosis-risk-associated comorbidities may drive the progression of tuberculosis or maintenance of latent infection however remain largely unknown. This review summarizes the existing literature on the increased association between type I interferons, focusing on interferon-α and -β, and the heightened risk of tuberculosis reactivation. It also underscores the similarities in the immunopathogenesis of these comorbidities. A better understanding of these mechanisms is essential to guide the development of host-directed interferon therapies and improving diagnostic biomarkers in M. tuberculosis infection. Full article
Show Figures

Figure 1

19 pages, 3948 KiB  
Article
Equine Parvovirus-Hepatitis Population Dynamics in a Single Horse over 16 Years
by Alexandra J. Scupham
Viruses 2025, 17(7), 947; https://doi.org/10.3390/v17070947 - 4 Jul 2025
Viewed by 450
Abstract
Many viruses mutate rapidly to adapt to host defenses, and for some of these viruses, the result is long-term infection in individual hosts. The work described here examines the infection and long-term maintenance of a newly identified virus, equine parvovirus-hepatitis (EqPV-H), in an [...] Read more.
Many viruses mutate rapidly to adapt to host defenses, and for some of these viruses, the result is long-term infection in individual hosts. The work described here examines the infection and long-term maintenance of a newly identified virus, equine parvovirus-hepatitis (EqPV-H), in an individual horse. This description is possible because of a hypervariable region in the capsid gene; sequence variants were tracked by high-throughput sequencing of serum samples taken over a 16-year period. The data support the hypothesis that EqPV-H infection resulted in a sequence variant bottleneck. The continuing infection evolved into a complex viral population showing a pattern of emergence, dominance, and recession with replacement. This is the first temporal description of the capsid gene evolution of EqPV-H in a single animal. Full article
Show Figures

Figure 1

34 pages, 981 KiB  
Review
Applying CRISPR Technologies for the Treatment of Human Herpesvirus Infections: A Scoping Review
by Chloë Hanssens and Jolien Van Cleemput
Pathogens 2025, 14(7), 654; https://doi.org/10.3390/pathogens14070654 - 1 Jul 2025
Viewed by 1123
Abstract
Background: Human herpesviruses are double-stranded DNA viruses of which eight types have been identified at present. Herpesvirus infection comprises an active lytic phase and a lifelong latency phase with the possibility of reactivation. These infections are highly prevalent worldwide and can lead to [...] Read more.
Background: Human herpesviruses are double-stranded DNA viruses of which eight types have been identified at present. Herpesvirus infection comprises an active lytic phase and a lifelong latency phase with the possibility of reactivation. These infections are highly prevalent worldwide and can lead to a broad spectrum of clinical manifestations, ranging from mild symptoms to severe disease, particularly in immunocompromised individuals. Clustered regularly interspaced palindromic repeats (CRISPR)-based therapy is an interesting alternative to current antiviral drugs, which fail to cure latent infections and are increasingly challenged by viral resistance. Objective: This scoping review aimed to summarize the current state of CRISPR-based antiviral strategies against herpesvirus infections, highlighting the underlying mechanisms, study design and outcomes, and challenges for clinical implementation. Design: A literature search was conducted in the databases PubMed and Web of Science, using both a general and an individual approach for each herpesvirus. Results: This scoping review identified five main mechanisms of CRISPR-based antiviral therapy against herpesvirus infections in vitro and/or in vivo. First, CRISPR systems can inhibit the active lytic replication cycle upon targeting viral lytic genes or host genes. Second, CRISPR technologies can remove latent viral genomes from infected cells by targeting viral genes essential for latency maintenance or destabilizing the viral genome. Third, reactivation of multiple latent herpesvirus infections can be inhibited by CRISPR-Cas-mediated editing of lytic viral genes, preventing a flare-up of clinical symptoms and reducing the risk of viral transmission. Fourth, CRISPR systems can purposefully induce viral reactivation to enhance recognition by the host immune system or improve the efficacy of existing antiviral therapies. Fifth, CRISPR technology can be applied to develop or enhance the efficiency of cellular immunotherapy. Conclusions: Multiple studies demonstrate the potential of CRISPR-based antiviral strategies to target herpesvirus infections through various mechanisms in vitro and in vivo. However, aspects regarding the delivery and biosafety of CRISPR systems, along with the time window for treatment, require further investigation before broad clinical implementation can be realized. Full article
(This article belongs to the Special Issue Herpesvirus Latency and Reactivation)
Show Figures

