Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = magnetoelectric properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3371 KiB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 193
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

16 pages, 2966 KiB  
Article
Finite Element Analysis of Strain-Mediated Direct Magnetoelectric Coupling in Multiferroic Nanocomposites for Material Jetting Fabrication of Tunable Devices
by William Paul Flynn, Sean Garnsey, Amar S. Bhalla and Ruyan Guo
J. Compos. Sci. 2025, 9(5), 228; https://doi.org/10.3390/jcs9050228 - 1 May 2025
Viewed by 746
Abstract
Magnetoelectric composites enable strain-mediated coupling between magnetic and electric fields, supporting applications in sensors, actuators, and tunable devices. This study presents a finite element modeling framework for simulating the direct magnetoelectric effect in core–shell and layered nanocomposites fabricated by material jetting (inkjet printing). [...] Read more.
Magnetoelectric composites enable strain-mediated coupling between magnetic and electric fields, supporting applications in sensors, actuators, and tunable devices. This study presents a finite element modeling framework for simulating the direct magnetoelectric effect in core–shell and layered nanocomposites fabricated by material jetting (inkjet printing). The model incorporates nonlinear magnetostrictive behavior of cobalt ferrite nanoparticles and size-dependent piezoelectric properties of barium titanate, allowing efficient simulation of complex interfacial strain transfer. Results show a strong dependence of coupling on field orientation, particle arrangement, and interfacial geometry. Simulations of printed droplet geometries, including coffee ring droplet morphologies, reveal enhanced performance through increased surface area and directional alignment. These findings highlight the potential of material jetting for customizable, high-performance magnetoelectric devices and provide a foundation for simulation-guided design. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

19 pages, 29431 KiB  
Article
Hybrid Magneto-Responsive Composites Made from Recyclable Components: Tunable Electrical Properties Under Magnetic and Mechanical Fields
by Ioan Bica, Eugen Mircea Anitas, Paula Sfirloaga, Liviu Chirigiu and Andrei Mihai Gavrilovici
J. Compos. Sci. 2025, 9(5), 219; https://doi.org/10.3390/jcs9050219 - 29 Apr 2025
Viewed by 497
Abstract
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and [...] Read more.
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and highly tunable method for producing high-performance MMPs. hMRCs are integrated into flat capacitors, and their electrical capacitance (C), resistance (R), dielectric permittivity (ϵ), and electrical conductivity (σ) are investigated under a static magnetic field, uniform force field, and an alternating electric field. The experimental results reveal that the electrical properties of hMRCs are dependent on the volume fractions of MMPs and microfibers in the fabric, as well as the applied magnetic flux density (B) and compression forces (F). C shows an increase with both B and F, while R decreases due to improved conductive pathways formed by alignment of MMPs. σ is found to be highly tunable, with increases of up to 300% under combined field effects. In the same conditions, C increases up to 75%, and R decreases up to 80%. Thus, by employing plasma-synthesized MMPs, and commercially available recyclable lard and cotton fabrics, this study demonstrates an eco-friendly, low-cost approach to designing multifunctional smart materials. The tunable electrical properties of hMRCs open new possibilities for adaptive sensors, energy storage devices, and magnetoelectric transducers. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

