Superoxide Dismutases in Immune Regulation and Infectious Diseases
Abstract
1. Introduction
2. SOD Structure and Antioxidant Properties
3. SOD Post-Translational Modifications
3.1. Types of SOD Post-Translational Modifications
3.2. Biological Significance of SOD Post-Translational Modifications
4. Immunomodulatory Function of SODs
5. The Role of SOD in the Pathogenesis of Inflammatory Diseases
6. The Dual Role of SOD in the Pathogenesis of Parasitic Diseases
6.1. Parasite-Derived SOD
6.2. Host-Derived SODs
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogdan, C.; Röllinghoff, M.; Diefenbach, A. Reactive Oxygen and Reactive Nitrogen Intermediates in Innate and Specific Immunity. Curr. Opin. Immunol. 2000, 12, 64–76. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef]
- Laddha, N.C.; Dwivedi, M.; Mansuri, M.S.; Gani, A.R.; Ansarullah, M.; Ramachandran, A.V.; Dalai, S.; Begum, R. Vitiligo: Interplay between Oxidative Stress and Immune System. Exp. Dermatol. 2013, 22, 245–250. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Banks, C.J.; Andersen, J.L. Mechanisms of SOD1 Regulation by Post-Translational Modifications. Redox Biol. 2019, 26, 101270. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-C.; Liang, J.-Z.; Li, C.; He, Z.-X.; Yuan, H.-Y.; Huang, B.-Y.; Liu, X.-L.; Tang, B.; Pang, D.-W.; Du, H.-N.; et al. Pathological Hydrogen Peroxide Triggers the Fibrillization of Wild-Type SOD1 via Sulfenic Acid Modification of Cys-111. Cell Death Dis. 2018, 9, 67. [Google Scholar] [CrossRef]
- Yamakura, F.; Kawasaki, H. Post-Translational Modifications of Superoxide Dismutase. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2010, 1804, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.S.A.; Antonyuk, S.V.; Hasnain, S.S. The Biophysics of Superoxide Dismutase-1 and Amyotrophic Lateral Sclerosis. Quart. Rev. Biophys. 2019, 52, e12. [Google Scholar] [CrossRef]
- Agrahari, G.; Sah, S.K.; Bang, C.H.; Kim, Y.H.; Kim, T.-Y. Superoxide Dismutase 3 Controls the Activation and Differentiation of CD4+T Cells. Front. Immunol. 2021, 12, 628117. [Google Scholar] [CrossRef]
- Calvani, N.E.D.; De Marco Verissimo, C.; Jewhurst, H.L.; Cwiklinski, K.; Flaus, A.; Dalton, J.P. Two Distinct Superoxidase Dismutases (SOD) Secreted by the Helminth Parasite Fasciola Hepatica Play Roles in Defence against Metabolic and Host Immune Cell-Derived Reactive Oxygen Species (ROS) during Growth and Development. Antioxidants 2022, 11, 1968. [Google Scholar] [CrossRef]
- Noor, R.; Mittal, S.; Iqbal, J. Superoxide Dismutase–Applications and Relevance to Human Diseases. Med. Sci. Monit. 2002, 8, RA210-5. [Google Scholar] [PubMed]
- Nguyen, N.H.; Tran, G.-B.; Nguyen, C.T. Anti-Oxidative Effects of Superoxide Dismutase 3 on Inflammatory Diseases. J. Mol. Med. 2020, 98, 59–69. [Google Scholar] [CrossRef]
- Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z.; Luo, F. Reactive Oxygen Species (ROS) Scavenging Biomaterials for Anti-Inflammatory Diseases: From Mechanism to Therapy. J. Hematol. Oncol. 2023, 16, 116. [Google Scholar] [CrossRef]
- Chu, J.; Hua, L.; Liu, X.; Xiong, H.; Jiang, F.; Zhou, W.; Wang, L.; Xue, G. Superoxide Dismutase Alterations in COVID-19: Implications for Disease Severity and Mortality Prediction in the Context of Omicron Variant Infection. Front. Immunol. 2024, 15, 1362102. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Zhang, X.; Xu, W.; Li, J.; Sun, Y.; Cui, S.; Xu, R.; Li, W.; Jiao, L.; Wang, T. ROS-Induced Endothelial Dysfunction in the Pathogenesis of Atherosclerosis. Aging Dis. 2024, 16, 250–268. [Google Scholar] [CrossRef] [PubMed]
- Moloney, J.N.; Cotter, T.G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide Anion Radical (O·−2), Superoxide Dismutases, and Related Matters. J. Biol. Chem. 1997, 272, 18515–18517. [Google Scholar] [CrossRef]
