Enhancement of Magnetoelectric Effect in Layered Polymer Composites by Zn2+ and Ni2+ Substitution in CoFe2O4 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Magnetic Nanoparticles
2.2. Synthesis of Magnetic Elastomers
2.3. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, K.; Sabyasachi, P.; Sanjay, K.B. 9 Multiferroics: Multifunctional Material. In Dielectric Materials for Energy Storage and Energy Harvesting Devices; River Publishers: Gistrup, Denmark, 2023; pp. 207–236. [Google Scholar]
- Mao, Q.; Wu, J.; Hu, Z.; Xu, Y.; Du, Y.; Hao, Y.; Guan, M.; Wang, C.; Wang, Z.; Zhou, Z.; et al. Magnetoelectric devices based on magnetoelectric bulk composites. J. Mater. Chem. C 2021, 9, 5594–5614. [Google Scholar] [CrossRef]
- Gich, M.; Fina, I.; Morelli, A.; Sánchez, F.; Alexe, M.; Gàzquez, J.; Fontcuberta, J.; Roig, A. Multiferroic iron oxide thin films at room temperature. Adv. Mater. 2014, 26, 4645–4652. [Google Scholar] [CrossRef] [PubMed]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Elhajjar, R.; Law, C.-T.; Pegoretti, A. Magnetostrictive polymer composites: Recent advances in materials, structures and properties. Prog. Mater. Sci. 2018, 97, 204–229. [Google Scholar] [CrossRef]
- Turutin, A.V.; Kubasov, I.V.; Kislyuk, A.M.; Kuts, V.V.; Malinkovich, M.D.; Parkhomenko, Y.N.; Sobolev, N.A. Ultra-sensitive magnetoelectric sensors of magnetic fields for biomedical applications. Nanobiotechnol. Rep. 2022, 17, 261–289. [Google Scholar] [CrossRef]
- Garcia, V.; Bibes, M.; Barthelemy, A. Artificial multiferroic heterostructures for electric control of magnetic properties. Comptes Rendus Phys. 2015, 16, 168–181. [Google Scholar] [CrossRef]
- Wang, Y.; Grey, D.; Berry, D.; Gao, J.; Li, M.; Li, J.; Viehland, D. An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 2011, 23, 4111–4114. [Google Scholar] [CrossRef]
- Greve, H.; Woltermann, E.; Quenzer, H.-J.; Wagner, B.; Quandt, E. Giant Magnetoelectric Coefficients in (Fe90Co10)78Si12B10-AlN Thin Film Composites. Appl. Phys. Lett. 2010, 96, 182501. [Google Scholar] [CrossRef]
- Baker, W.J.; Ambal, K.; Waters, D.P.; Baarda, R.; Morishita, H.; Schooten, K.; Mccamey, D.R.; Lupton, J.M.; Boehme, C. Robust Absolute Magnetometry with Organic Thin-Film Devices. Nat. Commun. 2012, 3, 898. [Google Scholar] [CrossRef]
- Kuts, V.V.; Turutin, A.V.; Kislyuk, A.M.; Kubasov, I.V.; Maksumova, E.E.; Temirov, A.A.; Malinkovich, M.D.; Sobolev, N.A.; Parkhomenko, Y.N. Detection of inhomogeneous magnetic fields using magnetoelectric composites. Mod. Electron. Mater. 2023, 9, 105–113. [Google Scholar] [CrossRef]
- Zavaliche, F.; Zhao, T.; Zheng, H.; Straub, F.; Cruz, M.P.; Yang, P.L.; Hao, D.; Ramesh, R. Electrically Assisted Magnetic Recording in Multiferroic Nanostructures. Nano Lett. 2007, 7, 1586–1590. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Liu, J.-M.; Cheong, S.-W.; Ren, Z. Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology. Adv. Phys. 2015, 64, 519–626. [Google Scholar] [CrossRef]
- Manfred, F. Revival of the Magnetoelectric Effect. J. Phys. D Appl. Phys. 2005, 38, R123. [Google Scholar]
- Hu, B.; Yan, L.; Shao, M. Magnetic-Field Effects in Organic Semiconducting Materials and Devices. Adv. Mater. 2009, 21, 1500–1516. [Google Scholar] [CrossRef]
- Hu, B.; Wu, Y. Tuning Magnetoresistance between Positive and Negative Values in Organic Semiconductors. Nat. Mater. 2007, 6, 985–991. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Ehrenfreund, E.; Vardeny, Z.V. Spin-Polarized Light-Emitting Diode Based on an Organic Bipolar Spin Valve. Science 2012, 337, 204–209. [Google Scholar] [CrossRef]
