The Role of Type I Interferons in Tuberculosis and in Tuberculosis-Risk-Associated Comorbidities
Abstract
1. Introduction
Comorbidity | Global Incidence | TB Risk | Type I IFN-Driven Impacts |
---|---|---|---|
HIV/AIDS | 1.3 million new infections (39.9 million people living with HIV) [40] | 10–100-fold [17] | Type I IFN signature, decline in systemic pDCs, immune activation, reduced T cell frequency and function |
Diabetes (both T1D and T2D) | 588.7 million adults [41] | 2- to 4-fold [41] | Early type I IFN signature, lymphocyte exhaustion, impaired T cell and macrophage function |
SLE | 5.14 (1.4 to 15.13) per 100,000 person-years [42] | 6.11-fold [43,44] | Type I IFN signature, reduced frequency and function of pDCs and macrophages, activation/IFN-driven inflammation |
ESRD | 4.9–9.7 million [45] | 6.9- to 52.5-fold [46] | Increased IFN-α expression |
COVID-19/Long COVID | 777 million [47] | 1.34 [48] | Type I IFN signature, activation/IFN-driven inflammation |
Silicosis | 138,971 [49] | 4.01 [50,51] | IFN-driven inflammation |
2. Type I IFNs and M. tuberculosis Infection
2.1. M. tuberculosis-Specific Induction of Type I IFNs
2.2. Role of Type I IFNs in M. tuberculosis Infection and Pathogenesis
3. Type I IFNs and TB-Risk-Associated Comorbidities
3.1. TB and HIV
Type I IFNs in HIV
3.2. TB and Diabetes
3.2.1. Type I IFNs in Diabetes
Type I Diabetes
Type 2 Diabetes
3.3. TB and Rheumatic Diseases
3.3.1. Type I IFNs in Rheumatic Diseases
3.3.2. TB and SLE
Type I IFNs in SLE
3.4. TB and Other TB Risk-Associated Comorbidities with Type I IFN Link
3.4.1. End-Stage Renal Disease (ESRD) and Chronic Kidney Disease (CKD)
3.4.2. Silicosis
3.4.3. COVID-19
4. Perspectives and Research Opportunities
4.1. Research Priorities to Inform New Intervention Strategies
4.2. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APOL1 | Apolipoprotein 1 |
cART | Combination antiretroviral therapy |
CD | Cluster of differentiation |
cGAMP | Cyclic guanosine monophosphate–adenosine monophosphate |
cGAS | Cyclic guanosine monophosphate–adenosine monophosphate synthase |
CKD | Chronic kidney disease |
CR | Complement receptors |
DC | Dendritic cells |
dsDNA | Double-stranded deoxyribonucleic acid |
ER | Endoplasmic reticulum |
ESRD | End-stage renal disease |
HIV | Human immunodeficiency virus |
HIVAN | Human-immunodeficiency-virus-associated nephropathy |
HLA | Human leukocyte antigen |
IFN | Interferon |
IFNAR | Interferon alpha receptor |
IFNGR | Interferon gamma receptor |
IGRA | Interferon gamma release assays |
IKK | IκB kinase |
IL | Interleukin |
IRF | Interferon regulatory factor |
ISG | Interferon-stimulated genes |
ISGF | Interferon-stimulated gene factor |
ISRE | Interferon-stimulated response element |
JAK | Janus kinase |
LMICs | Low- and middle-income countries |
LTBI | Latent tuberculosis infection |
MR | Mannose receptors |
NOD | Nonobese diabetic |
PAMP | Pattern-associated molecular patterns |
PD-1 | Programmed cell death protein 1 |
pDC | Plasmacytoid dendritic cells |
PD-L1 | Programmed death-ligand 1 |
PGE2 | Prostaglandin E2 |
PRR | Pattern recognition receptor |
RA | Rheumatoid arthritis |
RLR | Retinoic-acid-inducible gene I (RIG-I)-like receptors |
SIMOA | Single molecule array |
SLE | Systemic lupus erythematosus |
SR | Scavenger receptor |
SS | Sjögren’s syndrome |
ssRNA | Single-stranded ribonucleic acid |
STAT | Signal transducer and activator of transcription |
STING | Stimulator of interferon genes |
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
TB | Tuberculosis |
TBK1 | TANK-binding kinase 1 |
TLR | Toll-like receptor |
TNF | Tumour necrosis factor |
TST | Tuberculin skin test |
TYK | Tyrosine kinase |
WHO | World Health Organization |
WISH | Wistar Institute Susan Hayflick (a cell line) |
References
- The World Health Organization (WHO). World Health Organization Global Tuberculosis Report 2023; The World Health Organization (WHO): Geneva, Switzerland, 2023. [Google Scholar]
- The World Health Organization (WHO). World Health Organization Global Tuberculosis Report 2024; The World Health Organization (WHO): Geneva, Switzerland, 2024. [Google Scholar]
- World Health Organization. WHO: Operational Handbook on Tuberculosis; World Health Organization: Geneva, Switzerland, 2020; ISBN 9789240001503. [Google Scholar]
- Migliori, G.B.; Ong, C.W.M.; Petrone, L.; D’ambrosio, L.; Centis, R.; Goletti, D. The Definition of Tuberculosis Infection Based on the Spectrum of Tuberculosis Disease. Breathe 2021, 17, 210079. [Google Scholar] [CrossRef] [PubMed]
- O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P.R. The Immune Response in Tuberculosis. Annu. Rev. Immunol. 2013, 31, 475–527. [Google Scholar] [CrossRef] [PubMed]
- Barry, C.E.; Boshoff, H.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The Spectrum of Latent Tuberculosis: Rethinking the Goals of Prophylaxis. Nat. Rev. Microbiol. 2009, 7, 845–855. [Google Scholar] [CrossRef]
- Verrall, A.J.; Netea, M.G.; Alisjahbana, B.; Hill, P.C.; van Crevel, R. Early Clearance of Mycobacterium tuberculosis: A New Frontier in Prevention. Immunology 2014, 141, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.R.; Pease, C.; Daley, P.; Pai, M.; Menzies, D. Chapter 4: Diagnosis of Tuberculosis Infection. Can. J. Respir. Crit. Care Sleep. Med. 2022, 6, 49–65. [Google Scholar] [CrossRef]
- Hingley-Wilson, S.M.; Sambandamurthy, V.K.; Jacobs, W.R. Survival Perspectives from the World’s Most Successful Pathogen, Mycobacterium tuberculosis. Nat. Immunol. 2003, 4, 949–955. [Google Scholar] [CrossRef]
- Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-Estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef]
- World Health Organization. The End TB Strategy. Available online: https://www.who.int/publications/m/item/the-end-tb-strategy-brochure (accessed on 7 September 2024).
- Cobelens, F.; Kik, S.; Esmail, H.; Cirillo, D.M.; Lienhardt, C.; Matteelli, A. From Latent to Patent: Rethinking Prediction of Tuberculosis. Lancet Respir. Med. 2017, 5, 243–244. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report. 2017. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/9789241565516-eng.pdf (accessed on 10 September 2024).
