Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (898)

Search Parameters:
Keywords = magnetic probes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 - 1 Aug 2025
Viewed by 279
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Graphical abstract

16 pages, 4562 KiB  
Article
Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness
by Mengfan Li, Kai Tao, Jinghan Lu, Shenyue Xu, Yuanyuan Sun, Yaman Chen and Zhiyong Liu
Materials 2025, 18(14), 3389; https://doi.org/10.3390/ma18143389 - 19 Jul 2025
Viewed by 323
Abstract
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with [...] Read more.
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with TiO2/Cu/Ag/TiO2 and ZnS/Cu/Ag/ZnS symmetric structures were also prepared for comparison. The TCF samples were deposited using ZnS, TiO2, Cu and Ag targets, and they were analyzed using scanning electronic microscopy, atomic force microscopy, grazing incidence X-ray diffraction, spectrophotometry and a four-probe tester. The TCFs exhibit generally uniform surface morphology, excellent light transmittance and electrical conductivity with optimized structure. The optimal values are 84.40%, 5.52 Ω/sq and 33.19 × 10−3 Ω−1 for the transmittance, sheet resistance and figure of merit, respectively, in the visible spectrum. The satisfactory properties of the asymmetric multilayered TCF deposited on a rough-surface substrate should be mainly attributed to the optimized structure parameters and reasonable interfacial compatibilities. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

12 pages, 3782 KiB  
Article
Structural, Magnetic and THz Emission Properties of Ultrathin Fe/L10-FePt/Pt Heterostructures
by Claudiu Locovei, Garik Torosyan, Evangelos Th. Papaioannou, Alina D. Crisan, Rene Beigang and Ovidiu Crisan
Nanomaterials 2025, 15(14), 1099; https://doi.org/10.3390/nano15141099 - 16 Jul 2025
Viewed by 289
Abstract
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In [...] Read more.
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In this work, we probe the mechanism of the ISHE by inserting a second ferromagnetic layer in the form of an alloy between the FM/NM system. In particular, by utilizing the co-sputtering technique, we fabricate Fe/L10-FePt/Pt ultra-thin heterostructures. We successfully grow the tetragonal phase of FePt (L10-phase) as revealed by X-ray diffraction and reflection techniques. We show the strong magnetic coupling between Fe and L10-FePt using magneto-optical and Superconducting Quantum Interference Device (SQUID) magnetometry. Subsequently, by utilizing THz time domain spectroscopy technique, we record the THz emission and thus we the reveal the efficiency of spin-to-charge conversion in Fe/L10-FePt/Pt. We establish that Fe/L10-FePt/Pt configuration is significantly superior to the Fe/Pt bilayer structure, regarding THz emission amplitude. The unique trilayer structure opens new perspectives in terms of material choices for the future spintronic THz sources. Full article
Show Figures

Figure 1

22 pages, 2320 KiB  
Review
Use of Radiomics in Characterizing Tumor Hypoxia
by Mohan Huang, Helen K. W. Law and Shing Yau Tam
Int. J. Mol. Sci. 2025, 26(14), 6679; https://doi.org/10.3390/ijms26146679 - 11 Jul 2025
Viewed by 491
Abstract
Tumor hypoxia involves limited oxygen supply within the tumor microenvironment and is closely associated with aggressiveness, metastasis, and resistance to common cancer treatment modalities such as chemotherapy and radiotherapy. Traditional methodologies for hypoxia assessment, such as the use of invasive probes and clinical [...] Read more.
Tumor hypoxia involves limited oxygen supply within the tumor microenvironment and is closely associated with aggressiveness, metastasis, and resistance to common cancer treatment modalities such as chemotherapy and radiotherapy. Traditional methodologies for hypoxia assessment, such as the use of invasive probes and clinical biomarkers, are generally not very suitable for routine clinical applications. Radiomics provides a non-invasive approach to hypoxia assessment by extracting quantitative features from medical images. Thus, radiomics is important in diagnosis and the formulation of a treatment strategy for tumor hypoxia. This article discusses the various imaging techniques used for the assessment of tumor hypoxia including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). It introduces the use of radiomics with machine learning and deep learning for extracting quantitative features, along with its possible clinical use in hypoxic tumors. This article further summarizes the key challenges hindering the clinical translation of radiomics, including the lack of imaging standardization and the limited availability of hypoxia-labeled datasets. It also highlights the potential of integrating radiomics with multi-omics to enhance hypoxia visualization and guide personalized cancer treatment. Full article
Show Figures