14 pages, 3299 KiB  
Article
Enhancement of Magnetoelectric Effect in Layered Polymer Composites by Zn2+ and Ni2+ Substitution in CoFe2O4 Nanoparticles
by Liudmila A. Makarova, Michail T. Musaev, Margarita R. Kalandiia, Sergey A. Kostrov, Elena Yu. Kramarenko, Vitalii D. Salnikov, Damir E. Gavrilov, Aleksander S. Omelyanchik, Valeria V. Rodionova and Nikolai S. Perov
Polymers 2025, 17(9), 1183; https://doi.org/10.3390/polym17091183 - 26 Apr 2025
Viewed by 576
Abstract
Two-layered structures consisting of piezopolymer and magnetic elastomer were investigated as magnetoelectric material. Three types of magnetic elastomer based on cobalt ferrite (CoFe2O4) and Ni- or Zn-substituted CoFe2O4 nanoparticles were used as magnetically sensitive layers. Cobalt [...] Read more.
Two-layered structures consisting of piezopolymer and magnetic elastomer were investigated as magnetoelectric material. Three types of magnetic elastomer based on cobalt ferrite (CoFe2O4) and Ni- or Zn-substituted CoFe2O4 nanoparticles were used as magnetically sensitive layers. Cobalt ferrite nanoparticles are considered one of the most promising metal-oxide nanomaterials because of their favorable magnetic properties, such as high saturation magnetization and magnetic anisotropy. The substitution of Co2+ in cobalt ferrite with other transition metals allows for additional tailoring of these properties. The modified magnetic behavior of the substituted CoFe2O4 nanoparticles directly influenced the magnetic properties of magnetic elastomers and, consequently, the magnetoelectric response of composite structures. In this case, the resonant frequency of the magnetoelectric effect remained largely independent of the type of magnetic nanoparticles in the magnetic elastomer layer but its magnitude increased upon Zn substitution up to ~107 mV·cm−1·Oe−1. These findings highlight the potential of chemically engineered magnetic properties of CoFe2O4 nanoparticles for manufacturing magnetoelectric composites to expand their applications in energy harvesting and sensors. Full article
(This article belongs to the Special Issue Challenges and Trends in Polymer Composites—2nd Edition)
Show Figures

Figure 1

15 pages, 10837 KiB  
Article
Automated Laboratory Stand for Determining the Cogging Torque of a Small Permanent Magnet Electric Machine Using the MATLAB Environment
by Paweł Strączyński, Sebastian Różowicz and Krzysztof Baran
Energies 2025, 18(5), 1047; https://doi.org/10.3390/en18051047 - 21 Feb 2025
Cited by 1 | Viewed by 526
Abstract
The phenomenon of the occurrence of cogging torque is one of the basic disadvantages of permanent magnet motors. An important aspect of designing a machine with magnetoelectric excitation is the formation of the magnetic circuit in such a way as to reduce this [...] Read more.
The phenomenon of the occurrence of cogging torque is one of the basic disadvantages of permanent magnet motors. An important aspect of designing a machine with magnetoelectric excitation is the formation of the magnetic circuit in such a way as to reduce this negative phenomenon. Due to the tolerances of the production of motor components, an important part of the design work is research into the properties of the designed machines on the built prototypes. This paper presents concepts and implementations for the construction of an automated laboratory station to determine the course of cogging torque. The measurement method, the concept, and implementations of the construction of the laboratory station are presented in this paper. The paper is summarized by a discussion of the results of laboratory tests on selected permanent magnet motors. Full article
(This article belongs to the Special Issue Measurement Systems for Electric Machines and Motor Drives)
Show Figures

