Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection
Abstract
1. Introduction
Method | LOD (ng mL−1) | References |
---|---|---|
Fluorescent aptamer sensors | 0.387 ng/mL (0.83 pM) | This study |
iSPR biosensors | 1.2 ng/mL | [29] |
SPR sensor | 0.57 ng/mL | [30] |
ic-ELISA | 0.827 ng/mL | [31] |
Portable microfluidic devices | 1.3 ng/mL | [32] |
2. Results and Discussion
2.1. Detection Principle
2.2. Optimization of Detection Conditions
2.3. Performance Validation of Split Aptamer Biosensor Based on MGO
2.4. Detection of T-2 Toxin in Real Samples
3. Materials and Methods
3.1. Materials and Instruments
3.2. Optimization of FAM-SpA1-1 Concentration
3.3. Optimization of Magnetic Graphene Oxide (MGO) Concentration
3.4. Optimization of SpA1-2 and FAM-SpA1-1 Molar Ratio
3.5. Optimization of Detection Time
3.6. Detection T-2 Toxin Based on Established Methods
3.7. Repeatability and Stability Test
3.8. Real Samples Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maragos, C.M. Detection of T-2 Toxin in Wheat and Maize with a Portable Mass Spectrometer. Toxins 2023, 15, 222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, B.; Zhang, Y.; Bai, C.; Wang, L.; Zhao, W.; Wu, L.; Xie, D.; Ren, W.; Xu, Y. An aptasensor based on CRISPR/cas12a-mediated and Mn2+-assisted DNA motor cascade signalling amplification strategy for the detection of T-2 toxin. Sens. Actuators B Chem. 2025, 426, 137049. [Google Scholar] [CrossRef]
- Tajima, T.; Isobe, T.; Saito, I.; Kondo, T.; Suzuki, K.; Fujii, R.; Tsuboi, Y.; Sugita-Konishi, Y.; Ueyama, J. Cross-sectional biomonitoring of urinary deoxynivalenol, T-2 and HT-2 toxins, and zearalenone in Japanese adults. Environ. Health Prev. Med. 2025, 30, 19. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, Y.; Wang, L.; Mei, M.; Qiu, Y.; Liu, Y.; Fu, S.; Xiong, J.; Guo, P.; Wu, Z.; et al. Peroxiredoxin 4 Ameliorates T-2 Toxin-Induced Growth Retardation in GH3 Cells by Inhibiting Oxidative Stress and Apoptosis. Molecules 2024, 29, 5491. [Google Scholar] [CrossRef]
- Khan, I.M.; Niazi, S.; Pasha, I.; Khan, M.K.I.; Yue, L.; Ye, H.; Mohsin, A.; Shoaib, M.; Zhang, Y.; Wang, Z. Novel metal enhanced dual-mode fluorometric and SERS aptasensor incorporating a heterostructure nanoassembly for ultrasensitive T-2 toxin detection. J. Mater. Chem. B 2023, 11, 441–451. [Google Scholar] [CrossRef]
- Mackay, N.; Marley, E.; Leeman, D.; Poplawski, C.; Donnelly, C. Analysis of Aflatoxins, Fumonisins, Deoxynivalenol, Ochratoxin A, Zearalenone, HT-2, and T-2 Toxins in Animal Feed by LC-MS/MS Using Cleanup with a Multi-Antibody Immunoaffinity Column. J. AOAC Int. 2022, 105, 1330–1340. [Google Scholar] [CrossRef]
- Li, Y.; Chen, A.; Mao, X.; Sun, M.; Yang, S.; Li, J.; You, Y.; Wu, Y.; Jiang, G. Multiple antibodied based immunoaffinity columns preparation for the simultaneous analysis of deoxynivalenol and T-2 toxin in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2021, 337, 127802. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.-L.; Long, J.-Y.; Zhang, X.-T.; Gong, M.-D.; Xu, W.-B.; Wang, X.-Q.; Liu, Z.-Y. Preparation of rabbit monoclonal antibody against T-2 toxin and development of enzyme-linked immunosorbent assay in milk, feed and pork samples. Microchem. J. 2024, 207, 111977. [Google Scholar] [CrossRef]
- Leeman, D.; Allan, A.B.; Cameron, H.; Donelly, C.; Tramaseur, A.; Stratton, J.; MacDonald, S.J. Validation of the 11+Myco MS-PREP® Method for Determination of Aflatoxins, Fumonisins, Deoxynivalenol, Ochratoxin A, Zearalenone, HT-2, and T-2 Toxins in Cereals, Baby Food, Spices, and Animal Feed by Immunoaffinity Column with LC–MS/MS: AOAC Performance Tested MethodSM 112401. J. AOAC Int. 2024, 108, 207–252. [Google Scholar]