Figure 1

21 pages, 3040 KiB  
Article
Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors
by Hannah Mettee, Aaron Asparin, Zulaikha Ali, Shi He, Xianzhi Li, Joshua Hall, Alexis Kim, Shuo Wu, Morgan J. Hawker, Masaki Uchida and He Wei
Sensors 2025, 25(14), 4326; https://doi.org/10.3390/s25144326 - 10 Jul 2025
Viewed by 518
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging [...] Read more.
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in diagnosing such conditions, the development of effective glutamate-sensitive contrast agents remains a challenge. In this study, we present ultrasmall, citric acid-coated superparamagnetic iron oxide nanoparticles (CA-SPIONs) as highly selective and sensitive MRS probes for glutamate detection. These 5 nm magnetite CA-SPIONs exhibit a stable dispersion in physiological buffers and undergo aggregation in the presence of glutamate, significantly enhancing the T2 MRS contrast power. At physiological glutamate levels, the CA-SPIONs yielded a pronounced signal change ratio of nearly 60%, while showing a negligible response to other neurotransmitters such as GABA and dopamine. Computational simulations confirmed the mechanism of glutamate-mediated aggregation and its impact on transversal relaxation rates and relaxivities. The sensitivity and selectivity of CA-SPIONs underscore their potential as eco-friendly, iron-based alternatives for future neurological sensing applications targeting glutamatergic dysfunction. Full article
(This article belongs to the Special Issue Nanomaterial-Based Devices and Biosensors for Diagnostic Applications)
Show Figures

Figure 1

20 pages, 2317 KiB  
Article
Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity
by Maria Filomeni Koutsougera, Spyridoula Adamopoulou, Denisa Druvari, Alexios Vlamis-Gardikas, Zacharoula Iatridi and Georgios Bokias
Polymers 2025, 17(14), 1896; https://doi.org/10.3390/polym17141896 - 9 Jul 2025
Viewed by 450
Abstract
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the [...] Read more.
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the homopolymer PDMAPMA and copolymers P(DMAPMA-co-MMAx) of DMAPMA with the hydrophobic monomer methyl methacrylate, MMA, were explored. Two copolymers were prepared with a molar content x = 20% and 35%, as determined by Proton Nuclear Magnetic Resonance (1H NMR). Turbidimetry studies revealed that, in contrast to the homopolymer exhibiting a lower critical solution temperature (LCST) behavior only at pH 14 in the absence of salt, the LCST of the copolymers covers a wider pH range (pH > 8.5) and can be tuned within the whole temperature range studied (from room temperature up to ~70 °C) through the use of salt. The copolymers self-assemble in water above a critical aggregation Concentration (CAC), as determined by Nile Red probing, and form nanostructures with a size of ~15 nm (for P(DMAPMA-co-MMA35)), as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The combination of turbidimetry with 1H NMR and automatic total organic carbon/total nitrogen (TOC/TN) results revealed the potential of the copolymers as visual CO2 sensors. Finally, the alkylation of the copolymers with dodecyl groups lead to cationic amphiphilic materials with an order of magnitude lower CAC (as compared to the unmodified precursor), effectively stabilized in water as larger aggregates (~200 nm) over a wide temperature range, due to their increased ζ potential (+15 mV). Such alkylated products show promising biocidal properties against microorganisms such as Escherichia coli and Staphylococcus aureus. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