- Holmström, K.M.; Finkel, T. Cellular Mechanisms and Physiological Consequences of Redox-Dependent Signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef]
- Wu, F.; Chi, Y.; Jiang, Z.; Xu, Y.; Xie, L.; Huang, F.; Wan, D.; Ni, J.; Yuan, F.; Wu, X.; et al. Hydrogen Peroxide Sensor HPCA1 Is an LRR Receptor Kinase in Arabidopsis. Nature 2020, 578, 577–581. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Kim, M.-B.; Park, S.-M.; Lim, G.-H.; Oh, Y.-H.; Seo, K.-W.; Youn, H.-Y. Neuroprotective and Immunomodulatory Effects of Superoxide Dismutase on SH-SY5Y Neuroblastoma Cells and RAW264.7 Macrophages. PLoS ONE 2024, 19, e0303136. [Google Scholar] [CrossRef]
- Miller, A.-F. Superoxide Dismutases: Active Sites That Save, but a Protein That Kills. Curr. Opin. Chem. Biol. 2004, 8, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Abassi, S.; Ki, J.-S. Origin and Roles of a Novel Copper-Zinc Superoxide Dismutase (CuZnSOD) Gene from the Harmful Dinoflagellate Prorocentrum Minimum. Gene 2019, 683, 113–122. [Google Scholar] [CrossRef]
- Tsang, C.K.; Liu, Y.; Thomas, J.; Zhang, Y.; Zheng, X.F.S. Superoxide Dismutase 1 Acts as a Nuclear Transcription Factor to Regulate Oxidative Stress Resistance. Nat. Commun. 2014, 5, 3446. [Google Scholar] [CrossRef]
- Arnesano, F.; Banci, L.; Bertini, I.; Martinelli, M.; Furukawa, Y.; O’Halloran, T.V. The Unusually Stable Quaternary Structure of Human Cu,Zn-Superoxide Dismutase 1 Is Controlled by Both Metal Occupancy and Disulfide Status. J. Biol. Chem. 2004, 279, 47998–48003. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Fu, T.; Chen, N.; Guo, J.; Ma, J.; Zou, M.; Lu, C.; Zhang, L. The Stromal Chloroplast Deg7 Protease Participates in the Repair of Photosystem II after Photoinhibition in Arabidopsis. Plant Physiol. 2010, 152, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, X.; Chen, B.; Dai, R.; Xi, Z.; Xu, H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int. J. Mol. Sci. 2022, 23, 15893. [Google Scholar] [CrossRef]
- Chowdhury, S.; Sanyal, D.; Sen, S.; Uversky, V.N.; Maulik, U.; Chattopadhyay, K. Evolutionary Analyses of Sequence and Structure Space Unravel the Structural Facets of SOD1. Biomolecules 2019, 9, 826. [Google Scholar] [CrossRef]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide Dismutase Multigene Family: A Comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) Gene Structures, Evolution, and Expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Culotta, V.C.; Yang, M.; O’Halloran, T.V. Activation of Superoxide Dismutases: Putting the Metal to the Pedal. Biochim. Biophys. Acta 2006, 1763, 747–758. [Google Scholar] [CrossRef]
- Indo, H.P.; Yen, H.-C.; Nakanishi, I.; Matsumoto, K.-I.; Tamura, M.; Nagano, Y.; Matsui, H.; Gusev, O.; Cornette, R.; Okuda, T.; et al. A Mitochondrial Superoxide Theory for Oxidative Stress Diseases and Aging. J. Clin. Biochem. Nutr. 2015, 56, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pilon, M.; Ravet, K.; Tapken, W. The Biogenesis and Physiological Function of Chloroplast Superoxide Dismutases. Biochim. et Biophys. Acta (BBA) Bioenerg. 2011, 1807, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Yost, F.J.; Fridovich, I. An Iron-Containing Superoxide Dismutase from Escherichia Coli. J. Biol. Chem. 1973, 248, 4905–4908. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.W.; Lancaster, J.R.; Fridovich, I. Isolation and Characterization of the Iron-Containing Superoxide Dismutase of Methanobacterium Bryantii. Arch. Biochem. Biophys. 1981, 210, 140–148. [Google Scholar] [CrossRef]
- Salin, M.L.; Bridges, S.M. Isolation and Characterization of an Iron-Containing Superoxide Dismutase from a Eucaryote, Brassica Campestris. Arch. Biochem. Biophys. 1980, 201, 369–374. [Google Scholar] [CrossRef]