- Shah, M.; Dorman, S.E. Latent Tuberculosis Infection. N. Engl. J. Med. 2021, 385, 2271–2280. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Corbett, E.L.; Watt, C.J.; Walker, N.; Maher, D.; Williams, B.G.; Raviglione, M.C.; Dye, C. The Growing Burden of Tuberculosis: Global Trends and Interactions with the HIV Epidemic. Arch. Intern. Med. 2003, 163, 1009–1021. [Google Scholar] [CrossRef]
- Ai, J.; Ruan, Q.; Liu, Q.; Zhang, W. Updates on the Risk Factors for Latent Tuberculosis Reactivation and Their Managements. Emerg. Microbes Infect. 2016, 5, e10. [Google Scholar] [CrossRef] [PubMed]
- Public Health Agency of Canada. Canadian Tuberculosis Standards Chapter 6: Treatment of Latent Tuberculosis Infection; Public Health Agency of Canada: Ottawa, ON, Canada, 2014; ISBN 9781100231716. [Google Scholar]
- Narasimhan, P.; Wood, J.; MacIntyre, C.R.; Mathai, D. Risk Factors for Tuberculosis. Pulm. Med. 2013, 2013, 828939. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Zhang, Y.; Liu, C.H. Mycobacterium tuberculosis: An Adaptable Pathogen Associated with Multiple Human Diseases. Front. Cell. Infect. Microbiol. 2018, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Scriba, T.J.; Coussens, A.K.; Fletcher, H.A. Human Immunology of Tuberculosis. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Sia, J.K.; Rengarajan, J. Immunology of Mycobacterium tuberculosis Infections. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Ronacher, K.; Joosten, S.A.; van Crevel, R.; Dockrell, H.M.; Walzl, G.; Ottenhoff, T.H.M. Acquired Immunodeficiencies and Tuberculosis: Focus on HIV/AIDS and Diabetes Mellitus. Immunol. Rev. 2015, 264, 121–137. [Google Scholar] [CrossRef]
- de Martino, M.; Lodi, L.; Galli, L.; Chiappini, E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front. Pediatr. 2019, 7, 350. [Google Scholar] [CrossRef]
- Blankley, S.; Graham, C.M.; Turner, J.; Berry, M.P.; Bloom, C.I.; Xu, Z.; Pascual, V.; Banchereau, J.; Chaussabel, D.; Breen, R.; et al. The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLoS ONE 2016, 11, e0162220. [Google Scholar] [CrossRef]
- Joosten, S.A.; Fletcher, H.A.; Ottenhoff, T.H.M. A Helicopter Perspective on TB Biomarkers: Pathway and Process Based Analysis of Gene Expression Data Provides New Insight into TB Pathogenesis. PLoS ONE 2013, 8, e73230. [Google Scholar] [CrossRef]
- Ottenhoff, T.H.M.; Dass, R.H.; Yang, N.; Zhang, M.M.; Wong, H.E.E.; Sahiratmadja, E.; Khor, C.C.; Alisjahbana, B.; van Crevel, R.; Marzuki, S.; et al. Genome-Wide Expression Profiling Identifies Type 1 Interferon Response Pathways in Active Tuberculosis. PLoS ONE 2012, 7, e45839. [Google Scholar] [CrossRef]
- Berry, M.P.R.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.A.; Oni, T.; Wilkinson, K.A.; Banchereau, R.; Skinner, J.; Wilkinson, R.J.; et al. An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis. Nature 2010, 466, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Blankley, S.; Graham, C.M.; Levin, J.; Turner, J.; Berry, M.P.R.; Bloom, C.I.; Xu, Z.; Pascual, V.; Banchereau, J.; Chaussabel, D.; et al. A 380-Gene Meta-Signature of Active Tuberculosis Compared with Healthy Controls. Eur. Respir. J. 2016, 47, 1873–1876. [Google Scholar] [CrossRef] [PubMed]
- Di Domizio, J.; Cao, W. Fueling Autoimmunity: Type I Interferon in Autoimmune Diseases. Expert. Rev. Clin. Immunol. 2013, 9, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, G. Type I Interferon: Friend or Foe? J. Exp. Med. 2010, 207, 2053–2063. [Google Scholar] [CrossRef]
- Darboe, F.; Mbandi, S.K.; Naidoo, K.; Yende-Zuma, N.; Lewis, L.; Thompson, E.G.; Duffy, F.J.; Fisher, M.; Filander, E.; van Rooyen, M.; et al. Detection of Tuberculosis Recurrence, Diagnosis and Treatment Response by a Blood Transcriptomic Risk Signature in HIV-Infected Persons on Antiretroviral Therapy. Front. Microbiol. 2019, 10, 1441. [Google Scholar] [CrossRef]
- Chang, J.J.; Woods, M.; Lindsay, R.J.; Doyle, E.H.; Griesbeck, M.; Chan, E.S.; Robbins, G.K.; Bosch, R.J.; Altfeld, M. Higher Expression of Several Interferon-Stimulated Genes in HIV-1-Infected Females after Adjusting for the Level of Viral Replication. J. Infect. Dis. 2013, 208, 830–838. [Google Scholar] [CrossRef]
- Prada-Medina, C.A.; Fukutani, K.F.; Kumar, N.P.; Gil-Santana, L.; Babu, S.; Lichtenstein, F.; West, K.; Sivakumar, S.; Menon, P.A.; Viswanathan, V.; et al. Systems Immunology of Diabetes-Tuberculosis Comorbidity Reveals Signatures of Disease Complications. Sci. Rep. 2017, 7, 1999. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Guo, H.; Coulson, R.M.R.; Smyth, D.J.; Pekalski, M.L.; Burren, O.S.; Cutler, A.J.; Doecke, J.D.; Flint, S.; McKinney, E.F.; et al. A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes. Diabetes 2014, 63, 2538–2550. [Google Scholar] [CrossRef]
- Kallionpää, H.; Elo, L.L.; Laajala, E.; Mykkänen, J.; Ricaño-Ponce, I.; Vaarma, M.; Laajala, T.D.; Hyöty, H.; Ilonen, J.; Veijola, R.; et al. Innate Immune Activity Is Detected Prior to Seroconversion in Children with HLA-Conferred Type 1 Diabetes Susceptibility. Diabetes 2014, 63, 2402–2414. [Google Scholar] [CrossRef]
- Muskardin, T.L.W.; Niewold, T.B. Type i Interferon in Rheumatic Diseases. Nat. Rev. Rheumatol. 2018, 14, 214–228. [Google Scholar] [CrossRef]
- Higgs, B.W.; Liu, Z.; White, B.; Zhu, W.; White, W.I.; Morehouse, C.; Brohawn, P.; Kiener, P.A.; Richman, L.; Fiorentino, D.; et al. Patients with Systemic Lupus Erythematosus, Myositis, Rheumatoid Arthritis and Scleroderma Share Activation of a Common Type I Interferon Pathway. Ann. Rheum. Dis. 2011, 70, 2029–2036. [Google Scholar] [CrossRef]
- Kim, M.H.; Salloum, S.; Wang, J.Y.; Wong, L.P.; Regan, J.; Lefteri, K.; Manickas-Hill, Z.; Gao, C.; Li, J.Z.; Sadreyev, R.I.; et al. Type I, II, and III Interferon Signatures Correspond to Coronavirus Disease 2019 Severity. J. Infect. Dis. 2021, 224, 777–782. [Google Scholar] [CrossRef] [PubMed]
- UNAIDS The Urgency of Now: AIDS at a Crossroads. Geneva Jt. United Nations Program. HIV/AIDS. 2024. Available online: https://www.unaids.org/en/resources/documents/2024/global-aids-update-2024 (accessed on 16 June 2025).
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Fatoye, F.; Gebrye, T.; Mbada, C. Global and Regional Prevalence and Incidence of Systemic Lupus Erythematosus in Low-and-Middle Income Countries: A Systematic Review and Meta-Analysis. Rheumatol. Int. 2022, 42, 2097–2107. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, D.; Yao, X.; Huang, Y.; Lu, Q. Global Epidemiology of Systemic Lupus Erythematosus: A Comprehensive Systematic Analysis and Modelling Study. Ann. Rheum. Dis. 2023, 82, 351–356. [Google Scholar] [CrossRef]
- María Pego-Reigosa, J.; Nicholson, L.; Pooley, N.; Langham, S.; Embleton, N.; Marjenberg, Z.; Barut, V.; Desta, B.; Wang, X.; Langham, J.; et al. The Risk of Infections in Adult Patients with Systemic Lupus Erythematosus: Systematic Review and Meta-Analysis. Rheumatology 2021, 60, 60–72. [Google Scholar] [CrossRef]
- Lv, J.C.; Zhang, L.X. Renal Fibrosis: Mechanisms and Therapies. Adv. Exp. Med. Biol. 2019, 1165, 3–15. [Google Scholar] [CrossRef]
- Hussein, M.M.; Mooij, J.M.; Roujouleh, H. Tuberculosis and Chronic Renal Disease. Semin. Dial. 2003, 16, 38–44. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/ (accessed on 15 September 2022).