17 pages, 1326 KiB  
Review
State-Dependent Transcranial Magnetic Stimulation Synchronized with Electroencephalography: Mechanisms, Applications, and Future Directions
by He Chen, Tao Liu, Yinglu Song, Zhaohuan Ding and Xiaoli Li
Brain Sci. 2025, 15(7), 731; https://doi.org/10.3390/brainsci15070731 - 8 Jul 2025
Viewed by 551
Abstract
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) has emerged as a transformative tool for probing cortical dynamics with millisecond precision. This review examines the state-dependent nature of TMS-EEG, a critical yet underexplored dimension influencing measurement reliability and clinical applicability. By integrating TMS’s neuromodulatory [...] Read more.
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) has emerged as a transformative tool for probing cortical dynamics with millisecond precision. This review examines the state-dependent nature of TMS-EEG, a critical yet underexplored dimension influencing measurement reliability and clinical applicability. By integrating TMS’s neuromodulatory capacity with EEG’s temporal resolution, this synergy enables real-time analysis of brain network dynamics under varying neural states. We delineate foundational mechanisms of TMS-evoked potentials (TEPs), discuss challenges posed by temporal and inter-individual variability, and evaluate advanced paradigms such as closed-loop and task-embedded TMS-EEG. The former leverages real-time EEG feedback to synchronize stimulation with oscillatory phases, while the latter aligns TMS pulses with task-specific cognitive phases to map transient network activations. Current limitations—including hardware constraints, signal artifacts, and inconsistent preprocessing pipelines—are critically analyzed. Future directions emphasize adaptive algorithms for neural state prediction, phase-specific stimulation protocols, and standardized methodologies to enhance reproducibility. By bridging mechanistic insights with personalized neuromodulation strategies, state-dependent TMS-EEG holds promise for advancing both basic neuroscience and precision medicine, particularly in psychiatric and neurological disorders characterized by dynamic neural dysregulation. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

17 pages, 2003 KiB  
Review
Recent Advances in the Electrochemical Biosensing of DNA Methylation
by Sanu K. Anand and Robert Ziółkowski
Int. J. Mol. Sci. 2025, 26(13), 6505; https://doi.org/10.3390/ijms26136505 - 6 Jul 2025
Viewed by 410
Abstract
DNA methylation, as a critical epigenetic modification, plays a central role in gene regulation and has emerged as a powerful biomarker for early disease diagnostics, particularly in cancer. Owing to the limitations of traditional bisulfite sequencing—such as high cost, complexity, and chemical degradation—electrochemical [...] Read more.
DNA methylation, as a critical epigenetic modification, plays a central role in gene regulation and has emerged as a powerful biomarker for early disease diagnostics, particularly in cancer. Owing to the limitations of traditional bisulfite sequencing—such as high cost, complexity, and chemical degradation—electrochemical biosensors have gained substantial attention as promising alternatives. This review summarizes recent advancements in electrochemical platforms for bisulfite-free detection of DNA methylation, encompassing direct oxidation strategies, enzyme-assisted recognition (e.g., restriction endonucleases and methyltransferases), immunoaffinity-based methods, and a variety of signal amplification techniques such as rolling circle amplification and catalytic hairpin assembly. Additional approaches, including strand displacement, magnetic enrichment, and adsorption-based detection, are also discussed. These systems demonstrate exceptional sensitivity, often down to the attomolar or femtomolar level, as well as high selectivity, reproducibility, and suitability for real biological matrices. The integration of nanomaterials and redox-active probes further enhances analytical performance. Importantly, many of these biosensing platforms have been validated using clinical samples, reinforcing their translational relevance. The review concludes by outlining current challenges and future directions, emphasizing the potential of electrochemical biosensors as scalable, cost-effective, and minimally invasive tools for real-time epigenetic monitoring and early-stage disease diagnostics. Full article
(This article belongs to the Special Issue Application of Electrochemical Materials in Molecular Biology)
Show Figures