- Kwiatowski, J.; Safianowska, A.; Kaniuga, Z. Isolation and Characterization of an Iron-containing Superoxide Dismutase from Tomato Leaves, Lycopersicon esculentum. Eur. J. Biochem. 1985, 146, 459–466. [Google Scholar] [CrossRef]
- Grace, S.C. Phylogenetic Distribution of Superoxide Dismutase Supports an Endosymbiotic Origin for Chloroplasts and Mitochondria. Life Sci. 1990, 47, 1875–1886. [Google Scholar] [CrossRef]
- Dupont, C.L.; Neupane, K.; Shearer, J.; Palenik, B. Diversity, Function and Evolution of Genes Coding for Putative Ni-containing Superoxide Dismutases. Environ. Microbiol. 2008, 10, 1831–1843. [Google Scholar] [CrossRef]
- Barondeau, D.P.; Kassmann, C.J.; Bruns, C.K.; Tainer, J.A.; Getzoff, E.D. Nickel Superoxide Dismutase Structure and Mechanism. Biochemistry 2004, 43, 8038–8047. [Google Scholar] [CrossRef]
- Ryan, K.C.; Johnson, O.E.; Cabelli, D.E.; Brunold, T.C.; Maroney, M.J. Nickel Superoxide Dismutase: Structural and Functional Roles of Cys2 and Cys6. J. Biol. Inorg. Chem. 2010, 15, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Hjalmarsson, K.; Marklund, S.L.; Engström, A.; Edlund, T. Isolation and Sequence of Complementary DNA Encoding Human Extracellular Superoxide Dismutase. Proc. Natl. Acad. Sci. USA 1987, 84, 6340–6344. [Google Scholar] [CrossRef]
- Folz, R.J.; Crapo, J.D. Extracellular Superoxide Dismutase (SOD3): Tissue-Specific Expression, Genomic Characterization, and Computer-Assisted Sequence Analysis of the Human EC SOD Gene. Genomics 1994, 22, 162–171. [Google Scholar] [CrossRef]
- Inoue, M.; Watanabe, N.; Matsuno, K.; Sasaki, J.; Tanaka, Y.; Hatanaka, H.; Amachi, T. Expression of a Hybrid Cu/Zn-Type Superoxide Dismutase Which Has High Affinity for Heparin-like Proteoglycans on Vascular Endothelial Cells. J. Biol. Chem. 1991, 266, 16409–16414. [Google Scholar] [CrossRef]
- Marklund, S.L.; Holme, E.; Hellner, L. Superoxide Dismutase in Extracellular Fluids. Clin. Chim. Acta 1982, 126, 41–51. [Google Scholar] [CrossRef]
- Kusuyama, J.; Alves-Wagner, A.B.; Conlin, R.H.; Makarewicz, N.S.; Albertson, B.G.; Prince, N.B.; Kobayashi, S.; Kozuka, C.; Møller, M.; Bjerre, M.; et al. Placental Superoxide Dismutase 3 Mediates Benefits of Maternal Exercise on Offspring Health. Cell Metab. 2021, 33, 939–956.e8. [Google Scholar] [CrossRef] [PubMed]
- Colon Hidalgo, D.; Jordan, M.; Posey, J.N.; Burciaga, S.D.; Nguyen, T.-T.N.; Sul, C.; Lewis, C.V.; Delaney, C.; Nozik, E.S. Lung EC-SOD Overexpression Prevents Hypoxia-Induced Platelet Activation and Lung Platelet Accumulation. Antioxidants 2024, 13, 975. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.V.; Nguyen, T.-T.N.; Porfilio, T.E.; Burciaga, S.D.; Posey, J.N.; Jordan, M.; Colon Hidalgo, D.; Stenmark, K.R.; Mickael, C.; Sul, C.; et al. Vascular EC-SOD Limits the Accumulation, Proinflammatory Profibrotic Reprogramming, and Hyaluronan Binding of Interstitial Macrophages in Hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2025, 328, L885–L900. [Google Scholar] [CrossRef]
- Perry, A.C.F.; Jones, R.; Hall, L. Isolation and Characterization of a Rat cDNA Clone Encoding a Secreted Superoxide Dismutase Reveals the Epididymis to Be a Major Site of Its Expression. Biochem. J. 1993, 293, 21–25. [Google Scholar] [CrossRef]
- Mruk, D.; Cheng, C.-H.; Cheng, Y.-H.; Mo, M.; Grima, J.; Silvestrini, B.; Lee, W.M.; Cheng, C.Y. Rat Testicular Extracellular Superoxide Dismutase: Its Purification, Cellular Distribution, and Regulation1. Biol. Reprod. 1998, 59, 298–308. [Google Scholar] [CrossRef]
- Blackney, M.J.; Cox, R.; Shepherd, D.; Parker, J.D. Cloning and Expression Analysis of Drosophila Extracellular Cu Zn Superoxide Dismutase. Biosci. Rep. 2014, 34, e00164. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, J.; Xu, M.; Shan, D.; Wu, Z.; Yuan, D. Speciation and Adaptive Evolution Reshape Antioxidant Enzymatic System Diversity across the Phylum Nematoda. BMC Biol. 2020, 18, 181. [Google Scholar] [CrossRef]