- Begue, A.; Ciria, M. Strain-mediated giant magnetoelectric coupling in a crystalline multiferroic heterostructure. ACS Appl. Mater. Inter. 2021, 13, 6778–6784. [Google Scholar] [CrossRef]
- Tayi, A.S.; Shveyd, A.K.; Sue, A.C.H.; Szarko, J.M.; Rolczynski, B.S.; Cao, D.; Kennedy, T.J.; Sarjeant, A.A.; Stern, C.L.; Paxton, W.F.; et al. Room-Temperature Ferroelectricity in Supramolecular Networks of Charge-Transfer Complexes. Nature 2012, 488, 485–489. [Google Scholar] [CrossRef]
- Martins, P.; Silva, D.; Silva, M.P.; Lanceros-Mendez, S. Improved magnetodielectric coefficient on polymer based composites through enhanced indirect magnetoelectric coupling. Appl. Phys. Lett. 2016, 109, 112905. [Google Scholar] [CrossRef]
- Bhoi, K.; Mohanty, H.S.; Abdullah, M.F.; Pradhan, D.K.; Babu, S.N.; Singh, A.K.; Vishwakarma, P.N.; Kumar, A.; Thomas, R.; Pradhan, D.K.; et al. Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci. Rep. 2021, 11, 3149. [Google Scholar] [CrossRef]
- Jana, B.; Ghosh, K.; Rudrapal, K.; Gaur, P.; Shihabudeen, P.K.; Roy Chaudhuri, A. Recent progress in flexible multiferroics. Front. Phys. 2022, 9, 822005. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent Progress in Multiferroic Magnetoelectric Composites: From Bulk to Thin Films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef]
- Aimon, N.M.; Kim, D.H.; Sun, X.Y.; Ross, C.A. Multiferroic behavior of templated BiFeO3-CoFe2O4 self-assembled nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 2263–2268. [Google Scholar] [CrossRef]
- Su, J.; Niekiel, F.; Fichtner, S.; Thormaehlen, L.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. AlScN-based MEMS magnetoelectric sensor. Appl. Phys. Lett. 2020, 117, 132903. [Google Scholar] [CrossRef]
- Huang, D.; Lu, C.; Han, B.; Wang, X.; Li, C.; Xu, C.; Gui, J.; Lin, C. Giant self-biased magnetoelectric coupling characteristics of three-phase composite with end-bonding structure. Appl. Phys. Lett. 2014, 105, 263502. [Google Scholar] [CrossRef]
- Mandal, S.K.; Sreenivasulu, G.; Petrov, V.M.; Srinivasan, G. Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Phys. Rev. B 2011, 84, 014432. [Google Scholar] [CrossRef]
- Huang, D.; Lu, C.; Bing, H. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure. AIP Adv. 2015, 5, 047140. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, C.; Sun, Z. Large self-biased magnetoelectric response in four-phase Heterostructure with multiple low-frequency peaks. Appl. Phys. Lett. 2015, 106, 033505. [Google Scholar] [CrossRef]
- Kleemann, W.; Binek, C. Multiferroic and magnetoelectric materials. Nature 2013, 7104, 759–765. [Google Scholar]
- Etier, M.; Schmitz-Antoniak, C.; Salamon, S.; Trivedi, H.; Gao, Y.L.; Nazrabi, A.; Landers, J.; Gautam, D.; Winterer, M.; Schmitz, D.; et al. Magnetoelectric coupling on multiferroic cobalt ferrite-barium titanate ceramic composites with different connectivity schemes. Acta Mater. 2015, 90, 1–9. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, J.; Chai, J.; Deng, J.; Ren, R.; Su, Y.; Wang, H.; Ma, C.; Lee, C.-S.; Zhang, W.; et al. Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers. J. Alloys Compd. 2018, 740, 1067–1076. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Matin, M.A.; Al Mamun, M.A.; Hussain, A.; Hossain, M.N.; Das, B.C.; Hakim, M.A.; Islam, M.F. Enhanced electrical conductivity and multiferroic property of cobalt-doped bismuth ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 2020, 31, 8727–8736. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749. [Google Scholar] [CrossRef]