Figure 1

11 pages, 1375 KiB  
Article
Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection
by Ziyi Yan, Ping Zhu, Chaoyi Zhou, Dezhao Kong and Hua Ye
Molecules 2025, 30(13), 2853; https://doi.org/10.3390/molecules30132853 - 4 Jul 2025
Viewed by 361
Abstract
T-2 toxin, a type A trichothecene mycotoxin produced by Fusarium species, is widely present in cereals and their processed products, posing a significant contaminant in food safety. To address the food safety challenges caused by this toxin, we established a dual signal enhancement [...] Read more.
T-2 toxin, a type A trichothecene mycotoxin produced by Fusarium species, is widely present in cereals and their processed products, posing a significant contaminant in food safety. To address the food safety challenges caused by this toxin, we established a dual signal enhancement by magnetic separation and split aptamer for ultrasensitive T-2 toxin detection. In this method, the introduction of magnetic graphene oxide (MGO) enhanced signal and increased sensitivity by reducing background interference. The shortened split aptamer reduces non-specific binding to MGO via decreased steric hindrance, thereby facilitating rapid target-induced dissociation and signal generation. A FAM fluorophore-labeled split aptamer probe FAM-SpA1-1 was quenched by MGO. While the fluorescence intensity remained nearly unchanged when the unlabeled split aptamer probe SpA1-2 was introduced alone, a significant fluorescence recovery was observed upon simultaneous addition of SpA1-2 and T-2 toxin. This recovery resulted from the cooperative binding of SpA1-1 and SpA1-2 to T-2 toxin, which distanced the FAM-SpA1-1 probe from MGO. Therefore, the proposed biosensor demonstrated excellent stability, reproducibility, and specificity, with a linear response range of 10–500 pM and a limit of detection (LOD) of 0.83 pM. Satisfactory recovery rates were achieved in spiked wheat (86.0–114.2%) and beer (112.0–129.6%) samples, highlighting the biosensor’s potential for practical applications in real-sample detection. This study establishes the T-2 toxin split aptamer and demonstrates a novel dual-signal enhancement paradigm that pushes the sensitivity frontier of aptamer-based mycotoxin sensors. Full article
Show Figures

Figure 1

35 pages, 3949 KiB  
Review
The Influence of Defect Engineering on the Electronic Structure of Active Centers on the Catalyst Surface
by Zhekun Zhang, Yankun Wang, Tianqi Guo and Pengfei Hu
Catalysts 2025, 15(7), 651; https://doi.org/10.3390/catal15070651 - 3 Jul 2025
Cited by 1 | Viewed by 723
Abstract
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry [...] Read more.
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry of crystalline lattices, enabling new pathways for optimizing catalysis performance. This review systematically summarizes the mechanisms underlying defect-mediated electronic structure at active sites regulation, including (1) reconstruction of the electronic density of states, (2) tuning of coordination microenvironments, (3) charge transfer and localization effects, (4) spin-state and magnetic coupling modulation, and (5) dynamic defect and interface engineering. These mechanisms elucidate how defect-induced electronic restructuring governs catalytic activity and selectivity. We further assess advanced characterization techniques and computational methodologies for probing defects-induced electronic states, offering deeper mechanistic insights at atomic scales. Finally, we highlight recent breakthroughs in defect-engineered nanomaterials for catalytic applications, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and beyond, while discussing existing challenges in scalability, defect stability, and structure–property causality. This review aims to provide actionable principles for the rational design of defects to tailor electronic structures toward next-generation energy technologies. Full article
Show Figures

Graphical abstract

21 pages, 7004 KiB  
Article
Mn-Doped Carbon Dots as Contrast Agents for Magnetic Resonance and Fluorescence Imaging
by Corneliu S. Stan, Adina Coroaba, Natalia Simionescu, Cristina M. Uritu, Dana Bejan, Laura E. Ursu, Andrei-Ioan Dascalu, Florica Doroftei, Marius Dobromir, Cristina Albu and Conchi O. Ania
Int. J. Mol. Sci. 2025, 26(13), 6293; https://doi.org/10.3390/ijms26136293 - 29 Jun 2025
Viewed by 647
Abstract
Carbon nanodots have recently attracted attention as fluorescence imaging probes and magnetic resonance imaging (MRI) contrast agents in diagnostic and therapeutic applications due to their unique optical properties. In this work we report the synthesis of biocompatible Mn (II)-doped carbon nanodots and their [...] Read more.
Carbon nanodots have recently attracted attention as fluorescence imaging probes and magnetic resonance imaging (MRI) contrast agents in diagnostic and therapeutic applications due to their unique optical properties. In this work we report the synthesis of biocompatible Mn (II)-doped carbon nanodots and their performance as fluorescence and MRI contrast agents in in vitro assays. The thermal decomposition of a Diphenylhydantoin–Mn(II) complex assured the incorporation of manganese (II) ions in the carbon dots. The obtained materials display a favorable spin density for MRI applications. The synthesized Mn(II)-CNDs also displayed remarkable photoluminescence, with a bright blue emission and good response in in vitro fluorescence imaging. Cytotoxicity investigations revealed good cell viability on malignant melanoma cell lines in a large concentration range. A cytotoxic effect was observed for MG-63 osteosarcoma and breast adenocarcinoma cell lines. The in vitro MRI assays demonstrated the potentialities of the Mn(II)-CNDs as T2 contrast agents at low dosages, with relaxivity values higher than those of commercial ones. Due to the simplicity of their synthetic pathway and their low cytotoxicity, the prepared Mn(II)-CNDs are potential alternatives to currently used contrast agents based on gadolinium complexes. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