- Alvarez, B.; Demicheli, V.; Durán, R.; Trujillo, M.; Cerveñansky, C.; Freeman, B.A.; Radi, R. Inactivation of Human Cu,Zn Superoxide Dismutase by Peroxynitrite and Formation of Histidinyl Radical. Free Radic. Biol. Med. 2004, 37, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.M.; Gibbs, B.F.; Kabashi, E.; Minotti, S.; Durham, H.D.; Agar, J.N. Tryptophan 32 Potentiates Aggregation and Cytotoxicity of a Copper/Zinc Superoxide Dismutase Mutant Associated with Familial Amyotrophic Lateral Sclerosis. J. Biol. Chem. 2007, 282, 16329–16335. [Google Scholar] [CrossRef]
- Demicheli, V.; Moreno, D.M.; Radi, R. Human Mn-Superoxide Dismutase Inactivation by Peroxynitrite: A Paradigm of Metal-Catalyzed Tyrosine Nitration in Vitro and in Vivo. Metallomics 2018, 10, 679–695. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Peluffo, G.; Petruk, A.A.; Hugo, M.; Piñeyro, D.; Demicheli, V.; Moreno, D.M.; Lima, A.; Batthyány, C.; Durán, R.; et al. Structural and Molecular Basis of the Peroxynitrite-Mediated Nitration and Inactivation of Trypanosoma Cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B. J. Biol. Chem. 2014, 289, 12760–12778. [Google Scholar] [CrossRef] [PubMed]
- Fay, J.M.; Zhu, C.; Proctor, E.A.; Tao, Y.; Cui, W.; Ke, H.; Dokholyan, N.V. A Phosphomimetic Mutation Stabilizes SOD1 and Rescues Cell Viability in the Context of an ALS-Associated Mutation. Structure 2016, 24, 1898–1906. [Google Scholar] [CrossRef]
- Candas, D.; Fan, M.; Nantajit, D.; Vaughan, A.T.; Murley, J.S.; Woloschak, G.E.; Grdina, D.J.; Li, J.J. CyclinB1/Cdk1 Phosphorylates Mitochondrial Antioxidant MnSOD in Cell Adaptive Response to Radiation Stress. J. Mol. Cell Biol. 2013, 5, 166–175. [Google Scholar] [CrossRef]
- Hopper, R.K.; Carroll, S.; Aponte, A.M.; Johnson, D.T.; French, S.; Shen, R.-F.; Witzmann, F.A.; Harris, R.A.; Balaban, R.S. Mitochondrial Matrix Phosphoproteome: Effect of Extra Mitochondrial Calcium. Biochemistry 2006, 45, 2524–2536. [Google Scholar] [CrossRef]
- Lin, C.; Zeng, H.; Lu, J.; Xie, Z.; Sun, W.; Luo, C.; Ding, J.; Yuan, S.; Geng, M.; Huang, M. Acetylation at Lysine 71 Inactivates Superoxide Dismutase 1 and Sensitizes Cancer Cells to Genotoxic Agents. Oncotarget 2015, 6, 20578–20591. [Google Scholar] [CrossRef]
- Zhu, Y.; Park, S.-H.; Ozden, O.; Kim, H.-S.; Jiang, H.; Vassilopoulos, A.; Spitz, D.R.; Gius, D. Exploring the Electrostatic Repulsion Model in the Role of Sirt3 in Directing MnSOD Acetylation Status and Enzymatic Activity. Free Radic. Biol. Med. 2012, 53, 828–833. [Google Scholar] [CrossRef]
- He, C.; Danes, J.M.; Hart, P.C.; Zhu, Y.; Huang, Y.; De Abreu, A.L.; O’Brien, J.; Mathison, A.J.; Tang, B.; Frasor, J.M.; et al. SOD2 Acetylation on Lysine 68 Promotes Stem Cell Reprogramming in Breast Cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 23534–23541. [Google Scholar] [CrossRef] [PubMed]
- Vidimar, V.; Gius, D.; Chakravarti, D.; Bulun, S.E.; Wei, J.-J.; Kim, J.J. Dysfunctional MnSOD Leads to Redox Dysregulation and Activation of Prosurvival AKT Signaling in Uterine Leiomyomas. Sci. Adv. 2016, 2, e1601132. [Google Scholar] [CrossRef]
- Dikalova, A.E.; Itani, H.A.; Nazarewicz, R.R.; McMaster, W.G.; Flynn, C.R.; Uzhachenko, R.; Fessel, J.P.; Gamboa, J.L.; Harrison, D.G.; Dikalov, S.I. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ. Res. 2017, 121, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Ota, F.; Kizuka, Y.; Kitazume, S.; Adachi, T.; Taniguchi, N. N-Glycosylation Is Essential for the Secretion of Extracellular Superoxide Dismutase. FEBS Lett. 2016, 590, 3357–3367. [Google Scholar] [CrossRef]