Figure 1

14 pages, 5540 KiB  
Article
Wide-Temperature-Range Tachometer Based on a Magnetoelectric Composite
by Boyu Xin, Qianshi Zhang, Lizhi Hu, Anran Gao, Chungang Duan, Zhanjiang Gong, Erdong Song, Likai Sun and Jie Jiao
Sensors 2025, 25(3), 829; https://doi.org/10.3390/s25030829 - 30 Jan 2025
Viewed by 843
Abstract
In this work, a tachometer based on a Metglas/PZT/Metglas magnetoelectric (ME) composite was developed to achieve high-precision rotational speed measurement over a wide temperature range (−70 °C to 160 °C). The tachometer converts external magnetic signals into electrical signals through the ME effect [...] Read more.
In this work, a tachometer based on a Metglas/PZT/Metglas magnetoelectric (ME) composite was developed to achieve high-precision rotational speed measurement over a wide temperature range (−70 °C to 160 °C). The tachometer converts external magnetic signals into electrical signals through the ME effect and operates stably in extreme temperature environments. COMSOL Multiphysics software was used for simulation analysis to investigate the ME response characteristics of the composite in such environments. To evaluate the properties of the ME composite under different conditions, its response characteristics at various frequencies, DC bias, and temperatures were systematically investigated. A permanent magnet and a DC motor were used to simulate gear rotation, and the voltage output was analyzed by adjusting the position between the sensor and the DC motor. The results show that the measured values of the ME tachometer closely match the set values, and the tachometer demonstrates high measurement accuracy within the range of 480 to 1260 revolutions per minute (rpm). Additionally, the properties of the ME composite at different temperatures were examined. In the temperature range from −70 °C to 160 °C, the ME coefficients exhibit good regularity and stability, with the measured trend closely matching the simulation results, ensuring the reliability and accuracy of the ME tachometer. To verify its practicality, the measurement capability of the ME tachometer was comprehensively tested under extreme temperature conditions. The results show that in high-temperature environments, the tachometer can accurately measure speed while maintaining a high signal-to-noise ratio (SNR), demonstrating excellent anti-interference ability. The proposed ME tachometer shows promising application potential in extreme temperature conditions, particularly in complex industrial environments that require high reliability and precision. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 5222 KiB  
Article
High-Performance CP Magneto-Electric Dipole Antenna Fed by Printed Ridge Gap Waveguide at Millimeter-Wave
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Peyman PourMohammadi, Peng Fei and Tayeb A. Denidni
Sensors 2024, 24(24), 8183; https://doi.org/10.3390/s24248183 - 21 Dec 2024
Cited by 2 | Viewed by 1406
Abstract
This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which [...] Read more.
This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which operates in a quasi-transverse electromagnetic (Q-TEM) mode. Fabricated on Rogers RT 3003 substrate, selected for its low-loss and cost-effective properties at high frequencies, the design significantly enhances both impedance and axial ratio (AR) bandwidths. The antenna achieves an impressive impedance bandwidth of 31% (25.24–34.50 GHz) and an AR bandwidth of 24.9% (26.40–33.91 GHz), with a peak gain of up to 8.4 dBic, demonstrating a high cross-polarization level. The experimental results validate the high-performance characteristics of the antenna, making it a robust candidate for next-generation wireless communication systems requiring CP capabilities. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

11 pages, 597 KiB  
Article
Magnetic Field Effect on the Electric and Dielectric Properties of the Linear Magnetoelectric Compound Co4Nb2O9
by Iliana N. Apostolova, Angel T. Apostolov and Julia M. Wesselinowa
Materials 2024, 17(23), 5719; https://doi.org/10.3390/ma17235719 - 22 Nov 2024
Cited by 1 | Viewed by 822
Abstract
Using Green’s function theory and a microscopic model, the multiferroic properties of Co4Nb2O9 are investigated theoretically. There are some discrepancies in the discussion of the electric and dielectric behavior of CNO with and without external magnetic fields. We [...] Read more.
Using Green’s function theory and a microscopic model, the multiferroic properties of Co4Nb2O9 are investigated theoretically. There are some discrepancies in the discussion of the electric and dielectric behavior of CNO with and without external magnetic fields. We try to clarify them. It is observed that the polarization and the dielectric constant do not show a peak at the antiferromagnetic phase transition temperature TN without an external magnetic field h. But applying h, there appears a peak around the Neel temperature TN, which increases with increasing h and then shifts to lower temperatures. The magneto-dielectric coefficient MD(T,h) is also calculated. Moreover, the magnetization rises with an increasing external electric field below the Neel temperature. This shows strong magnetoelectric coupling in Co4Nb2O9. The obtained results are compared with the existing experimental data. There is a good qualitative agreement. Full article
(This article belongs to the Special Issue Piezoelectrics and Ferroelectrics for End Users)
Show Figures