- Al-Aly, Z.; Davis, H.; McCorkell, L.; Soares, L.; Wulf-Hanson, S.; Iwasaki, A.; Topol, E.J. Long COVID Science, Research and Policy. Nat. Med. 2024, 30, 2148–2164. [Google Scholar] [CrossRef]
- Huang, X.; Liang, R.; Liu, Y.; Yu, L.; Yang, M.; Shang, B.; Zhang, H.; Ma, J.; Chen, W.; Wang, D. Incidence, Mortality, and Disability-Adjusted Life Years Due to Silicosis Worldwide, 1990–2019: Evidence from the Global Burden of Disease Study 2019. Environ. Sci. Pollut. Res. 2024, 31, 36910–36924. [Google Scholar] [CrossRef]
- Jamshidi, P.; Danaei, B.; Arbabi, M.; Mohammadzadeh, B.; Khelghati, F.; Akbari Aghababa, A.; Nayebzade, A.; Shahidi Bonjar, A.H.; Centis, R.; Sotgiu, G.; et al. Silicosis and Tuberculosis: A Systematic Review and Meta-Analysis. Pulmonology 2023, 31, 2416791. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, R.; Akugizibwe, P.; Siegfried, N.; Rees, D. The Association between Silica Exposure, Silicosis and Tuberculosis: A Systematic Review and Meta-Analysis. BMC Public Health 2021, 21, 953. [Google Scholar] [CrossRef] [PubMed]
- Siegal, F.P.; Kadowaki, N.; Shodell, M.; Fitzgerald-Bocarsly, P.A.; Shah, K.; Ho, S.; Antonenko, S.; Liu, Y.J. The Nature of the Principal Type 1 Interferon-Producing Cells in Human Blood. Science 1999, 284, 1835–1837. [Google Scholar] [CrossRef]
- Mundra, A.; Yegiazaryan, A.; Karsian, H.; Alsaigh, D.; Bonavida, V.; Frame, M.; May, N.; Gargaloyan, A.; Abnousian, A.; Venketaraman, V. Pathogenicity of Type I Interferons in Mycobacterium tuberculosis. Int. J. Mol. Sci. 2023, 24, 3919. [Google Scholar] [CrossRef]
- Schreiber, G. The Molecular Basis for Differential Type i Interferon Signaling. J. Biol. Chem. 2017, 292, 7285–7294. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of Type I Interferon Responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Moreira-Teixeira, L.; Mayer-Barber, K.; Sher, A.; O’Garra, A. Type I Interferons in Tuberculosis: Foe and Occasionally Friend. J. Exp. Med. 2018, 215, 1273–1285. [Google Scholar] [CrossRef]
- Lee, A.J.; Ashkar, A.A. The Dual Nature of Type I and Type II Interferons. Front. Immunol. 2018, 9, 2061. [Google Scholar] [CrossRef]
- Yang, E.; Li, M.M.H. All About the RNA: Interferon-Stimulated Genes That Interfere with Viral RNA Processes. Front. Immunol. 2020, 11, 3195. [Google Scholar] [CrossRef]
- Boxx, G.M.; Cheng, G. The Roles of Type I Interferon in Bacterial Infection. Cell Host Microbe 2016, 19, 760–769. [Google Scholar] [CrossRef]
- Moreira-Teixeira, L.; Sousa, J.; McNab, F.W.; Torrado, E.; Cardoso, F.; Machado, H.; Castro, F.; Cardoso, V.; Gaifem, J.; Wu, X.; et al. Type I IFN Inhibits Alternative Macrophage Activation during Mycobacterium tuberculosis Infection and Leads to Enhanced Protection in the Absence of IFN-γ Signaling. J. Immunol. 2016, 197, 4714–4726. [Google Scholar] [CrossRef] [PubMed]
- Desvignes, L.; Wolf, A.J.; Ernst, J.D. Dynamic Roles of Type I and Type II Interferons in Early Infection with Mycobacterium tuberculosis. J. Immunol. 2013, 188, 6205–6215. [Google Scholar] [CrossRef] [PubMed]
- Redford, P.S.; Mayer-Barber, K.D.; McNab, F.W.; Stavropoulos, E.; Wack, A.; Sher, A.; O’Garra, A. Influenza A Virus Impairs Control of Mycobacterium tuberculosis Coinfection through a Type I Interferon Receptor-Dependent Pathway. J. Infect. Dis. 2014, 209, 270–274. [Google Scholar] [CrossRef]
- Manca, C.; Tsenova, L.; Bergtold, A.; Freeman, S.; Tovey, M.; Musser, J.M.; Barry Iii, C.E.; Freedman, V.H.; Kaplan, G. Virulence of a Mycobacterium tuberculosis Clinical Isolate in Mice Is Determined by Failure to Induce Th1 Type Immunity and Is Associated with Induction of IFN-α/β. Proc. Natl. Acad. Sci. USA 2001, 98, 5752–5757. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Barbosa, A.M.; Barreira-Silva, P.; Silvestre, R.; Cunha, C.; Carvalho, A.; Rodrigues, F.; Correia-Neves, M.; Castro, A.G.; Torrado, E. Early IL-10 Promotes Vasculature-Associated CD4+ T Cells Unable to Control Mycobacterium tuberculosis Infection. JCI Insight 2021, 6, e150060. [Google Scholar] [CrossRef]
- Wong, E.A.; Evans, S.; Kraus, C.R.; Engelman, K.D.; Maiello, P.; Flores, W.J.; Cadena, A.M.; Klein, E.; Thomas, K.; White, A.G.; et al. IL-10 Impairs Local Immune Response in Lung Granulomas and Lymph Nodes during Early Mycobacterium tuberculosis Infection. J. Immunol. 2020, 204, 644–659. [Google Scholar] [CrossRef]
- Makris, S.; Paulsen, M.; Johansson, C. Type I Interferons as Regulators of Lung Inflammation. Front. Immunol. 2017, 8, 259. [Google Scholar] [CrossRef]
- Mayer-Barber, K.D.; Andrade, B.B.; Oland, S.D.; Amaral, E.P.; Barber, D.L.; Gonzales, J.; Derrick, S.C.; Shi, R.; Kumar, N.P.; Wei, W.; et al. Host-Directed Therapy of Tuberculosis Based on Interleukin-1 and Type I Interferon Crosstalk. Nature 2014, 511, 99–103. [Google Scholar] [CrossRef]
- Conrad, C.; Di Domizio, J.; Mylonas, A.; Belkhodja, C.; Demaria, O.; Navarini, A.A.; Lapointe, A.-K.; French, L.E.; Vernez, M.; Gilliet, M. TNF Blockade Induces a Dysregulated Type I Interferon Response without Autoimmunity in Paradoxical Psoriasis. Nat. Commun. 2018, 9, 25. [Google Scholar] [CrossRef]
- Kadowaki, N.; Antonenko, S.; Lau, J.Y.; Liu, Y.J. Natural Interferon Alpha/Beta-Producing Cells Link Innate and Adaptive Immunity. J. Exp. Med. 2000, 192, 219–226. [Google Scholar] [CrossRef]
- de Paus, R.A.; van Wengen, A.; Schmidt, I.; Visser, M.; Verdegaal, E.M.; van Dissel, J.T.; van de Vosse, E. Inhibition of the Type I Immune Responses of Human Monocytes by IFN-α and IFN-β. Cytokine 2013, 61, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Eshleman, E.M.; Lenz, L.L. Type I Interferons in Bacterial Infections: Taming of Myeloid Cells and Possible Implications for Autoimmunity. Front. Immunol. 2014, 5, 431. [Google Scholar] [CrossRef] [PubMed]
- Eshleman, E.M.; Delgado, C.; Kearney, S.J.; Friedman, R.S.; Lenz, L.L. Down Regulation of Macrophage IFNGR1 Exacerbates Systemic L. Monocytogenes Infection. PLoS Pathog. 2017, 13, e1006388. [Google Scholar] [CrossRef]
- Rayamajhi, M.; Humann, J.; Kearney, S.; Hill, K.K.; Lenz, L.L. Antagonistic Crosstalk between Type I and II Interferons and Increased Host Susceptibility to Bacterial Infections. Virulence 2010, 1, 418–422. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, X.; Pfau, D.; Ling, Y.; Nathan, C.F. Type I Interferon Signaling Mediates Mycobacterium tuberculosis–Induced Macrophage Death. J. Exp. Med. 2021, 218, e20200887. [Google Scholar] [CrossRef]
- Kotov, D.I.; Lee, O.V.; Fattinger, S.A.; Langner, C.A.; Guillen, J.V.; Peters, J.M.; Moon, A.; Burd, E.M.; Witt, K.C.; Stetson, D.B.; et al. Early Cellular Mechanisms of Type I Interferon-Driven Susceptibility to Tuberculosis. Cell 2023, 186, 5536–5553.e22. [Google Scholar] [CrossRef]
- Lee, A.M.; Nathan, C.F. Type I Interferon Exacerbates Mycobacterium tuberculosis Induced Human Macrophage Death. EMBO Rep. 2024, 25, 3064. [Google Scholar] [CrossRef]
- Benard, A.; Sakwa, I.; Schierloh, P.; Andr’, A.; Colom, A.; Mercier, I.; Tailleux, L.; Jouneau, L.; Boudinot, P.; Al-Saati, T.; et al. B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis. Am. J. Respir. Crit. Care Med. 2018, 197, 801–813. [Google Scholar] [CrossRef]
- Wang, J.; Hussain, T.; Zhang, K.; Liao, Y.; Yao, J.; Song, Y.; Sabir, N.; Cheng, G.; Dong, H.; Li, M.; et al. Inhibition of Type i Interferon Signaling Abrogates Early Mycobacterium Bovis Infection. BMC Infect. Dis. 2019, 19, 1031. [Google Scholar] [CrossRef]
- Maertzdorf, J.; Repsilber, D.; Parida, S.K.; Stanley, K.; Roberts, T.; Black, G.; Walzl, G.; Kaufmann, S.H.E. Human Gene Expression Profiles of Susceptibility and Resistance in Tuberculosis. Genes Immun. 2011, 12, 15–22. [Google Scholar] [CrossRef]
- Jean-Baptiste, V.S.E.; Xia, C.Q.; Clare-Salzler, M.J.; Horwitz, M.S. Type 1 Diabetes and Type 1 Interferonopathies: Localization of a Type 1 Common Thread of Virus Infection in the Pancreas. EBioMedicine 2017, 22, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Bloom, C.I.; Graham, C.M.; Berry, M.P.R.; Wilkinson, K.A.; Oni, T.; Rozakeas, F.; Xu, Z.; Rossello-Urgell, J.; Chaussabel, D.; Banchereau, J.; et al. Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy. PLoS ONE 2012, 7, e46191. [Google Scholar] [CrossRef] [PubMed]
- Zak, D.E.; Penn-Nicholson, A.; Scriba, T.J.; Thompson, E.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Hussey, G.D.; et al. A Blood RNA Signature for Tuberculosis Disease Risk: A Prospective Cohort Study. Lancet 2016, 387, 2312–2322. [Google Scholar] [CrossRef] [PubMed]
- Scriba, T.J.; Penn-Nicholson, A.; Shankar, S.; Hraha, T.; Thompson, E.G.; Sterling, D.; Nemes, E.; Darboe, F.; Suliman, S.; Amon, L.M.; et al. Sequential Inflammatory Processes Define Human Progression from M. Tuberculosis Infection to Tuberculosis Disease. PLoS Pathog. 2017, 13, e1006687. [Google Scholar] [CrossRef]
- World Health Organization. Tuberculosis. Available online: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis (accessed on 15 March 2025).