- Strömqvist, M.; Holgersson, J.; Samuelsson, B. Glycosylation of Extracellular Superoxide Dismutase Studied by High-Performance Liquid Chromatography and Mass Spectrometry. J. Chromatogr. A 1991, 548, 293–301. [Google Scholar] [CrossRef]
- Ohkawa, Y.; Kitano, M.; Maeda, K.; Nakano, M.; Kanto, N.; Kizuka, Y.; Seike, M.; Azuma, A.; Yamaguchi, Y.; Ookawara, T.; et al. Core Fucosylation Is Required for the Secretion of and the Enzymatic Activity of SOD3 in Nonsmall-Cell Lung Cancer Cells. Antioxid. Redox Signal. 2023, 38, 1201–1211. [Google Scholar] [CrossRef]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, Oxidative Stress, and Antioxidants: A Review. J. Biochem. Mol. Tox 2003, 17, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Bruijn, L.I.; Houseweart, M.K.; Kato, S.; Anderson, K.L.; Anderson, S.D.; Ohama, E.; Reaume, A.G.; Scott, R.W.; Cleveland, D.W. Aggregation and Motor Neuron Toxicity of an ALS-Linked SOD1 Mutant Independent from Wild-Type SOD1. Science 1998, 281, 1851–1854. [Google Scholar] [CrossRef]
- Castellano, I.; Ruocco, M.R.; Cecere, F.; Di Maro, A.; Chambery, A.; Michniewicz, A.; Parlato, G.; Masullo, M.; De Vendittis, E. Glutathionylation of the Iron Superoxide Dismutase from the Psychrophilic Eubacterium Pseudoalteromonas Haloplanktis. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2008, 1784, 816–826. [Google Scholar] [CrossRef]
- Patil, N.K.; Saba, H.; MacMillan-Crow, L.A. Effect of S-Nitrosoglutathione on Renal Mitochondrial Function: A New Mechanism for Reversible Regulation of Manganese Superoxide Dismutase Activity? Free Radic. Biol. Med. 2013, 56, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Castellano, I.; Cecere, F.; De Vendittis, A.; Cotugno, R.; Chambery, A.; Di Maro, A.; Michniewicz, A.; Parlato, G.; Masullo, M.; Avvedimento, E.V.; et al. Rat Mitochondrial Manganese Superoxide Dismutase: Amino Acid Positions Involved in Covalent Modifications, Activity, and Heat Stability. Biopolymers 2009, 91, 1215–1226. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Niikura, T.; Kita, Y.; Abe, Y. SUMO3 Modification Accelerates the Aggregation of ALS-Linked SOD1 Mutants. PLoS ONE 2014, 9, e101080. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Lin, Y.; Lei, Q.; Guan, K.; Zhao, S.; Xiong, Y. Tumour Suppressor SIRT3 Deacetylates and Activates Manganese Superoxide Dismutase to Scavenge ROS. EMBO Rep. 2011, 12, 534–541. [Google Scholar] [CrossRef]
- Meissner, F.; Molawi, K.; Zychlinsky, A. Superoxide Dismutase 1 Regulates Caspase-1 and Endotoxic Shock. Nat. Immunol. 2008, 9, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Jin, J.; Jeon, S.; Moon, S.H.; Park, M.Y.; Yum, D.-Y.; Kim, J.H.; Kang, J.-E.; Park, M.H.; Kim, E.-J.; et al. SOD1 Suppresses Pro-Inflammatory Immune Responses by Protecting against Oxidative Stress in Colitis. Redox Biol. 2020, 37, 101760. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Jiang, L.; Fu, C.; Wu, X.; Liu, Z.; Xie, L.; Wu, X.; Hao, S.; Li, S. Heterozygous SOD2 Deletion Deteriorated Chronic Intermittent Hypoxia-Induced Lung Inflammation and Vascular Remodeling through mtROS-NLRP3 Signaling Pathway. Acta Pharmacol. Sin. 2020, 41, 1197–1207. [Google Scholar] [CrossRef]
- Kwon, M.-J.; Jeon, Y.-J.; Lee, K.-Y.; Kim, T.-Y. Superoxide Dismutase 3 Controls Adaptive Immune Responses and Contributes to the Inhibition of Ovalbumin-Induced Allergic Airway Inflammation in Mice. Antioxid. Redox Signal. 2012, 17, 1376–1392. [Google Scholar] [CrossRef]
- Yasui, K.; Baba, A. Therapeutic Potential of Superoxide Dismutase (SOD) for Resolution of Inflammation. Inflamm. Res. 2006, 55, 359–363. [Google Scholar] [CrossRef]
- Ghio, A.J.; Suliman, H.B.; Carter, J.D.; Abushamaa, A.M.; Folz, R.J. Overexpression of Extracellular Superoxide Dismutase Decreases Lung Injury after Exposure to Oil Fly Ash. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, L211–L218. [Google Scholar] [CrossRef]