18 pages, 3361 KiB  
Article
Broadband Low-Cost Normal Magnetic Field Probe for PCB Near-Field Measurement
by Ruichen Luo, Zheng He and Lixiao Wang
Sensors 2025, 25(13), 3874; https://doi.org/10.3390/s25133874 - 21 Jun 2025
Viewed by 537
Abstract
This paper presents a broadband near-field probe designed for measuring the normal magnetic field (Hz) in radio frequency (RF) circuits operating within a frequency range of 2–8 GHz. The proposed probe uses a cost-effective 4-layer printed circuit board (PCB) structure [...] Read more.
This paper presents a broadband near-field probe designed for measuring the normal magnetic field (Hz) in radio frequency (RF) circuits operating within a frequency range of 2–8 GHz. The proposed probe uses a cost-effective 4-layer printed circuit board (PCB) structure made with an FR-4 substrate. The probe primarily consists of an Hz detection unit, a broadband microstrip balun, and a coaxial-like output. The broadband balun facilitates the conversion from differential to single-ended signals, thereby enhancing the probe’s common-mode rejection capability. This design ensures that the probe achieves both cost efficiency and high broadband measurement performance. Additionally, this work investigates the feasibility of employing microstrip lines as calibration standards for the Hz probe. The probe’s structural parameters and magnetic field response were initially determined through simulations, and the calibration factor was subsequently verified by calibration experiments. In practical measurements, the field distributions above a microstrip line and a low-noise amplifier (LNA) were captured. The measured field distribution of the microstrip line was compared with simulation results to verify the probe’s performance. Meanwhile, the measured field distribution of the LNA was utilized to identify the radiating components within the amplifier. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 4313 KiB  
Article
Metal Thickness Measurement Using an Ultrasonic Probe with a Linear Actuator for a Magnet-Type Climbing Robot: Design and Development
by Yuki Nishimura, Cheng Wang and Wei Song
Actuators 2025, 14(6), 299; https://doi.org/10.3390/act14060299 - 18 Jun 2025
Viewed by 355
Abstract
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their [...] Read more.
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their capability in terms of metal thickness measurement has not been previously evaluated. During thickness inspections, ultrasonic thickness sensors require a probe to be pressed against target surfaces. To automate metal thickness measurements, this pressing motion of the probe needs to be performed by the robot. This study introduces a novel metal thickness measurement device comprising an ultrasonic probe, a linear actuator, a gel pump, and a pressure sensor designed for a magnet-type climbing robot. The linear actuator moves the probe to its initial position, the gel pump injects a coupling gel, and then the actuator moves the probe to the surface and back. Finally, our prototype of an ultrasonic probe with a linear actuator was installed on a magnet-type climbing robot to demonstrate its functionality in a practical application regarding an oil storage tank inspection system. The prototype achieved a measurement success rate of 65.9% and an average error of 0.7% compared to a reference thickness. This article details the design and development of the ultrasonic probe with a linear actuator to enable the probe to make contact with the surface. It then details the experimental results and evaluation of metal thickness measurement performed using the prototype and the climbing robot. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—3rd Edition)
Show Figures