- Cheng, Y.; Peng, B.; Hu, Z.; Zhou, Z.; Liu, M. Recent development and status of magnetoelectric materials and devices. Phys. Lett. A 2018, 382, 3018–3025. [Google Scholar] [CrossRef]
- Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.H.; Tokura, Y. Magnetic control of ferroelectric polarization. Nature 2003, 426, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Nan, C.W.; Zhai, J.; Lin, Y. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 2004, 84, 3516–3518. [Google Scholar] [CrossRef]
- Chu, Z.; PourhosseiniAsl, M.; Dong, S. Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 2018, 51, 243001. [Google Scholar] [CrossRef]
- Nan, C.-W.; Cai, N.; Shi, Z.; Zhai, J.; Liu, G.; Lin, Y. Large magnetoelectric response in multiferroic polymer-based composites. Phys. Rev. B 2005, 71, 014102. [Google Scholar] [CrossRef]
- Mori, K.; Wuttig, M. Magnetoelectric coupling in Terfenol-D/polyvinylidenedifluoride composites. Appl. Phys. Lett. 2002, 81, 100. [Google Scholar] [CrossRef]
- Costa, C.M.; Cardoso, V.F.; Martins, P.; Correia, D.M.; Gonçalves, R.; Costa, P.; Correia, V.; Ribeiro, C.; Fernandes, M.M.; Martins, P.M.; et al. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem. Rev. 2023, 123, 11392–11487. [Google Scholar] [CrossRef]
- He, H.; Pan, Z.; Lv, X.; Wang, M.; Liu, J. Multiferroic properties in poly(vinylidene-fluoride)-based magnetostrictive/piezoelectric laminate composites. J. Alloys Compd. 2025, 1010, 177422. [Google Scholar] [CrossRef]
- Wang, T.; Peng, R.-C.; Peng, W.; Dong, G.; Zhou, C.; Yang, S.; Zhou, Z.; Liu, M. 2–2 Type PVDF-based composites interlayered by epitaxial (111)-oriented BTO films for high energy storage density. Adv. Funct. Mater. 2021, 32, 2108496. [Google Scholar] [CrossRef]
- Jiang, S.; Wan, H.; Liu, H.; Zeng, Y.; Liu, J.; Wu, Y.; Zhang, G. High b phase content in PVDF/CoFe2O4 nanocomposites induced by DC magnetic fields. Appl. Phys. Lett. 2016, 109, 102904. [Google Scholar] [CrossRef]
- Newacheck, S.; Youssef, G. Synthesis and characterization of polarized novel 0–3 Terfenol-D/PVDF-TrFE composites. Compo. Part B Eng. 2019, 172, 97–102. [Google Scholar] [CrossRef]
- Prasad, P.D.; Hemalatha, J. Enhanced dielectric and ferroelectric properties of cobalt ferrite (CoFe2O4) fiber embedded Polyvinylidene fluoride (PVDF) multiferroic composite films. Mater. Res. Express 2019, 6, 094007. [Google Scholar] [CrossRef]
- Suresh, G.; Jatav, S.; Rao, M.S.R.; Satapathy, D.K. Enhancement of dielectric and ferroelectric properties in cobalt ferrite doped poly(vinylidene fluoride) multiferroic composites. Mater. Res. Express 2017, 4, 075301. [Google Scholar] [CrossRef]
- Stolbov, O.V.; Ignatov, A.A.; Rodionova, V.V.; Raikher, Y.L. Modelling the effect of particle arrangement on the magnetoelectric response of a polymer multiferroic film. Soft Matter 2023, 19, 4029–4040. [Google Scholar] [CrossRef]
- Bhiogade, A.; Nagamalleswari, K.; Mandal, P.; Ramakrishnan, V.K.M. Flexible multiferroic PVDF/CoFe2O4 composite films for pyroelectric energy conversion. J. Mater. Sci. 2023, 58, 17805–17815. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Sheng, J.; Zhang, T.; Chi, Q.; Chen, Q.; Fei, W. Multiferroic properties and magnetic anisotropy in P(VDF-TrFE) composites with oriented CoFe2O4 nanofibers. J. Phys. Chem. C 2021, 125, 8840. [Google Scholar] [CrossRef]