Figure 1

22 pages, 7670 KiB  
Article
Structural, Magnetic, and Dielectric Properties of Laser-Ablated CoFe2O4/BaTiO3 Bilayers Deposited over Highly Doped Si(100)
by João Oliveira, Bruna M. Silva, Tiago Rebelo, Pedro V. Rodrigues, Rosa M. F. Baptista, Manuel J. L. F. Rodrigues, Michael Belsley, Neenu Lekshmi, João P. Araújo, Jorge A. Mendes, Francis Leonard Deepak and Bernardo G. Almeida
Materials 2024, 17(23), 5707; https://doi.org/10.3390/ma17235707 - 22 Nov 2024
Viewed by 1117
Abstract
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO3 (BTO) and CoFe2O4 (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO3 layer thickness (50–220 nm) on the films’ [...] Read more.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO3 (BTO) and CoFe2O4 (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO3 layer thickness (50–220 nm) on the films’ structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO3 phase and a cubic spinel CoFe2O4 layer. Structural analysis revealed compression of the CoFe2O4 unit cell along the growth direction, while the BaTiO3 layer showed a tetragonal distortion, more pronounced in thinner BTO layers. These strain effects, attributed to the mechanical interaction between both layers, induced strain-dependent wasp-waisted behavior in the films’ magnetic hysteresis cycles. The strain effects gradually relaxed with increasing BaTiO3 thickness. Raman spectroscopy and second harmonic generation studies confirmed BTO’s non-centrosymmetric ferroelectric structure at room temperature. The displayed dielectric permittivity dispersion was modeled using the Havriliak–Negami function combined with a conductivity term. This analysis yielded relaxation times, DC conductivities, and activation energies. The observed BTO relaxation time behavior, indicative of small-polaron transport, changed significantly at the BTO ferroelectric Curie temperature (Tc), presenting activation energies Eτ in the 0.1–0.3 eV range for T < Tc and Eτ > 0.3 eV for T > Tc. The BTO thickness-dependent Tc behavior exhibited critical exponents ν ~ 0.82 consistent with the 3D random Ising universality class, suggesting local disorder and inhomogeneities in the films. This was attributed to the composite structure of BTO grains, comprising an inner bulk-like structure, a gradient strained layer, and a disordered surface layer. DC conductivity analysis indicated that CoFe2O4 conduction primarily occurred through hopping in octahedral sites. These findings provide crucial insights into the dynamic dielectric behavior of multiferroic bilayer thin films at the nanoscale, enhancing their potential for application in emerging Si electronics-compatible magneto-electric technologies. Full article
Show Figures

Graphical abstract

12 pages, 4520 KiB  
Article
Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage
by Mahmoud Awad and Igor Zhitomirsky
Materials 2024, 17(21), 5249; https://doi.org/10.3390/ma17215249 - 28 Oct 2024
Cited by 1 | Viewed by 1140
Abstract
This investigation focused on the fabrication of ceramic ferrimagnetic CuFe2O4–conductive polypyrrole (PPy) composites for energy storage. CuFe2O4 with a crystal size of 20–30 nm and saturation magnetization of 31.4 emu g−1 was prepared by hydrothermal [...] Read more.
This investigation focused on the fabrication of ceramic ferrimagnetic CuFe2O4–conductive polypyrrole (PPy) composites for energy storage. CuFe2O4 with a crystal size of 20–30 nm and saturation magnetization of 31.4 emu g−1 was prepared by hydrothermal synthesis, and PPy was prepared by chemical polymerization. High-active-mass composite electrodes were fabricated for energy storage in supercapacitors for operation in a sodium sulfate electrolyte. The addition of PPy to CuFe2O4 resulted in a decrease in charge transfer resistance and an increase in capacitance in the range from 1.20 F cm−2 (31 F g−1) to 4.52 F cm−2 (117.4 F g−1) at a 1 mV s−1 sweep rate and from 1.17 F cm−2 (29.9 F g−1) to 4.60 F cm−2 (120.1 F g−1) at a 3 mA cm−2 current density. The composites showed higher capacitance than other magnetic ceramic composites of the same mass containing PPy in the same potential range and exhibited improved cyclic stability. The magnetic behavior of the composites was influenced by the magnetic properties of ferrimagnetic CuFe2O4 and paramagnetic PPy. The composites showed a valuable combination of capacitive and magnetic properties and enriched materials science of magnetic supercapacitors for novel applications based on magnetoelectric and magnetocapacitive properties. Full article
Show Figures