- Diedrich, C.R.; Flynn, J.L. HIV-1/ Mycobacterium tuberculosis Coinfection Immunology: How Does HIV-1 Exacerbate Tuberculosis? Infect. Immun. 2011, 79, 1407–1417. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2021; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Ellis, P.K.; Martin, W.J.; Dodd, P.J. CD4 Count and Tuberculosis Risk in HIV-Positive Adults Not on ART: A Systematic Review and Meta-Analysis. PeerJ 2017, 2017, e4165. [Google Scholar] [CrossRef]
- Suthar, A.B.; Lawn, S.D.; Del Amo, J.; Getahun, H.; Dye, C.; Sculier, D.; Sterling, T.R.; Chaisson, R.E.; Williams, B.G.; Harries, A.D.; et al. Antiretroviral Therapy for Prevention of Tuberculosis in Adults with HIV: A Systematic Review and Meta-Analysis. PLoS Med. 2012, 9, e1001270. [Google Scholar] [CrossRef]
- Lawn, S.D.; Myer, L.; Bekker, L.G.; Wood, R. Burden of Tuberculosis in an Antiretroviral Treatment Programme in Sub-Saharan Africa: Impact on Treatment Outcomes and Implications for Tuberculosis Control. Aids 2006, 20, 1605–1612. [Google Scholar] [CrossRef]
- Schoggins, J.W.; Rice, C.M. Interferon-Stimulated Genes and Their Antiviral Effector Functions. Curr. Opin. Virol. 2011, 1, 519–525. [Google Scholar] [CrossRef]
- Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. A Diverse Array of Gene Products Are Effectors of the Type I Interferon Antiviral Response. Nature 2011, 472, 481–485. [Google Scholar] [CrossRef]
- Soper, A.; Kimura, I.; Nagaoka, S.; Konno, Y.; Yamamoto, K.; Koyanagi, Y.; Sato, K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front. Immunol. 2018, 8, 1823. [Google Scholar] [CrossRef] [PubMed]
- Bosinger, S.E.; Hosiawa, K.A.; Cameron, M.J.; Persad, D.; Ran, L.; Xu, L.; Boulassel, M.-R.R.; Parenteau, M.; Fournier, J.; Rud, E.W.; et al. Gene Expression Profiling of Host Response in Models of Acute HIV Infection. J. Immunol. 2004, 173, 6858–6863. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yu, H.; Li, G.; Li, F.; Ma, J.; Li, J.; Chi, L.; Zhang, L.; Su, L. Type I Interferons Suppress Viral Replication but Contribute to T Cell Depletion and Dysfunction during Chronic HIV-1 Infection. JCI Insight 2017, 2, e94366. [Google Scholar] [CrossRef] [PubMed]
- Dickey, L.L.; Martins, L.J.; Planelles, V.; Hanley, T.M. HIV-1-Induced Type I IFNs Promote Viral Latency in Macrophages. J. Leukoc. Biol. 2022, 112, 1343–1356. [Google Scholar] [CrossRef]
- Woottum, M.; Yan, S.; Sayettat, S.; Grinberg, S.; Cathelin, D.; Bekaddour, N.; Herbeuval, J.-P.; Benichou, S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024, 16, 288. [Google Scholar] [CrossRef]
- O’Brien, M.; Manches, O.; Bhardwaj, N. Plasmacytoid Dendritic Cells in HIV Infection. Adv. Exp. Med. Biol. 2013, 762, 71–107. [Google Scholar] [CrossRef]
- Hardy, G.A.D.; Sieg, S.; Rodriguez, B.; Anthony, D.; Asaad, R.; Jiang, W.; Mudd, J.; Schacker, T.; Funderburg, N.T.; Pilch-Cooper, H.A.; et al. Interferon-α Is the Primary Plasma Type-I IFN in HIV-1 Infection and Correlates with Immune Activation and Disease Markers. PLoS ONE 2013, 8, 56527. [Google Scholar] [CrossRef]
- Su, R.; Sivro, A.; Kimani, J.; Jaoko, W.; Plummer, F.A.; Ball, T.B. Epigenetic Control of IRF1 Responses in HIV-Exposed Seronegative versus HIV-Susceptible Individuals. Blood 2016, 117, 2649–2658. [Google Scholar] [CrossRef]
- Chamekh, M.; Huber, S.A.; Pulliam, L.; Altfeld, M.; Ziegler, S.M. Human Immunodeficiency Virus 1 and Type I Interferons—Where Sex Makes a Difference. Differ. Front. Immunol. 2017, 8, 1224. [Google Scholar] [CrossRef]
- Hardy, G.A.; Sieg, S.F.; Rodriguez, B.; Jiang, W.; Asaad, R.; Lederman, M.M.; Harding, C. V Desensitization to Type I Interferon in HIV-1 Infection Correlates with Markers of Immune Activation and Disease Progression. Blood 2009, 113, 5497–5505. [Google Scholar] [CrossRef]
- Cheng, L.; Ma, J.; Li, J.; Li, D.; Li, G.; Liu, F.; Zhang, Q.; Yu, H.; Yasul, F.; Ye, C.; et al. Blocking IFN1 Signaling Enhances T Cell Recovery and Reduces HIV1 Reservoirs. J. Clin. Investig. 2017, 127, 269–279. [Google Scholar] [CrossRef]
- Fernandez, S.; Tanaskovic, S.; Helbig, K.; Rajasuriar, R.; Kramski, M.; Murray, J.M.; Beard, M.; Purcell, D.; Lewin, S.R.; Price, P.; et al. CD4 + T-Cell Deficiency in HIV Patients Responding to Antiretroviral Therapy Is Associated with Increased Expression of Interferon-Stimulated Genes in CD4 + T Cells. J. Infect. Dis. 2011, 204, 1927–1935. [Google Scholar] [CrossRef] [PubMed]
- Hazenberg, M.D.; Otto, S.A.; Van Benthem, B.H.B.; Roos, M.T.L.; Coutinho, R.A.; Lange, J.M.A.; Hamann, D.; Prins, M.; Miedema, F. Persistent Immune Activation in HIV-1 Infection Is Associated with Progression to AIDS. AIDS 2003, 17, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.L.; Chan, J. Immunology of Tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Girardi, E.; Sañé Schepisi, M.; Goletti, D.; Bates, M.; Mwaba, P.; Yeboah-Manu, D.; Ntoumi, F.; Palmieri, F.; Maeurer, M.; Zumla, A.; et al. The Global Dynamics of Diabetes and Tuberculosis: The Impact of Migration and Policy Implications. Int. J. Infect. Dis. 2017, 56, 45–53. [Google Scholar] [CrossRef]
- Restrepo, B.I. Diabetes and Tuberculosis. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef]
- Hayashi, S.; Chandramohan, D. Risk of Active Tuberculosis among People with Diabetes Mellitus: Systematic Review and Meta-Analysis. Trop. Med. Int. Health 2018, 23, 1058–1070. [Google Scholar] [CrossRef]
- Lin, Y.; Harries, A.; Kumar, A.M.; Critchley, J.A.; van Crevel, R.; Owiti, P.; Dlodlo, R.A.; Dejgaard, A. Management of Diabetes Mellitus-Tuberculosis: A Guide to the Essential Practice; International Union Against Tuberculosis and Lung Disease: Paris, France, 2018; Volume 2018, ISBN 979-10-91287-23-4. [Google Scholar]
- Lönnroth, K.; Roglic, G.; Harries, A.D. Improving Tuberculosis Prevention and Care through Addressing the Global Diabetes Epidemic: From Evidence to Policy and Practice. Lancet Diabetes Endocrinol. 2014, 2, 730–739. [Google Scholar] [CrossRef]
- Krishna, S.; Jacob, J. Diabetes Mellitus and Tuberculosis. In Endotext; Feingold, K., Anawalt, B., Blackman, M., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2021; p. 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570126/ (accessed on 20 November 2024).