Figure 1

56 pages, 750 KiB  
Review
The Role of Hematophagous Arthropods, Other than Mosquitoes and Ticks, in Arbovirus Transmission
by Bradley J. Blitvich
Viruses 2025, 17(7), 932; https://doi.org/10.3390/v17070932 - 30 Jun 2025
Viewed by 416
Abstract
Arthropod-borne viruses (arboviruses) significantly impact human, domestic animal, and wildlife health. While most arboviruses are transmitted to vertebrate hosts by blood-feeding mosquitoes and ticks, a growing body of evidence highlights the importance of other hematophagous arthropods in arboviral transmission. These lesser-known vectors, while [...] Read more.
Arthropod-borne viruses (arboviruses) significantly impact human, domestic animal, and wildlife health. While most arboviruses are transmitted to vertebrate hosts by blood-feeding mosquitoes and ticks, a growing body of evidence highlights the importance of other hematophagous arthropods in arboviral transmission. These lesser-known vectors, while often overlooked, can play crucial roles in the maintenance, amplification, and spread of arboviruses. This review summarizes our understanding of hematophagous arthropods, other than mosquitoes and ticks, in arboviral transmission, as well as their associations with non-arboviral viruses. Thirteen arthropod groups are discussed: bat flies, blackflies, cimicids (bat bugs, bed bugs, and bird bugs), Culicoides midges, fleas, hippoboscid flies, lice, mites, muscid flies (including horn flies and stable flies), phlebotomine sandflies, tabanids (including deer flies and horse flies), triatomines, and tsetse flies. Some of these arthropods are regarded as known or likely arboviral vectors, while others have no known role in arbovirus transmission. Particular attention is given to species associated with arboviruses of medical and veterinary significance. As the burden of arboviruses continues to grow, it is critical not to overlook the potential contribution of these lesser-known vectors. Full article
(This article belongs to the Section Invertebrate Viruses)
20 pages, 3618 KiB  
Review
Superoxide Dismutases in Immune Regulation and Infectious Diseases
by Tong Liu, Jiajin Shang and Qijun Chen
Antioxidants 2025, 14(7), 809; https://doi.org/10.3390/antiox14070809 - 30 Jun 2025
Viewed by 575
Abstract
Superoxide dismutases (SODs) maintain redox homeostasis through the catalytic dismutation of superoxide anions, thereby affording protection to organisms against oxidative damage. The SOD family, encompassing Cu/Zn-SOD, Mn-SOD, Fe-SOD, and Ni-SOD, exhibits structural diversity and constitutes a multilevel antioxidant defense system with discrete subcellular [...] Read more.
Superoxide dismutases (SODs) maintain redox homeostasis through the catalytic dismutation of superoxide anions, thereby affording protection to organisms against oxidative damage. The SOD family, encompassing Cu/Zn-SOD, Mn-SOD, Fe-SOD, and Ni-SOD, exhibits structural diversity and constitutes a multilevel antioxidant defense system with discrete subcellular localizations. Beyond their antioxidant functions, SODs also function as immunomodulatory proteins, regulating the maturation, proliferation, and differentiation of immune cells. They further fulfill a crucial role in host responses to parasitic infections. The current review synthesizes and critically evaluates extant research to comprehensively delineate the molecular architecture of SODs, their intricate post-translational modification (PTM) networks, and their dual regulatory mechanisms at the interface of immunomodulation and pathological processes. This review establishes a critical framework for elucidating the biological significance of redox homeostasis maintenance. Full article
(This article belongs to the Special Issue Advances in Oxidoreductases)
Show Figures

Figure 1

15 pages, 2390 KiB  
Article
Impact of Ants on the Order Composition of Canopy Arthropod Communities in Temperate and Tropical Forests
by Andreas Floren and Tobias Müller
Animals 2025, 15(13), 1914; https://doi.org/10.3390/ani15131914 - 28 Jun 2025
Viewed by 332
Abstract
Ants are key drivers of biodiversity in both tropical and temperate forests, though the underlying mechanisms of this remain debated. In tropical lowland rainforests, ants dominate the canopy as opportunistic predators, shaping arthropod abundance and community structure. By contrast, few arboreal ant species [...] Read more.
Ants are key drivers of biodiversity in both tropical and temperate forests, though the underlying mechanisms of this remain debated. In tropical lowland rainforests, ants dominate the canopy as opportunistic predators, shaping arthropod abundance and community structure. By contrast, few arboreal ant species exist in temperate forests due to climatic constraints, and predation pressure is generally low. This changes when ground-nesting Formica species enter the canopy to forage. Using insecticidal knockdown, we collected arthropod communities from trees with high and low ant abundance in both tropical and temperate forests and in different seasons. We found consistently higher arthropod abundances on trees with strong ant dominance, including preferred prey taxa such as Diptera, Psocoptera, and Lepidoptera. In temperate forests, high arthropod densities may be driven by aphid-produced honeydew, whereas in tropical rainforests, the absence of large hemipteran aggregations suggests that other mechanisms are involved. Consequently, this mechanism fails to explain high arthropod abundance in tropical primary forests. In contrast, secondary tropical forests host structurally and compositionally altered ant communities, resulting in reduced predation pressure and a marked increase in the abundance of individual species, including potential pest species. These findings suggest that biodiversity maintenance in the canopy depends on intact, diverse ant communities. Recolonization from nearby primary forests is essential for recovery, yet even after five decades, secondary forests remain ecologically distinct, rendering full restoration to primary forest conditions unlikely within a management-relevant timeframe. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

Back to TopTop