Figure 1

8 pages, 303 KiB  
Article
Multiferroic and Phonon Properties of the Double Perovskite Pr2FeAlO6
by Angel T. Apostolov, Iliana N. Apostolova and Julia M. Wesselinowa
Materials 2024, 17(19), 4785; https://doi.org/10.3390/ma17194785 - 29 Sep 2024
Cited by 1 | Viewed by 1018
Abstract
With the help of a microscopic model and Green’s function technique, we studied the multiferroic and phonon properties of the recently reported new multiferroic Pr2FeAlO6 (PFAO) compound, which belongs to the double perovskite A2BB’O6 family. The magnetization [...] Read more.
With the help of a microscopic model and Green’s function technique, we studied the multiferroic and phonon properties of the recently reported new multiferroic Pr2FeAlO6 (PFAO) compound, which belongs to the double perovskite A2BB’O6 family. The magnetization decreases with the increase in temperature and disappears at the ferromagnetic Curie temperature TCFM. The polarization increases with the application of an external magnetic field, indicating strong magnetoelectric coupling and confirming the multiferroic behavior of PFAO. In the curves of dependence of the phonon energy and their damping with respect to temperature, a kink is observed at TCFM. This is due to the strong anharmonic spin–phonon interactions, which play a crucial role below TCFM and are frequently observed in other double perovskite compounds. Above TCFM, only anharmonic phonon–phonon coupling remains. The phonon mode is controlled by an external magnetic field. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

12 pages, 388 KiB  
Article
Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles
by Angel T. Apostolov, Iliana N. Apostolova and Julia M. Wesselinowa
Materials 2024, 17(17), 4298; https://doi.org/10.3390/ma17174298 - 30 Aug 2024
Cited by 2 | Viewed by 1170
Abstract
Using a microscopic model and the Green’s function theory, the size and co-doping effects on the multiferroic and optical (band gap) properties of BiFeO3 (BFO) nanoparticles are investigated. The magnetization increases, whereas the band gap energy decreases with decreasing nanoparticle size. The [...] Read more.
Using a microscopic model and the Green’s function theory, the size and co-doping effects on the multiferroic and optical (band gap) properties of BiFeO3 (BFO) nanoparticles are investigated. The magnetization increases, whereas the band gap energy decreases with decreasing nanoparticle size. The substitution with Co/Mn, Nd/Sm, Ce/Ni, and Cd/Ni is discussed and explained on a microscopic level. By the ion co-doping appear different strains due to the difference between the doping and host ionic radii, which leads to changes in the exchange interaction constants for tuning all properties. It is observed that by co-doping with Nd/Sm at the Bi site or with Co/Mn at the Fe site, the multiferroic properties are larger than those by doping with one ion. Moreover, by doping with Ni, the multiferroic properties are reduced. But by adding another ion (for example Ce or Cd), an increase in these properties is obtained. This shows the advantages of the co-doping, its flexibility, and its greater possibility of tuning the multiferroic properties compared to single ion substitution. The band gap energy decreases for all co-dopants. The polarization increases with increasing magnetic field. This is evidence of magnetoelectric coupling, which is enhanced by co-doping with Co/Mn. The observed theoretical results are in good qualitative agreement with the existing experimental data. Full article
(This article belongs to the Special Issue Structural Design and Broad Applications of Functional Nanomaterials)
Show Figures

Figure 1

15 pages, 13354 KiB  
Article
Designing Multifunctional Multiferroic Composites for Advanced Electronic Applications
by Lilian Nunes Pereira, Julio Cesar Agreira Pastoril, Gustavo Sanguino Dias, Ivair Aparecido dos Santos, Ruyan Guo, Amar S. Bhalla and Luiz Fernando Cotica
Electronics 2024, 13(12), 2266; https://doi.org/10.3390/electronics13122266 - 9 Jun 2024
Cited by 5 | Viewed by 1201
Abstract
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a [...] Read more.
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a simple and cost-effective assembly process conducted at room temperature, preserving the original properties of the components and avoiding undesired phases. The composites, composed of PZT fibers, cobalt (CoFe2O4), and a polymeric resin, demonstrate the uniform distribution of PZT-5A fibers within the cobalt matrix, as demonstrated by scanning electron microscopy. Detailed morphological analyses reveal the interface characteristics crucial for determining overall performance. Dielectric measurements indicate stable behaviors, particularly when PZT-5A fibers are properly poled, showcasing potential applications in sensors or medical devices. Furthermore, H-dependence studies illustrate strong magnetoelectric interactions, suggesting promising avenues for enhancing coupling efficiency. Overall, this study lays the basic work for future optimization of composite composition and exploration of its long-term stability, offering valuable insights into the potential applications of magnetoelectric composites in various technological domains. Full article
(This article belongs to the Special Issue Advanced Materials for Intelligent Electronics)
Show Figures