- Noubiap, J.; Nansseu, J.; Nyaga, U.; Nkeck, J.; Endomba, F.; Kaze, A.; Agbor, V.; Bigna, J. Global Prevalence of Diabetes in Active Tuberculosis: A Systematic Review and Meta-Analysis of Data from 2·3 Million Patients with Tuberculosis. Lancet Glob. Health 2019, 7, e448–e460. [Google Scholar] [CrossRef]
- Dhamotharaswamy, K.; Selvaraj, H.; Lakshmanaperumal, P.; Sasankan, A.S.; Thangavelu, P.; Menaka, K.; Thangavel, S. Diabetes and TB: Confluence of Two Epidemic and Its Effect on Clinical Presentation. Curr. Diabetes Rev. 2023, 20, e310323215348. [Google Scholar] [CrossRef] [PubMed]
- Alebel, A.; Wondemagegn, A.T.; Tesema, C.; Kibret, G.D.; Wagnew, F.; Petrucka, P.; Arora, A.; Ayele, A.D.; Alemayehu, M.; Eshetie, S. Prevalence of Diabetes Mellitus among Tuberculosis Patients in Sub-Saharan Africa: A Systematic Review and Meta-Analysis of Observational Studies. BMC Infect. Dis. 2019, 19, 254. [Google Scholar] [CrossRef] [PubMed]
- Baghaei, P.; Marjani, M.; Javanmard, P.; Tabarsi, P.; Masjedi, M.R. Diabetes Mellitus and Tuberculosis Facts and Controversies. J. Diabetes Metab. Disord. 2013, 12, 58. [Google Scholar] [CrossRef]
- Bailey, S.L.; Grant, P. “The Tubercular Diabetic”: The Impact of Diabetes Mellitus on Tuberculosis and Its Threat to Global Tuberculosis Control. Clin. Med. 2011, 11, 344–347. [Google Scholar] [CrossRef]
- Jeon, C.Y.; Harries, A.D.; Baker, M.A.; Hart, J.E.; Kapur, A.; Lönnroth, K.; Ottmani, S.-E.; Goonesekera, S.; Murray, M.B. Bi-Directional Screening for Tuberculosis and Diabetes: A Systematic Review. Trop. Med. Int. Health 2010, 15, 1300–1314. [Google Scholar] [CrossRef]
- Xu, G.; Liu, B.; Sun, Y.; Du, Y.; Snetselaar, L.G.; Hu, F.B.; Bao, W. Prevalence of Diagnosed Type 1 and Type 2 Diabetes among US Adults in 2016 and 2017: Population Based Study. BMJ 2018, 361, 1497. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Ruslami, R.; Aarnoutse, R.E.; Alisjahbana, B.; Van Der Ven, A.J.A.M.; Van Crevel, R. Implications of the Global Increase of Diabetes for Tuberculosis Control and Patient Care. Trop. Med. Int. Health 2010, 15, 1289–1299. [Google Scholar] [CrossRef]
- Selvan, P.; Nagesh, N.J.; Vajravelu, L.K.; Akram, C.S.; Karniha, B. A Bidirectional Immunological Relationship between Diabetes Mellitus and Tuberculosis: A Narrative Review. J. Clin. Diagn. Res. 2024, 18, DE01–DE05. [Google Scholar] [CrossRef]
- Yorke, E.; Atiase, Y.; Akpalu, J.; Sarfo-Kantanka, O.; Boima, V.; Dey, I.D. The Bidirectional Relationship between Tuberculosis and Diabetes. Tuberc. Res. Treat. 2017, 2017, 1702578. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, J.; Goddard, A.; Foulis, A.; James, R.F.L.; Lernmark, A.; Pujol-Borrell, R.; Rabinovitch, A.; Somoza, N.; Stewart, T.A. Interferon Expression in the Pancreases of Patients with Type I Diabetes. Diabetes 1995, 44, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Foulis, A.K.; Farquharson, M.A.; Meager, A. Immunoreactive A-Interferon in Insulin-Secreting Β Cells in Type 1 Diabetes Mellitus. Lancet 1987, 330, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Marroqui, L.; Dos Santos, R.S.; de Beeck, O.A.; Coomans de Brachène, A.; Marselli, L.; Marchetti, P.; Eizirik, D.L. Interferon-α Mediates Human Beta Cell HLA Class I Overexpression, Endoplasmic Reticulum Stress and Apoptosis, Three Hallmarks of Early Human Type 1 Diabetes. Diabetologia 2017, 60, 656–667. [Google Scholar] [CrossRef]
- Lombardi, A.; Tsomos, E.; Hammerstad, S.S.; Tomer, Y. Interferon Alpha: The Key Trigger of Type 1 Diabetes. J. Autoimmun. 2018, 94, 7–15. [Google Scholar] [CrossRef]
- Lombardi, A.; Tomer, Y. Interferon Alpha Impairs Insulin Production in Human Beta Cells via Endoplasmic Reticulum Stress. J. Autoimmun. 2017, 80, 48–55. [Google Scholar] [CrossRef]
- Sprooten, J.; Garg, A.D. Type I Interferons and Endoplasmic Reticulum Stress in Health and Disease. In International Review of Cell and Molecular Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 350, pp. 63–118. ISBN 9780128197448. [Google Scholar]
- Marro, B.S.; Legrain, S.; Ware, B.C.; Oldstone, M.B.A. Macrophage IFN-I Signaling Promotes Autoreactive T Cell Infiltration into Islets in Type 1 Diabetes Model. JCI Insight 2019, 4, e125067. [Google Scholar] [CrossRef]
- Lönnrot, M.; Lynch, K.F.; Elding Larsson, H.; Lernmark, Å.; Rewers, M.J.; Törn, C.; Burkhardt, B.R.; Briese, T.; Hagopian, W.A.; She, J.-X.; et al. Respiratory Infections Are Temporally Associated with Initiation of Type 1 Diabetes Autoimmunity: The TEDDY Study. Diabetologia 2017, 60, 1931–1940. [Google Scholar] [CrossRef]
- Morgan, N.G.; Richardson, S.J. Enteroviruses as Causative Agents in Type 1 Diabetes: Loose Ends or Lost Cause? Trends Endocrinol. Metab. 2014, 25, 611–619. [Google Scholar] [CrossRef]
- Richardson, S.J.; Morgan, N.G. Enteroviral Infections in the Pathogenesis of Type 1 Diabetes: New Insights for Therapeutic Intervention. Curr. Opin. Pharmacol. 2018, 43, 11–19. [Google Scholar] [CrossRef]
- Rodriguez-Calvo, T. Enteroviral Infections as a Trigger for Type 1 Diabetes. Curr. Diab. Rep. 2018, 18, 106. [Google Scholar] [CrossRef]
- Rodriguez-Calvo, T. Enterovirus Infection and Type 1 Diabetes: Unraveling the Crime Scene. Clin. Exp. Immunol. 2019, 195, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Mavragani, C.P.; Niewold, T.B.; Chatzigeorgiou, A.; Danielides, S.; Thomas, D.; Kirou, K.A.; Kamper, E.; Kaltsas, G.; Crow, M.K. Increased Serum Type I Interferon Activity in Organ-Specific Autoimmune Disorders: Clinical, Imaging, and Serological Associations. Front. Immunol. 2013, 4, 238. [Google Scholar] [CrossRef]
- Chehadeh, W.; Weill, J.; Vantyghem, M.-C.; Alm, G.; Lefè, J.; Wattré, P.; Hober, D. Increased Level of Interferon-a in Blood of Patients with Insulin-Dependent Diabetes Mellitus: Relationship with Coxsackievirus B Infection. J. Infect. Dis. 2000, 181, 1929–1968. [Google Scholar] [CrossRef]
- Allen, J.S.; Pang, K.; Skowera, A.; Ellis, R.; Rackham, C.; Lozanoska-Ochser, B.; Tree, T.; David, R.; Leslie, G.; Tremble, J.M.; et al. Plasmacytoid Dendritic Cells Are Proportionally Expanded at Diagnosis of Type 1 Diabetes and Enhance Islet Autoantigen Presentation to T-Cells Through Immune Complex Capture. Diabetes 2009, 58, 138–145. [Google Scholar] [CrossRef]
- Hinkmann, C.; Knerr, I.; Hahn, E.G.; Lohmann, T.; Seifarth, C.C. Reduced Frequency of Peripheral Plasmacytoid Dendritic Cells in Type 1 Diabetes. Horm. Metab. Res. 2008, 40, 767–771. [Google Scholar] [CrossRef]
- Chen, X.; Makala, L.H.C.; Jin, Y.; Hopkins, D.; Muir, A.; Garge, N.; Podolsky, R.H.; She, J.-X. Type 1 Diabetes Patients Have Significantly Lower Frequency of Plasmacytoid Dendritic Cells in the Peripheral Blood. Clin. Immunol. 2008, 129, 413–418. [Google Scholar] [CrossRef]
- Richardson, S.J.; Rodriguez-Calvo, T.; Gerling, I.C.; Mathews, C.E.; Kaddis, J.S.; Russell, M.A.; Zeissler, M.; Leete, P.; Krogvold, L.; Dahl-Jørgensen, K.; et al. Islet Cell Hyperexpression of HLA Class I Antigens: A Defining Feature in Type 1 Diabetes. Diabetologia 2016, 59, 2448–2458. [Google Scholar] [CrossRef]