- Bowler, R.P.; Nicks, M.; Tran, K.; Tanner, G.; Chang, L.-Y.; Young, S.K.; Worthen, G.S. Extracellular Superoxide Dismutase Attenuates Lipopolysaccharide-Induced Neutrophilic Inflammation. Am. J. Respir. Cell Mol. Biol. 2004, 31, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Terrazzano, G.; Rubino, V.; Damiano, S.; Sasso, A.; Petrozziello, T.; Ucci, V.; Palatucci, A.T.; Giovazzino, A.; Santillo, M.; De Felice, B.; et al. T Cell Activation Induces CuZn Superoxide Dismutase (SOD)-1 Intracellular Re-Localization, Production and Secretion. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2014, 1843, 265–274. [Google Scholar] [CrossRef]
- Morikawa, K.; Morikawa, S. Immunomodulatory Effect of Recombinant Human Superoxide Dismutase (SOD) on Human B Lymphocyte Functionin Vitro. Cell. Immunol. 1996, 172, 70–76. [Google Scholar] [CrossRef]
- Seo, Y.-S.; Kim, H.S.; Lee, A.Y.; Chun, J.M.; Kim, S.B.; Moon, B.C.; Kwon, B.-I. Codonopsis Lanceolata Attenuates Allergic Lung Inflammation by Inhibiting Th2 Cell Activation and Augmenting Mitochondrial ROS Dismutase (SOD2) Expression. Sci. Rep. 2019, 9, 2312. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, C.M.; Collins, C.W.; Gunda, V.; Vasanthakumar, A.; Cao, J.Z.; Singh, P.K.; Godley, L.A.; Case, A.J. Mitochondrial Superoxide Disrupts the Metabolic and Epigenetic Landscape of CD4+ and CD8+ T-Lymphocytes. Redox Biol. 2019, 27, 101141. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Cheon, I.-S.; Kim, B.-H.; Kwon, M.-J.; Lee, H.-W.; Kim, T.-Y. Loss of Extracellular Superoxide Dismutase Induces Severe IL-23-Mediated Skin Inflammation in Mice. J. Investig. Dermatol. 2013, 133, 732–741. [Google Scholar] [CrossRef]
- Agrahari, G.; Sah, S.K.; Lee, M.J.; Bang, C.H.; Kim, Y.H.; Kim, H.-Y.; Kim, T.-Y. Inhibitory Effects of Superoxide Dismutase 3 on IgE Production in B Cells. Biochem. Biophys. Rep. 2022, 29, 101226. [Google Scholar] [CrossRef]
- McGeer, P.L.; McGeer, E.G. Inflammatory Processes in Amyotrophic Lateral Sclerosis. Muscle Nerve 2002, 26, 459–470. [Google Scholar] [CrossRef]
- Yang, E.J.; Jiang, J.H.; Lee, S.M.; Yang, S.C.; Hwang, H.S.; Lee, M.S.; Choi, S.-M. Bee Venom Attenuates Neuroinflammatory Events and Extends Survival in Amyotrophic Lateral Sclerosis Models. J. Neuroinflammation 2010, 7, 69. [Google Scholar] [CrossRef]
- Zaccai, S.; Nemirovsky, A.; Lerner, L.; Alfahel, L.; Eremenko, E.; Israelson, A.; Monsonego, A. CD4 T-Cell Aging Exacerbates Neuroinflammation in a Late-Onset Mouse Model of Amyotrophic Lateral Sclerosis. J. Neuroinflammation 2024, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.Q.; Targan, S.R. Immunopathogenesis of Inflammatory Bowel Disease. WJG 2007, 14, 390. [Google Scholar] [CrossRef]
- Schaper, M.; Gergely, S.; Lykkesfeldt, J.; Zbären, J.; Leib, S.L.; Täuber, M.G.; Christen, S. Cerebral Vasculature Is the Major Target of Oxidative Protein Alterations in Bacterial Meningitis. J. Neuropathol. Exp. Neurol. 2002, 61, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, Y.; Takemoto, T.; Itoh, K.; Ishida, A.; Yamazaki, T. Dual Role of Superoxide Dismutase 2 Induced in Activated Microglia. J. Biol. Chem. 2015, 290, 22805–22817. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Kim, T.; Lee, J.; Kim, D. SOD2 Is Upregulated in Periodontitis to Reduce Further Inflammation Progression. Oral. Dis. 2018, 24, 1572–1580. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, B.-M.; Shin, S.; Kim, T.-Y.; Chung, S.-H. Superoxide Dismutase 3 Attenuates Experimental Th2-Driven Allergic Conjunctivitis. Clin. Immunol. 2017, 176, 49–54. [Google Scholar] [CrossRef]