Figure 1

11 pages, 480 KiB  
Article
Theoretical Study of the Multiferroic Properties of Ion-Doped CaBaCo4O7
by Iliana N. Apostolova, Angel T. Apostolov and Julia M. Wesselinowa
Appl. Sci. 2024, 14(11), 4859; https://doi.org/10.3390/app14114859 - 4 Jun 2024
Viewed by 1062
Abstract
Using a microscopic model and Green’s function theory, we investigated the magnetization, specific heat, and polarization properties of CaBaCo4O7 (CBCO), scrutinizing their variations with temperature, magnetic field strength, and doping effects. Our analysis revealed a conspicuous kink in the specific [...] Read more.
Using a microscopic model and Green’s function theory, we investigated the magnetization, specific heat, and polarization properties of CaBaCo4O7 (CBCO), scrutinizing their variations with temperature, magnetic field strength, and doping effects. Our analysis revealed a conspicuous kink in the specific heat curve near the critical temperature (TC), indicative of a phase transition. Additionally, the observed increase in polarization, P with escalating magnetic field strength serves as compelling evidence for the multiferroic nature of CBCO. Substituting Co ions with Fe ions resulted in an augmentation of the CBCO magnetization, M, while doping with Zn, Mn, or Ni ions led to a decline. Similarly, doping CBCO with Y or Sr ions at the Ca site exhibited divergent effects on magnetization, M, with an increase in the former and a decrease in the latter case. This modulation of the magnetization, M, can be attributed to the varying strains induced by the doping ions, thereby altering the exchange interaction constants within the system. The polarization, P, increases by Ni, Mn, or Zn substitution on the kagome layer Co sites. It can be concluded that Ni, Mn, or Zn doping enhances the magnetoelectric effect of CBCO. Notably, our findings align qualitatively well with experimental observations, reinforcing the validity of our theoretical framework. Full article
(This article belongs to the Special Issue Metals and Materials: Science, Processes and Applications)
Show Figures

Figure 1

29 pages, 25261 KiB  
Review
Advances in Organic Multiferroic Junctions
by Bogdana Borca
Coatings 2024, 14(6), 682; https://doi.org/10.3390/coatings14060682 - 30 May 2024
Cited by 2 | Viewed by 1469
Abstract
Typically, organic multiferroic junctions (OMFJs) are formed of an organic ferroelectric layer sandwiched between two ferromagnetic electrodes. The main scientific interest in OMFJs focuses on the magnetoresistive properties of the magnetic spin valve combined with the electroresistive properties associated with the ferroelectric junction. [...] Read more.
Typically, organic multiferroic junctions (OMFJs) are formed of an organic ferroelectric layer sandwiched between two ferromagnetic electrodes. The main scientific interest in OMFJs focuses on the magnetoresistive properties of the magnetic spin valve combined with the electroresistive properties associated with the ferroelectric junction. In consequence, memristive properties that couple magnetoelectric functionalities, which are one of the most active fields of research in material sciences, are opening a large spectrum of technological applications from nonvolatile memory to elements in logic circuits, sensing devices, energy harvesting and biological synapsis models in the emerging area of neuromorphic computing. The realization of these multifunctional electronic elements using organic materials is presenting various advantages related to their low-cost, versatile synthesis and low power consumption functioning for sustainable electronics; green disintegration for transient electronics; and flexibility, light weight and/or biocompatibility for flexible electronics. The purpose of this review is to address the advancement of all OMFJs including not only the achievements in the charge and spin transport through OMFJs together with the effects of electroresistance and magnetoresistance but also the challenges and ways to overcome them for the most used materials for OMFJs. Full article
(This article belongs to the Special Issue Advances of Nanoparticles and Thin Films)
Show Figures

Figure 1

Back to TopTop