- Russell, M.A.; Richardson, S.J.; Morgan, N.G. The Role of the Interferon/JAK-STAT Axis in Driving Islet HLA-I Hyperexpression in Type 1 Diabetes. Front. Endocrinol. 2023, 14, 1270325. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; Shen, M.; Liang, Y.; Qian, Y.; Dai, H.; Xu, K.; Xu, X.; Lv, H.; Zhang, J.; et al. Interferon-α Promotes MHC I Antigen Presentation of Islet β Cells through STAT1-IRF7 Pathway in Type 1 Diabetes. Immunology 2022, 166, 210–221. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; El-Elaimy, I.A.; Saad Eldien, H.M.; Badr, B.M.; Rabah, D.M.; Badr, G. Blocking Type I Interferon Signaling Rescues Lymphocytes from Oxidative Stress, Exhaustion, and Apoptosis in a Streptozotocin-Induced Mouse Model of Type 1 Diabetes. Oxid. Med. Cell. Longev. 2013, 2013, 148725. [Google Scholar] [CrossRef]
- Osum, K.C.; Burrack, A.L.; Martinov, T.; Sahli, N.L.; Mitchell, J.S.; Tucker, C.G.; Pauken, K.E.; Papas, K.; Appakalai, B.; Spanier, J.A.; et al. Interferon-Gamma Drives Programmed Death-Ligand 1 Expression on Islet β Cells to Limit T Cell Function during Autoimmune Diabetes. Sci. Rep. 2018, 8, 8295. [Google Scholar] [CrossRef]
- Colli, M.L.; Hill, J.L.E.; Marroquí, L.; Chaffey, J.; Dos Santos, R.S.; Leete, P.; Coomans De Brachène, A.; Paula, F.M.M.; Op De Beeck, A.; Castela, A.; et al. PDL1 Is Expressed in the Islets of People with Type 1 Diabetes and Is Up-Regulated by Interferons-α and-γ via IRF1 Induction. EBioMedicine 2018, 36, 367–375. [Google Scholar] [CrossRef]
- Shen, L.; Gao, Y.; Liu, Y.; Zhang, B.; Liu, Q.; Wu, J.; Fan, L.; Ou, Q.; Zhang, W.; Shao, L. PD-1/PD-L Pathway Inhibits M.Tb-Specific CD4+ T-Cell Functions and Phagocytosis of Macrophages in Active Tuberculosis. Sci. Rep. 2016, 6, 38362. [Google Scholar] [CrossRef]
- Reynier, F.; Pachot, A.; Paye, M.; Xu, Q.; Turrel-Davin, F.; Petit, F.; Hot, A.; Auffray, C.; Bendelac, N.; Nicolino, M.; et al. Specific Gene Expression Signature Associated with Development of Autoimmune Type-I Diabetes Using Whole-Blood Microarray Analysis. Genes Immun. 2010, 11, 269–278. [Google Scholar] [CrossRef]
- Bai, J.; Liu, F. The CGAS-CGAMP-STING Pathway: A Molecular Link between Immunity and Metabolism. Diabetes 2019, 68, 1099–1108. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, Z.; Ji, S.; Liu, T.; Zhang, X.; Huang, Y.; Feng, W.; Wang, K.; Wang, J.; Wang, S.; et al. A Distinct Role of STING in Regulating Glucose Homeostasis through Insulin Sensitivity and Insulin Secretion. Proc. Natl. Acad. Sci. USA 2022, 119, e2101848119. [Google Scholar] [CrossRef]
- Sobel, D.; Ahvazi, B.; Pontzer, C. The Role of Type I Interferon Subtypes and Interferon-Gamma in Type I Interferon Diabetes Inhibitory Activity in the NOD Mouse. J. Interferon Cytokine Res. 2016, 36, 238–246. [Google Scholar] [CrossRef]
- Iglesias, M.; Arun, A.; Chicco, M.; Lam, B.; Talbot, C.C.; Ivanova, V.; Lee, W.P.A.; Brandacher, G.; Raimondi, G. Type-I Interferons Inhibit Interleukin-10 Signaling and Favor Type 1 Diabetes Development in Nonobese Diabetic Mice. Front. Immunol. 2018, 9, 1565. [Google Scholar] [CrossRef]
- Badr, B.M.; Moustafa, N.A.; Eldien, H.M.S.; Mohamed, A.O.; Ibrahim, H.M.; El-Elaimy, I.A.; Mahmoud, M.H.; Badr, G. Increased Levels of Type 1 Interferon in a Type 1 Diabetic Mouse Model Induce the Elimination of B Cells from the Periphery by Apoptosis and Increase Their Retention in the Spleen. Cell. Physiol. Biochem. 2015, 35, 137–147. [Google Scholar] [CrossRef]
- Ginsberg, H.; MacCallum, P. The Obesity Metabolic Syndrome and Type 2 Diabetes Mellitus Pandemic: Part I. Increased Cardiovascular Disease Risk and the Importance of Atherogenic Dyslipidemia in Persons with the Metabolic Syndrome and Type 2 Diabetes Mellitus. J. Cardiometabolic Syndr. 2010, 4, 113–119. [Google Scholar] [CrossRef]
- Kim, D.; Chung, H.; Lee, J.E.; Kim, J.; Hwang, J.; Chung, Y. Immunologic Aspects of Dyslipidemia: A Critical Regulator of Adaptive Immunity and Immune Disorders. J. Lipid Atheroscler. 2021, 10, 184–201. [Google Scholar] [CrossRef]
- Martens, G.W.; Arikan, M.C.; Lee, J.; Ren, F.; Vallerskog, T.; Kornfeld, H. Hypercholesterolemia Impairs Immunity to Tuberculosis. Infect. Immun. 2008, 76, 3464–3472. [Google Scholar] [CrossRef]
- Ji, L.; Li, T.; Chen, H.; Yang, Y.; Lu, E.; Liu, J.; Qiao, W.; Chen, H. The Crucial Regulatory Role of Type I Interferon in Inflammatory Diseases. Cell Biosci. 2023, 13, 230. [Google Scholar] [CrossRef]
- Londe, A.C.; Fernandez-Ruiz, R.; Julio, P.R.; Appenzeller, S.; Niewold, T.B. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J. Rheumatol. 2023, 50, 1103–1113. [Google Scholar] [CrossRef]
- Tsokos, G.C. Systemic Lupus Erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef]
- Yang, Y.; Thumboo, J.; Tan, B.H.; Tan, T.T.; Fong, C.H.J.; Ng, H.S.; Fong, K.Y. The Risk of Tuberculosis in SLE Patients from an Asian Tertiary Hospital. Rheumatol. Int. 2017, 37, 1027–1033. [Google Scholar] [CrossRef]
- Erdozain, J.-G.; Ruiz-Irastorza, G.; Egurbide, M.-V.; Martinez-Berriotxoa, A.; Aguirre, C. High Risk of Tuberculosis in Systemic Lupus Erythematosus? Lupus 2006, 15, 232–235. [Google Scholar] [CrossRef]
- Yin Mok, M.; Lo, Y.; Mao Chan, T.; Sing Wong, W.; Sing Lau, C. Tuberculosis in Systemic Lupus Erythematosus in an Endemic Area and the Role of Isoniazid Prophylaxis During Corticosteroid Therapy. J. Rheumatol. 2005, 32, 609–615. [Google Scholar]
- Hardy, R.S.; Raza, K.; Cooper, M.S. Therapeutic Glucocorticoids: Mechanisms of Actions in Rheumatic Diseases. Nat. Rev. Rheumatol. 2020, 16, 133–144. [Google Scholar] [CrossRef]
- Jick, S.S.; Lieberman, E.S.; Rahman, M.U.; Choi, H.K. Glucocorticoid Use, Other Associated Factors, and the Risk of Tuberculosis. Arthritis Care Res. 2006, 55, 19–26. [Google Scholar] [CrossRef]
- Long, W.; Cai, F.; Wang, X.; Zheng, N.; Wu, R. High Risk of Activation of Latent Tuberculosis Infection in Rheumatic Disease Patients. Infect. Dis. 2020, 52, 80–86. [Google Scholar] [CrossRef]
- Christopoulos, A.I.; Diamantopoulos, A.A.; Dimopoulos, P.A.; Goumenos, D.S.; Barbalias, G.A. Risk Factors for Tuberculosis in Dialysis Patients: A Prospective Multi-Center Clinical Trial. BMC Nephrol. 2009, 10, 36. [Google Scholar] [CrossRef]
- Rönnblom, L.; Leonard, D. Interferon Pathway in SLE: One Key to Unlocking the Mystery of the Disease. Lupus Sci. Med. 2019, 6, 270. [Google Scholar] [CrossRef]
- Lee, S.S.J.; Chou, K.J.; Su, I.J.; Chen, Y.S.; Fang, H.C.; Huang, T.S.; Tsai, H.C.; Wann, S.R.; Lin, H.H.; Liu, Y.C. High Prevalence of Latent Tuberculosis Infection in Patients in End-Stage Renal Disease on Hemodialysis: Comparison of QuantiFERON-TB GOLD, ELISPOT, and Tuberculin Skin Test. Infection 2009, 37, 96–102. [Google Scholar] [CrossRef]
- Shin-Jung Lee, S.; Chou, K.-J.; Dou, H.-Y.; Huang, T.-S.; Ni, Y.-Y.; Fang, H.-C.; Tsai, H.-C.; Sy, C.-L.; Chen, J.-K.; Wu, K.-S.; et al. High Prevalence of Latent Tuberculosis Infection in Dialysis Patients Using the Interferon-Release Assay and Tuberculin Skin Test. Clin. J. Am. Soc. Nephrol. 2010, 5, 1451–1457. [Google Scholar] [CrossRef]