- Dehsari, H.S.; Amir, M.H.; Asadi, K. Solution-Processed Multiferroic Thin-Films with Large Magnetoelectric Coupling at Room-Temperature. ACS Nano 2023, 17, 8064–8073. [Google Scholar] [CrossRef]
- Martins, P.; Lanceros-Mendez, S. Polymer-Based Magnetoelectric Materials. Adv. Funct. Mater. 2013, 23, 3371–3385. [Google Scholar] [CrossRef]
- Qin, W.; Jasion, D.; Chen, X.; Wuttig, M.; Ren, S. Charge-Transfer Magnetoelectrics of Polymeric Multiferroics. ACS Nano 2014, 8, 3671–3677. [Google Scholar] [CrossRef]
- Rana, D.K.; Singh, S.K.; Kundu, S.K.; Roy, S.; Angappane, S.; Basu, S. Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles. N. J. Chem. 2019, 43, 3128. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Y.; Zheng, H.; Ramakrishna, S. Piezoelectric materials for flexible and wearable electronics: A review. Mater. Des. 2021, 211, 110164. [Google Scholar] [CrossRef]
- Lafont, T.; Gimeno, L.; Delamare, J.; Lebedev, G.A.; Zakharov, D.I.; Viala, B.; Cugat, O.; Galopin, N.; Garbuio, L.; Geoffroy, O. Magnetostrictive–piezoelectric composite structures for energy harvesting. J. Micromech. Microeng. 2012, 22, 094009. [Google Scholar] [CrossRef]
- Stephen, N.G. On energy harvesting from ambient vibration. J. Sound Vibr. 2006, 293, 409–425. [Google Scholar] [CrossRef]
- Glavan, G.; Belyaeva, I.A.; Ruwisch, K.; Wollschläger, J.; Shamonin, M. Magnetoelectric response of laminated cantilevers comprising a magnetoactive elastomer and a piezoelectric polymer, in pulsed uniform magnetic field. Sensors 2021, 21, 6390. [Google Scholar] [CrossRef]
- Glavan, G.; Belyaeva, I.A.; Shamonin, M. Multiferroic cantilevers containing a magnetoactive elastomer: Magnetoelectric response to low-frequency magnetic fields of triangular and sinusoidal waveform. Sensors 2022, 22, 3791. [Google Scholar] [CrossRef]
- Makarova, L.A.; Alekhina, Y.A.; Isaev, D.A.; Khairullin, M.F.; Perov, N.S. Tunable layered composites based on magnetoactive elastomers and piezopolymer for sensors and energy harvesting devices. J. Phys. D Appl. Phys. 2020, 54, 015003. [Google Scholar] [CrossRef]
- Saveliev, D.V.; Glavan, G.; Belan, V.O.; Belyaeva, I.A.; Fetisov, L.Y.; Shamonin, M. Resonant Magnetoelectric Effect at Low Frequencies in Layered Polymeric Cantilevers Containing a Magnetoactive Elastomer. Appl. Sci. 2022, 12, 2102. [Google Scholar] [CrossRef]
- Makarova, L.A.; Alekhina, I.A.; Khairullin, M.F.; Makarin, R.A.; Perov, N.S. Dynamic magnetoelectric effect of the soft layered composites with magnetic elastomer. Polymers 2023, 15, 2262. [Google Scholar] [CrossRef]
- Savelev, D.V.; Burdin, D.A.; Fetisov, L.Y.; Fetisov, Y.K.; Perov, N.S.; Makarova, L.A. Low-Frequency Resonant Magnetoelectric Effect in a Piezopolymer-Magnetoactive Elastomer Layered Structure at Different Magnetization Geometries. Polymers 2024, 16, 928. [Google Scholar] [CrossRef]
- Fetisov, L.Y.; Savelev, D.V.; Makarova, L.A.; Perov, N.S.; Qi, Y.J.; Zhou, P.; Fetisov, Y.K. Dynamics of resonant magnetoelectric effect in a magnetoactive elastomer based cantilever: Magnetic field induced orientation transition and giant frequency tuning. J. Magn. Magn. Mater. 2024, 605, 172330. [Google Scholar] [CrossRef]
- da Silva, F.G.; Depeyrot, J.; Campos, A.F.; Aquino, R.; Fiorani, D.; Peddis, D. Structural and magnetic properties of spinel ferrite nanoparticles. J. Nanosci. Nanotechnol. 2019, 19, 4888–4902. [Google Scholar] [CrossRef] [PubMed]
- Stolbov, O.V.; Raikher, Y.L. Magnetoelectric PVDF–Cobalt Ferrite Films: Magnetostrictive and Magnetorotational Effects, Synergy, and Counteraction. Nanomaterials 2025, 15, 487. [Google Scholar] [CrossRef]