Figure 1

17 pages, 4602 KiB  
Article
Dual-Plasma Discharge Tube for Synergistic Glioblastoma Treatment
by William Murphy, Alex Horkowitz, Vikas Soni, Camil Walkiewicz-Yvon and Michael Keidar
Cancers 2025, 17(12), 2036; https://doi.org/10.3390/cancers17122036 - 18 Jun 2025
Viewed by 495
Abstract
Background: Glioblastoma (GBM) resists current therapies due to its rapid proliferation, diffuse invasion, and heterogeneous cell populations. We previously showed that a single cold atmospheric plasma discharge tube (DT) reduces GBM viability via broad-spectrum electromagnetic (EM) emissions. Here, we tested whether two DTs [...] Read more.
Background: Glioblastoma (GBM) resists current therapies due to its rapid proliferation, diffuse invasion, and heterogeneous cell populations. We previously showed that a single cold atmospheric plasma discharge tube (DT) reduces GBM viability via broad-spectrum electromagnetic (EM) emissions. Here, we tested whether two DTs arranged in a helmet configuration could generate overlapping EM fields to amplify the anti-tumor effects without thermal injury. Methods: The physical outputs of the single- and dual-DT setups were characterized by infrared thermography, broadband EM field probes, and oscilloscope analysis. Human U87-MG cells were exposed under the single or dual configurations. The viability was quantified with WST-8 assays mapped across 96-well plates; the intracellular reactive oxygen species (ROS), membrane integrity, apoptosis, and mitochondrial potential were assessed by multiparametric flow cytometry. Our additivity models compared the predicted versus observed dual-DT cytotoxicity. Results: The dual-DT operation produced constructive EM interference, elevating electric and magnetic field amplitudes over a broader area than either tube alone, while temperatures remained <39 °C. The single-DT exposure lowered the cell viability by ~40%; the dual-DT treatment reduced the viability by ~60%, exceeding the additive predictions. The regions of greatest cytotoxicity co-localized with the zones of highest EM field overlap. The dual-DT exposure doubled the intracellular ROS compared with single-DT and Annexin V positivity, confirming oxidative stress-driven cell death. The out-of-phase operation of the discharge tubes enabled the localized control of the treatment regions, which can guide future treatment planning. Conclusions: Two synchronously operated plasma discharge tubes synergistically enhanced GBM cell killing through non-thermal mechanisms that coupled intensified overlapping EM fields with elevated oxidative stress. This positions modular multi-DT arrays as a potential non-invasive adjunct or alternative to existing electric-field-based therapies for glioblastoma. Full article
(This article belongs to the Special Issue Plasma and Cancer Treatment)
Show Figures

Figure 1

16 pages, 8215 KiB  
Article
Assessment of a Translating Fluxmeter for Precision Measurements of Super-FRS Dipole Magnets
by Pawel Kosek, Anthony Beaumont and Melvin Liebsch
Metrology 2025, 5(2), 37; https://doi.org/10.3390/metrology5020037 - 17 Jun 2025
Viewed by 232
Abstract
In particle physics experiments, fragment separators utilize dipole magnets to distinguish and isolate specific isotopes based on their mass-to-charge ratio as particles traverse the dipole’s magnetic field. Accurate fragment selection relies on precise knowledge of the magnetic field generated by the dipole magnets, [...] Read more.
In particle physics experiments, fragment separators utilize dipole magnets to distinguish and isolate specific isotopes based on their mass-to-charge ratio as particles traverse the dipole’s magnetic field. Accurate fragment selection relies on precise knowledge of the magnetic field generated by the dipole magnets, necessitating dedicated measurement instrumentation to characterize the field in the constructed magnets. This study presents measurements of the two first-of-series dipole magnets (Type II—11 degrees bending angle—and Type III—9.5 degrees bending angle) for the Superconducting Fragment Separator that is being built in Darmstadt, Germany. Stringent field quality requirements necessitated a novel measurement system—the so-called translating fluxmeter. It is based on a PCB coil array installed on a moving trolley that scans the field while passing through the magnet aperture. While previous publications have discussed the design of the moving fluxmeter and the characterization of its components, this article presents the results of a measurement campaign conducted using the new system. The testing campaign was supplemented with conventional methods, including integral field measurements using a single stretched wire system and three-dimensional field mapping with a Hall probe. We provide an overview of the working principle of the translating fluxmeter system and validate its performance by comparing the results with those obtained using conventional magnetic measurement methods. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

Back to TopTop