- Tak, L.-J.; Kim, H.-Y.; Ham, W.-K.; Agrahari, G.; Seo, Y.; Yang, J.W.; An, E.-J.; Bang, C.H.; Lee, M.J.; Kim, H.-S.; et al. Superoxide Dismutase 3-Transduced Mesenchymal Stem Cells Preserve Epithelial Tight Junction Barrier in Murine Colitis and Attenuate Inflammatory Damage in Epithelial Organoids. Int. J. Mol. Sci. 2021, 22, 6431. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Sah, S.K.; Zouboulis, C.C.; Kim, T.-Y. Inhibitory Effects of Superoxide Dismutase 3 on Propionibacterium Acnes-Induced Skin Inflammation. Sci. Rep. 2018, 8, 4024. [Google Scholar] [CrossRef]
- Ariyanayagam, M. Ovothiol and Trypanothione as Antioxidants in Trypanosomatids. Mol. Biochem. Parasitol. 2001, 115, 189–198. [Google Scholar] [CrossRef]
- Pawłowska, M.; Mila-Kierzenkowska, C.; Szczegielniak, J.; Woźniak, A. Oxidative Stress in Parasitic Diseases—Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants 2023, 13, 38. [Google Scholar] [CrossRef]
- Rahlfs, S.; Schirmer, R.H.; Becker, K. The Thioredoxin System of Plasmodium Falciparum and Other Parasites. Cell. Mol. Life Sci. (CMLS) 2002, 59, 1024–1041. [Google Scholar] [CrossRef]
- Elmore, S.A.; Jones, J.L.; Conrad, P.A.; Patton, S.; Lindsay, D.S.; Dubey, J.P. Toxoplasma Gondii: Epidemiology, Feline Clinical Aspects, and Prevention. Trends Parasitol. 2010, 26, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cao, A.; Li, X.; Zhao, Q.; Liu, Y.; Cong, H.; He, S.; Zhou, H. Sequence Variation in Superoxide Dismutase Gene of Toxoplasma Gondii among Various Isolates from Different Hosts and Geographical Regions. Korean J. Parasitol. 2015, 53, 253–258. [Google Scholar] [CrossRef]
- Fritz, H.M.; Buchholz, K.R.; Chen, X.; Durbin-Johnson, B.; Rocke, D.M.; Conrad, P.A.; Boothroyd, J.C. Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts. PLoS ONE 2012, 7, e29998. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.-H.; Na, B.-K.; Song, K.-J.; Cho, J.-H.; Kang, S.-W.; Lee, K.-H.; Song, C.-Y.; Kim, T.-S. Cloning, Expression, and Characterization of Iron-Containing Superoxide Dismutase from Neospora Caninum. J. Parasitol. 2004, 90, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Getachew, F.; Gedamu, L. Leishmania Donovani Iron Superoxide Dismutase A Is Targeted to the Mitochondria by Its N-Terminal Positively Charged Amino Acids. Mol. Biochem. Parasitol. 2007, 154, 62–69. [Google Scholar] [CrossRef]
- Veronica, J.; Chandrasekaran, S.; Dayakar, A.; Devender, M.; Prajapati, V.K.; Sundar, S.; Maurya, R. Iron Superoxide Dismutase Contributes to Miltefosine Resistance in Leishmania donovani. FEBS J. 2019, 286, 3488–3503. [Google Scholar] [CrossRef]
- Yeganeh, F.; Mahboudi, F.; Gholijani, N.; Barkhordari, F.; Khalili, G.; Kamali-Sarvestani, E. Superoxide Dismutase B1, an Exacerbatory Antigen Elicits Interleukin-10 Production in Murine Leishmania Major Infection. Arch. Clin. Infect. Dis. 2019; in press. [Google Scholar] [CrossRef]
- Tiwari, S.; Sharma, N.; Sharma, G.P.; Mishra, N. Redox Interactome in Malaria Parasite Plasmodium Falciparum. Parasitol. Res. 2021, 120, 423–434. [Google Scholar] [CrossRef]
- Sienkiewicz, N.; Daher, W.; Dive, D.; Wrenger, C.; Viscogliosi, E.; Wintjens, R.; Jouin, H.; Capron, M.; Müller, S.; Khalife, J. Identification of a Mitochondrial Superoxide Dismutase with an Unusual Targeting Sequence in Plasmodium Falciparum. Mol. Biochem. Parasitol. 2004, 137, 121–132. [Google Scholar] [CrossRef]
- Jaikua, W.; Kueakhai, P.; Chaithirayanon, K.; Tanomrat, R.; Wongwairot, S.; Riengrojpitak, S.; Sobhon, P.; Changklungmoa, N. Cytosolic Superoxide Dismutase Can Provide Protection against Fasciola Gigantica. Acta Trop. 2016, 162, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Lalrinkima, H.; Jacob, S.S.; Raina, O.K.; Chandra, D.; Lalawmpuii, K.; Lalchhandama, C.; Behera, P.; Tolenkhomba, T.C. Superoxide Dismutase Inhibits Cytotoxic Killing of Fasciola Gigantica Newly Excysted Juveniles Expressed by Sheep in Vitro. Exp. Parasitol. 2022, 242, 108369. [Google Scholar] [CrossRef]