- Martins, P.; Kolen’ko, Y.V.; Rivas, J.; Lanceros-Mendez, S. Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl. Mater. Interfaces 2015, 7, 15017–15022. [Google Scholar] [CrossRef] [PubMed]
- Baričić, M.; Maltoni, P.; Barucca, G.; Yaacoub, N.; Omelyanchik, A.; Canepa, F.; Mathieu, R.; Peddis, D. Chemical engineering of cationic distribution in spinel ferrite nanoparticles: The effect on the magnetic properties. Phys. Chem. Chem. Phys. 2024, 26, 6325–6334. [Google Scholar] [CrossRef]
- Cannas, C.; Falqui, A.; Musinu, A.N.N.A.; Peddis, D.; Piccaluga, G. CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: Synthesis, structure and magnetic properties. J. Nanoparticle Res. 2006, 8, 255–267. [Google Scholar] [CrossRef]
- Kostrov, S.A.; Gorodov, V.V.; Sokolov, B.O.; Muzafarov, A.M.; Kramarenko, E.Y. Low-Modulus Elastomeric Matrices for Magnetoactive Composites with a High Magnetic Field Response. Polym. Sci. Ser. A 2020, 62, 383–391. [Google Scholar] [CrossRef]
- Mameli, V.; Musinu, A.; Ardu, A.; Ennas, G.; Peddis, D.; Niznansky, D.; Sangregorio, C.; Innocenti, C.; Thanh, N.T.; Cannas, C. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 2016, 8, 10124–10137. [Google Scholar] [CrossRef]
- Verma, K.C.; Sharma, A.; Goyal, N.; Kotnala, R.K. Ferromagnetism in multiferroic BaTiO3, spinel MFe2O4 (M = Mn, Co, Ni, Zn) ferrite and DMS ZnO nanostructures. In Electromagnetic Materials and Devices; IntechOpen: London, UK, 2019. [Google Scholar]
Sample | Is, emu/g | Hc, Oe | Ir/Is | dI/dH (Max), emu/g∙Oe |
---|---|---|---|---|
Powder CFO | 58.6 ± 0.3 | 1498 ± 10 | 0.51 | 0.023 |
Powder ZnCFO | 55 ± 0.3 | 433 ± 2 | 0.42 | 0.061 |
Powder NiCFO | 60 ± 0.3 | 1250 ± 8 | 0.52 | 0.028 |
MAE-CFO-16 | 10.1 ± 0.1 | 1683 ± 10 | 0.51 | 0.004 |
MAE-ZnCFO-16 | 11.9 ± 0.1 | 401 ± 2 | 0.36 | 0.013 |
MAE-NiCFO-16 | 11.2 ± 0.1 | 899 ± 6 | 0.46 | 0.006 |
Sample | α, mV∙cm−1∙Oe−1 | frez, Hz |
---|---|---|
PEP-MAE-CFO | 31.5 ± 0.3 | 86 ± 2 |
PEP-MAE-ZnCFO | 107.3 ± 1.1 | 88 ± 2 |
PEP-MAE-NiCFO | 84.0 ± 0.8 | 84 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarova, L.A.; Musaev, M.T.; Kalandiia, M.R.; Kostrov, S.A.; Kramarenko, E.Y.; Salnikov, V.D.; Gavrilov, D.E.; Omelyanchik, A.S.; Rodionova, V.V.; Perov, N.S. Enhancement of Magnetoelectric Effect in Layered Polymer Composites by Zn2+ and Ni2+ Substitution in CoFe2O4 Nanoparticles. Polymers 2025, 17, 1183. https://doi.org/10.3390/polym17091183
Makarova LA, Musaev MT, Kalandiia MR, Kostrov SA, Kramarenko EY, Salnikov VD, Gavrilov DE, Omelyanchik AS, Rodionova VV, Perov NS. Enhancement of Magnetoelectric Effect in Layered Polymer Composites by Zn2+ and Ni2+ Substitution in CoFe2O4 Nanoparticles. Polymers. 2025; 17(9):1183. https://doi.org/10.3390/polym17091183
Chicago/Turabian StyleMakarova, Liudmila A., Michail T. Musaev, Margarita R. Kalandiia, Sergey A. Kostrov, Elena Yu. Kramarenko, Vitalii D. Salnikov, Damir E. Gavrilov, Aleksander S. Omelyanchik, Valeria V. Rodionova, and Nikolai S. Perov. 2025. "Enhancement of Magnetoelectric Effect in Layered Polymer Composites by Zn2+ and Ni2+ Substitution in CoFe2O4 Nanoparticles" Polymers 17, no. 9: 1183. https://doi.org/10.3390/polym17091183
APA StyleMakarova, L. A., Musaev, M. T., Kalandiia, M. R., Kostrov, S. A., Kramarenko, E. Y., Salnikov, V. D., Gavrilov, D. E., Omelyanchik, A. S., Rodionova, V. V., & Perov, N. S. (2025). Enhancement of Magnetoelectric Effect in Layered Polymer Composites by Zn2+ and Ni2+ Substitution in CoFe2O4 Nanoparticles. Polymers, 17(9), 1183. https://doi.org/10.3390/polym17091183