- Rogerson, T.E.; Chen, S.; Mbbs, J.K.; Hayen, A.; Craig, J.C.; Sud, K.; Basci, K.K.; Webster, A.C. Tests for Latent Tuberculosis in People with End Stage Kidney Disease: A Systematic Review. Am. J. Kidney Dis. 2012, 61, 33–43. [Google Scholar] [CrossRef]
- Wu, H.; Fu, S.; Zhao, M.; Lu, L.; Lu, Q. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus. Molecules 2017, 22, 30. [Google Scholar] [CrossRef]
- Colonna, L.; Lood, C.; Elkon, K.B. Beyond Apoptosis in Lupus. Curr. Opin. Rheumatol. 2014, 26, 459–466. [Google Scholar] [CrossRef]
- Blanco, P.; Palucka, A.K.; Gill, M.; Pascual, V.; Banchereau, J. Induction of Dendritic Cell Differentiation by IFN-α in Systemic Lupus Erythematosus. Science 2001, 294, 1540–1543. [Google Scholar] [CrossRef]
- Klarquist, J.; Zhou, Z.; Shen, N.; Janssen, E.M. Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenic Players to Therapeutic Tools. Mediators Inflamm. 2016, 2016, 5045248. [Google Scholar] [CrossRef]
- Gerl, V.; Lischka, A.; Panne, D.; Grobmann, P.; Berthold, R.; Hoyer, B.; Biesen, R.; Bruns, A.; Alexander, T.; Jacobi, A.; et al. Blood Dendritic Cells in Systemic Lupus Erythematosus Exhibit Altered Activation State and Chemokine Receptor Function. Ann. Rheum. Dis. 2010, 69, 1370–1377. [Google Scholar] [CrossRef]
- Tektonidou, M.G.; Dasgupta, A.; Ward, M.M. Risk of End-Stage Renal Disease in Patients with Lupus Nephritis, 1971–2015: A Systematic Review and Bayesian Meta-Analysis. Arthritis Rheumatol. 2017, 68, 1432–1441. [Google Scholar] [CrossRef]
- Satproedprai, N.; Wichukchinda, N.; Suphankong, S.; Inunchot, W.; Kuntima, T.; Kumpeerasart, S.; Wattanapokayakit, S.; Nedsuwan, S.; Yanai, H.; Higuchi, K.; et al. Diagnostic Value of Blood Gene Expression Signatures in Active Tuberculosis in Thais: A Pilot Study. Genes Immun. 2015, 16, 253–260. [Google Scholar] [CrossRef]
- Luan, P.; Zhuang, J.; Zou, J.; Li, H.; Shuai, P.; Xu, X.; Zhao, Y.; Kou, W.; Ji, S.; Peng, A.; et al. NLRC5 Deficiency Ameliorates Diabetic Nephropathy through Alleviating Inflammation. FASEB J. 2018, 32, 1070–1084. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, L.; Xia, X.; Wang, H.Y.; Legras, X.; Hong, J.; Ji, J.; Shen, P.; Zheng, S.; Chen, Z.J.; et al. NLRC5 Negatively Regulates the NF-KappaB and Type I Interferon Signaling Pathways. Cell 2010, 141, 483–496. [Google Scholar] [CrossRef]
- Benko, S.; Kovács, E.G.; Hezel, F.; Kufer, T.A. NLRC5 Functions beyond MHC I Regulation-What Do We Know so Far? Front. Immunol. 2017, 8, 150. [Google Scholar] [CrossRef]
- Palau, L.; Menez, S.; Rodriguez-sanchez, J.; Novick, T.; Delsante, M.; Mcmahon, B.A.; Atta, M.G. HIV-Associated Nephropathy: Links, Risks and Management. HIV/AIDS-Res. Palliat. Care 2018, 10, 73–81. [Google Scholar] [CrossRef]
- Wyatt, C.M. Kidney Disease and HIV Infection. Top. Antivir. Med. 2017, 25, 13–16. [Google Scholar]
- Reutens, A.T. Epidemiology of Diabetic Kidney Disease. Med. Clin. NA 2013, 97, 1–18. [Google Scholar] [CrossRef]
- Betjes, M.G.H. Immune Cell Dysfunction and Inflammation in End-Stage Renal Disease. Nat. Rev. Nephrol. 2013, 9, 255–265. [Google Scholar] [CrossRef]
- Dobler, C.C.; McDonald, S.P.; Marks, G.B. Risk of Tuberculosis in Dialysis Patients: A Nationwide Cohort Study. PLoS ONE 2011, 6, e29563. [Google Scholar] [CrossRef]
- Chia, S.; Karim, M.; Elwood, R.K.; FitzGerald, J.M. Risk of Tuberculosis in Dialysis Patients: A Population-Based Study. Int. J. Tuberc. Lung Dis. 1998, 2, 989–991. [Google Scholar]
- Ruzangi, J.; Iwagami, M.; Smeeth, L.; Mangtani, P.; Nitsch, D. The Association between Chronic Kidney Disease and Tuberculosis; A Comparative Cohort Study in England. BMC Nephrol. 2020, 21, 420. [Google Scholar] [CrossRef]
- Kimmel, P.L.; Cohen, D.J.; Abraham, A.A.; Bodi, I.; Schwartz, A.M.; Phillips, T.M. Upregulation of MHC Class II, Interferon-α and Interferon-γ Receptor Protein Expression in HIV -Associated Nephropathy. Nephrol. Dial. Transplant. 2003, 18, 285–292. [Google Scholar] [CrossRef]
- Castellano, G.; Cafiero, C.; Divella, C.; Sallustio, F.; Gigante, M.; Pontrelli, P.; De Palma, G.; Rossini, M.; Grandaliano, G.; Gesualdo, L. Local Synthesis of Interferon-Alpha in Lupus Nephritis Is Associated with Type I Interferons Signature and LMP7 Induction in Renal Tubular Epithelial Cells. Arthritis Res. Ther. 2015, 17, 72. [Google Scholar] [CrossRef]
- Leung, C.C.; Lam, T.H.; Chan, W.M.; Yew, W.W.; Ho, K.S.; Leung, G.M.; Law, W.S.; Tam, C.M.; Chan, C.K.; Chang, K.C. Diabetic Control and Risk of Tuberculosis: A Cohort Study. Am. J. Epidemiol. 2008, 167, 1486–1494. [Google Scholar] [CrossRef]
- Rupani, M.P. A Mixed-Methods Study on Impact of Silicosis on Tuberculosis Treatment Outcomes and Need for TB-Silicosis Collaborative Activities in India. Sci. Rep. 2023, 13, 2785. [Google Scholar] [CrossRef]
- Zhou, J.; Zhuang, Z.; Li, J.; Feng, Z. Significance of the CGAS-STING Pathway in Health and Disease. Int. J. Mol. Sci. 2023, 24, 13316. [Google Scholar] [CrossRef]
- Benmerzoug, S.; Rose, S.; Bounab, B.; Gosset, D.; Duneau, L.; Chenuet, P.; Mollet, L.; Le Bert, M.; Lambers, C.; Geleff, S.; et al. STING-Dependent Sensing of Self-DNA Drives Silica-Induced Lung Inflammation. Nat. Commun. 2018, 9, 5226. [Google Scholar] [CrossRef]
- Giordano, G.; van den Brûle, S.; Lo Re, S.; Triqueneaux, P.; Uwambayinema, F.; Yakoub, Y.; Couillin, I.; Ryffel, B.; Michiels, T.; Renauld, J.C.; et al. Type I Interferon Signaling Contributes to Chronic Inflammation in a Murine Model of Silicosis. Toxicol. Sci. 2010, 116, 682–692. [Google Scholar] [CrossRef]
- Khayat, M.; Fan, H.; Vali, Y. COVID-19 Promoting the Development of Active Tuberculosis in a Patient with Latent Tuberculosis Infection: A Case Report. Respir. Med. Case Rep. 2021, 32, 101344. [Google Scholar] [CrossRef]
- Leonso, A.A.; Brown, K.; Prol, R.; Rawat, S.; Khunger, A.; Bromberg, R. A Rare Case of Latent Tuberculosis Reactivation Secondary to a COVID-19 Infection. Infect. Dis. Rep. 2022, 14, 446–452. [Google Scholar] [CrossRef]
- Semnani, K.; Sohrabi, M.; Ebrahimi Alavijeh, P.; SeyedAlinaghi, S.; Esmaeili, S.; Halabchi, F.; Alizadeh, Z.; Salami, A.; Salami Khaneshan, A. Prior COVID-19 Infection among Newly Diagnosed Tuberculosis Patients in a Tertiary Care Center in Tehran: A Case-Control Study. Immun. Inflamm. Dis. 2024, 12, e1275. [Google Scholar] [CrossRef]
- Alemu, A.; Bitew, Z.W.; Seid, G.; Diriba, G.; Gashu, E.; Berhe, N.; Mariam, S.H.; Gumi, B. Tuberculosis in Individuals Who Recovered from COVID-19: A Systematic Review of Case Reports. PLoS ONE 2022, 17, e0277807. [Google Scholar] [CrossRef]
- Dormans, T.; Zandijk, E.; Stals, F. Late Tuberculosis Reactivation After Severe COVID-19. Eur. J. Case Rep. Intern. Med. 2024, 11, 004406. [Google Scholar] [CrossRef]