- Carvalho-Queiroz, C.; Cook, R.; Wang, C.C.; Correa-Oliveira, R.; Bailey, N.A.; Egilmez, N.K.; Mathiowitz, E.; LoVerde, P.T. Cross-Reactivity of Schistosoma Mansoni Cytosolic Superoxide Dismutase, a Protective Vaccine Candidate, with Host Superoxide Dismutase and Identification of Parasite-Specific B Epitopes. Infect. Immun. 2004, 72, 2635–2647. [Google Scholar] [CrossRef]
- Cook, R.M.; Carvalho-Queiroz, C.; Wilding, G.; LoVerde, P.T. Nucleic Acid Vaccination with Schistosoma Mansoni Antioxidant Enzyme Cytosolic Superoxide Dismutase and the Structural Protein Filamin Confers Protection against the Adult Worm Stage. Infect. Immun. 2004, 72, 6112–6124. [Google Scholar] [CrossRef] [PubMed]
- Turrens, J.F. Oxidative Stress and Antioxidant Defenses: A Target for the Treatment of Diseases Caused by Parasitic Protozoa. Mol. Asp. Med. 2004, 25, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Boucher, I.W.; Brzozowski, A.M.; Brannigan, J.A.; Schnick, C.; Smith, D.J.; Kyes, S.A.; Wilkinson, A.J. The Crystal Structure of Superoxide Dismutase from Plasmodium Falciparum. BMC Struct. Biol. 2006, 6, 20. [Google Scholar] [CrossRef]
- Murray, H.W.; Nathan, C.F.; Cohn, Z.A. Macrophage Oxygen-Dependent Antimicrobial Activity. IV. Role of Endogenous Scavengers of Oxygen Intermediates. J. Exp. Med. 1980, 152, 1610–1624. [Google Scholar] [CrossRef]
- Layth Ali Mohsin; Sadia Shahab Hamad; Saleh Muhammad Rahim The Effect of Infection with the Entamoeba Histolytica on Oxidative Stress Status in Kirkuk Hospital Patients. J. Pharm. Negat. Results 2022, 13, 3191–3195. [CrossRef]
- Atteya, M.A.; Wahba, A.A.; Ghobashy, M.A.; Dessouky, A.A. Oxidative Stress and Histopathological Changes in Cattle Affected with Fascioliasis and Cysticercosis. Egypt. J. Med. Sci. 2015, 36, 191–204. [Google Scholar]
- Becker, K.; Tilley, L.; Vennerstrom, J.L.; Roberts, D.; Rogerson, S.; Ginsburg, H. Oxidative Stress in Malaria Parasite-Infected Erythrocytes: Host–Parasite Interactions. Int. J. Parasitol. 2004, 34, 163–189. [Google Scholar] [CrossRef]
- Tyagi, A.G.; Tyagi, R.A.; Choudhary, P.R.; Shekhawat, J.S. Study of Antioxidant Status in Malaria Patients. Int. J. Res. Med. Sci. 2017, 5, 1649. [Google Scholar] [CrossRef]
- Babalola, A.S.; Jonathan, J.; Michael, B.E. Oxidative Stress and Anti-Oxidants in Asymptomatic Malaria-Positive Patients: A Hospital-Based Cross-Sectional Nigerian Study. Egypt. J. Intern. Med. 2020, 32, 23. [Google Scholar] [CrossRef]
- Fairfield, A.S.; Meshnick, S.R.; Eaton, J.W. Malaria Parasites Adopt Host Cell Superoxide Dismutase. Science 1983, 221, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lv, K.; Jiang, N.; Liu, T.; Hou, N.; Yu, L.; Yang, Y.; Feng, A.; Zhang, Y.; Su, Z.; et al. SOD3 Suppresses Early Cellular Immune Responses to Parasite Infection. Nat. Commun. 2024, 15, 4913. [Google Scholar] [CrossRef]
- Wen, J.J.; Garg, N.J. Manganese Superoxide Dismutase Deficiency Exacerbates the Mitochondrial ROS Production and Oxidative Damage in Chagas Disease. PLoS Negl. Trop. Dis. 2018, 12, e0006687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Shang, J.; Chen, Q. Superoxide Dismutases in Immune Regulation and Infectious Diseases. Antioxidants 2025, 14, 809. https://doi.org/10.3390/antiox14070809
Liu T, Shang J, Chen Q. Superoxide Dismutases in Immune Regulation and Infectious Diseases. Antioxidants. 2025; 14(7):809. https://doi.org/10.3390/antiox14070809
Chicago/Turabian StyleLiu, Tong, Jiajin Shang, and Qijun Chen. 2025. "Superoxide Dismutases in Immune Regulation and Infectious Diseases" Antioxidants 14, no. 7: 809. https://doi.org/10.3390/antiox14070809
APA StyleLiu, T., Shang, J., & Chen, Q. (2025). Superoxide Dismutases in Immune Regulation and Infectious Diseases. Antioxidants, 14(7), 809. https://doi.org/10.3390/antiox14070809