- Queiroz, M.A.; Brito, W.R.; Pereira, K.A.; Pereira, L.M.; Amoras, E.D.; Lima, S.S.; Santos, E.F.; Costa, F.P.; Sarges, K.M.; Cantanhede, M.H.; et al. Severe COVID-19 and Long COVID Are Associated with High Expression of STING, CGAS and IFN-α. Sci. Rep. 2024, 14, 4974. [Google Scholar] [CrossRef]
- Galbraith, M.D.; Kinning, K.T.; Sullivan, K.D.; Araya, P.; Smith, K.P.; Granrath, R.E.; Shaw, J.R.; Baxter, R.; Jordan, K.R.; Russell, S.; et al. Specialized Interferon Action in COVID-19. Proc. Natl. Acad. Sci. USA 2022, 119, e2116730119. [Google Scholar] [CrossRef]
- Ribero, M.S.; Jouvenet, N.; Dreux, M.; Nisole, S. Interplay between SARS-CoV-2 and the Type I Interferon Response. PLoS Pathog. 2020, 16, e1008737. [Google Scholar] [CrossRef]
- Booysen, P.; Wilkinson, K.A.; Sheerin, D.; Waters, R.; Coussens, A.K.; Wilkinson, R.J. Immune Interaction between SARS-CoV-2 and Mycobacterium tuberculosis. Front. Immunol. 2023, 14, 1254206. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Laing, A.G.; Lorenc, A.; del Molino del Barrio, I.; Das, A.; Fish, M.; Monin, L.; Muñoz-Ruiz, M.; McKenzie, D.R.; Hayday, T.S.; Francos-Quijorna, I.; et al. A Dynamic COVID-19 Immune Signature Includes Associations with Poor Prognosis. Nat. Med. 2020, 26, 1623–1635. [Google Scholar] [CrossRef]
- Zhou, R.; To, K.K.W.; Wong, Y.C.; Liu, L.; Zhou, B.; Li, X.; Huang, H.; Mo, Y.; Luk, T.Y.; Lau, T.T.K.; et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity 2020, 53, 864–877.e5. [Google Scholar] [CrossRef]
- Sodeifian, F.; Nikfarjam, M.; Kian, N.; Mohamed, K.; Rezaei, N. The Role of Type I Interferon in the Treatment of COVID-19. J. Med. Virol. 2021, 94, 63. [Google Scholar] [CrossRef]
- Jeong, H.W.; Lee, J.S.; Ko, J.H.; Hong, S.; Oh, S.T.; Choi, S.; Peck, K.R.; Yang, J.H.; Chung, S.; Kim, S.H.; et al. Corticosteroids Reduce Pathologic Interferon Responses by Downregulating STAT1 in Patients with High-Risk COVID-19. Exp. Mol. Med. 2023, 55, 653–664. [Google Scholar] [CrossRef]
- Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for Potential Pathogenesis of SARS-CoV-2 Infection–a Review of Immune Changes in Patients with Viral Pneumonia. Emerg. Microbes Infect. 2020, 9, 727–732. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef]
- Gopalaswamy, R.; Subbian, S. Corticosteroids for COVID-19 Therapy: Potential Implications on Tuberculosis. Int. J. Mol. Sci. 2021, 22, 3773. [Google Scholar] [CrossRef]
- Mazewski, C.; Perez, R.E.; Fish, E.N.; Platanias, L.C. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front. Immunol. 2020, 11, 606456. [Google Scholar] [CrossRef]
- Rönnblom, L. The Type i Interferon System in the Etiopathogenesis of Autoimmune Diseases. Ups. J. Med. Sci. 2011, 116, 227–237. [Google Scholar] [CrossRef]
- Benhalima, K.; Mathieu, C.; Van Wijngaerden, E. Disorders of Glucose Metabolism in Human Immunodeficiency Virus-Infected Patients. Acta Clin. Belg. 2008, 63, 227–234. [Google Scholar] [CrossRef]
- Larson, R.; Capili, B.; Eckert-Norton, M.; Colagreco, J.P.; Anastasi, J.K. Disorders of Glucose Metabolism in the Context of Human Immunodeficiency Virus Infection. J. Am. Acad. Nurse Pract. 2006, 18, 92–103. [Google Scholar] [CrossRef]
- Giosuè, S.; Casarini, M.; Alemanno, L.; Galluccio, G.; Mattia, P.; Pedicelli, G.; Rebek, L.; Bisetti, A.; Ameglio, F. Effects of Aerosolized Interferon-α in Patients with Pulmonary Tuberculosis. Am. J. Respir. Crit. Care Med. 1998, 158, 1156–1162. [Google Scholar] [CrossRef]
- Palmero, D.; Eiguchi, K.; Rendo, P.; Zorrilla, L.C.; Abbate, E.; Montaner, L.J.G. Phase II Trial of Recombinant Interferon- α 2b in Patients with Advanced Intractable Multidrug-Resistant Pulmonary Tuberculosis: Long-Term Follow-Up. Int. J. Tuberc. Lung Dis. 1999, 3, 214–218. [Google Scholar]
- Rivas-Santiago, C.E.; Guerrero, G.G. IFN- α Boosting of Mycobacterium Bovis Bacillus Calmette Güerin-Vaccine Promoted Th1 Type Cellular Response and Protection against M. Tuberculosis Infection. Biomed. Res. Int. 2017, 2017, 8796760. [Google Scholar] [CrossRef]
- Zarogoulidis, P.; Kioumis, I.; Papanas, N.; Manika, K.; Kontakiotis, T.; Papagianis, A.; Zarogoulidis, K. The Effect of Combination IFN-Alpha-2a with Usual Antituberculosis Chemotherapy in Non-Responding Tuberculosis and Diabetes Mellitus: A Case Report and Review of the Literature. J. Chemother. 2012, 24, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, G.S.; Nasr, S.H.; Stokes, M.B.; D’Agati, V.D. Treatment with IFN-α,-β,or-γ Is Associated with Collapsing Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 607–615. [Google Scholar] [CrossRef]
- Iacopo, G.; Allinovi, M.; Caroti, L.; Cirami, L.C. Broad Spectrum of Interferon-Related Nephropathies-Glomerulonephritis, Systemic Lupus Erythematosus-like Syndrome and Thrombotic Microangiopathy: A Case Report and Review of Literature. World J. Nephrol. 2019, 8, 109–117. [Google Scholar] [CrossRef]
- Laurin, L.P.; Gasim, A.M.; Derebail, V.K.; McGregor, J.A.G.; Kidd, J.M.; Hogan, S.L.; Poulton, C.J.; Detwiler, R.K.; Jennette, J.C.; Falk, R.J.; et al. Renal Survival in Patients with Collapsing Compared with Not Otherwise Specified FSGS. Clin. J. Am. Soc. Nephrol. 2016, 11, 1752–1759. [Google Scholar] [CrossRef]
- Llibre, A.; Bilek, N.; Bondet, V.; Darboe, F.; Mbandi, S.K.; Penn-Nicholson, A.; Hatherill, M.; Rozenberg, F.; Scriba, T.J.; Duffy, D. Plasma Type I IFN Protein Concentrations in Human Tuberculosis. Front. Cell. Infect. Microbiol. 2019, 9, 296. [Google Scholar] [CrossRef]
- de los Milagros Bürgi, M.; Prieto, C.; Etcheverrigaray, M.; Kratje, R.; Oggero, M.; Bollati-Fogolín, M. WISH Cell Line: From the Antiviral System to a Novel Reporter Gene Assay to Test the Potency of Human IFN-α and IFN-β. J. Immunol. Methods 2012, 381, 70–74. [Google Scholar] [CrossRef]
- Huijser, E.; Göpfert, J.; Brkic, Z.; Van Helden-Meeuwsen, C.G.; Jansen, S.; Mandl, T.; Olsson, P.; Schrijver, B.; Schreurs, M.W.J.; Van Daele, P.L.A.; et al. Serum Interferon-A2 Measured by Single-Molecule Array Associates with Systemic Disease Manifestations in Sjögren’s Syndrome. Rheumatology 2022, 61, 2156–2166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutua, F.; Su, R.-C.; Ball, T.B.; Kiazyk, S. The Role of Type I Interferons in Tuberculosis and in Tuberculosis-Risk-Associated Comorbidities. Infect. Dis. Rep. 2025, 17, 81. https://doi.org/10.3390/idr17040081
Mutua F, Su R-C, Ball TB, Kiazyk S. The Role of Type I Interferons in Tuberculosis and in Tuberculosis-Risk-Associated Comorbidities. Infectious Disease Reports. 2025; 17(4):81. https://doi.org/10.3390/idr17040081
Chicago/Turabian StyleMutua, Florence, Ruey-Chyi Su, Terry Blake Ball, and Sandra Kiazyk. 2025. "The Role of Type I Interferons in Tuberculosis and in Tuberculosis-Risk-Associated Comorbidities" Infectious Disease Reports 17, no. 4: 81. https://doi.org/10.3390/idr17040081
APA StyleMutua, F., Su, R.-C., Ball, T. B., & Kiazyk, S. (2025). The Role of Type I Interferons in Tuberculosis and in Tuberculosis-Risk-Associated Comorbidities. Infectious Disease Reports, 17(4), 81. https://doi.org/10.3390/idr17040081