- Zhang, L.; Lv, Q.; Zheng, Y.; Chen, X.; Kong, D.; Huang, W.; Liu, P.; Jiang, H.; Jiang, Y. A rapid and accurate method for screening T-2 toxin in food and feed using competitive AlphaLISA. FEMS Microbiol. Lett. 2021, 368, fnab029. [Google Scholar] [CrossRef]
- Shaban, S.M.; Kim, D.-H. Recent Advances in Aptamer Sensors. Sensors 2021, 21, 979. [Google Scholar] [CrossRef]
- Bankole, O.E.; Verma, D.K.; Chávez González, M.L.; Ceferino, J.G.; Sandoval-Cortés, J.; Aguilar, C.N. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Biosci. 2022, 47, 101695. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Liu, J.; Yuan, R.; Xiang, Y. Aptamer-based and highly sensitive electrochemical label-free gliotoxin biosensor via a dual recycling signal amplification cascade strategy. Talanta 2025, 290, 127789. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Lu, L.; Yu, R.; Zhang, D. A smartphone-assisted colorimetric aptasensor based on aptamer and gold nanoparticles for visual, fast and sensitive detection of ZEN in maize. Food Chem. X 2023, 19, 100792. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Zhang, Y.Z.; Qi, C.Y.; Lu, X.; Ma, X.Y.; Chen, Z.Z.; Sheng, Q.H.; Zhang, W. Detection of chloramphenicol in aquatic products using a colorimetric aptasensor based on catalytic hairpin assembly and G-quadruplex. J. Food Compos. Anal. 2025, 141, 107366. [Google Scholar] [CrossRef]
- Lee, W.; Shaban, S.M.; Pyun, D.G.; Kim, D.-H. Solid-phase colorimetric apta-biosensor for thrombin detection. Thin Solid Film. 2019, 686, 137428. [Google Scholar] [CrossRef]
- Lu, N.; Ma, J.; Lin, Y.; Cheng, J.-H.; Sun, D.-W. A fluorescent Aptasensor based on magnetic-separation strategy with gold nanoclusters for Deoxynivalenol (DON) detection. Food Chem. 2024, 459, 140341. [Google Scholar] [CrossRef]
- Meng, J.J.; Li, R.J.; Chen, X.Y.; Wang, X.Y.; Huang, Q.W.; Nie, D.X.; Guo, D.K.; Zhao, Z.H.; Han, Z. Magnetic beads-based double-stranded DNA fluorescent aptasensor biosensor for deoxynivalenol detection. Food Chem. 2025, 473, 140341. [Google Scholar] [CrossRef]
- Phopin, K.; Ruankham, W.; Dave, J.; Rukkhapiban, P.; Nuttavuttisit, C.; Hongoeb, J.; Zine, N.; Errachid, A.; Tantimongcolwat, T. Portable label-free electrochemical aptasensor for sensitive detection of paraquat herbicide mediated by oxygen reduction reaction. Talanta 2025, 281, 126841. [Google Scholar] [CrossRef]
- Hou, W.E.; Liu, Z.M.; Hao, X.X.; Zheng, T.T.; Yang, X.P.; Li, Y.X.; Hu, L.Q. Dual-modular electrochemiluminescence/electrochemistry aptasensing platform based on Ru(dcbpy)32+loaded copper oxide nanospheres and Cu-Au bimetallic nanoparticles for the sensing of estradiol. Microchem. J. 2025, 210, 112893. [Google Scholar] [CrossRef]
- Deng, Y.; Lin, J.; Wang, J.; Lin, Y.; Luo, F.; Weng, Z.; Wang, J.; Lin, C.; Qiu, B.; Lin, Z. Dual-signal point-of-care testing method for T-2 toxin utilizing target-responsive DNA hydrogel and starch iodide paper. Microchem. J. 2025, 210, 113016. [Google Scholar] [CrossRef]
- Santa, C.; Park, S.; Gejt, A.; Clark, H.A.; Hengerer, B.; Sergelen, K. Real-time monitoring of vancomycin using a split-aptamer surface plasmon resonance biosensor. Analyst 2024, 150, 131–141. [Google Scholar] [CrossRef]
- Wang, W.; Zhai, F.; Xu, F.; Jia, M. Enzyme-free amplified and one-step rapid detection of bisphenol A using dual-terminal labeled split aptamer probes. Microchem. J. 2022, 183, 107977. [Google Scholar] [CrossRef]
- Qi, S.; Dong, X.; Sun, Y.; Zhang, Y.; Duan, N.; Wang, Z. Split aptamer remodeling-initiated target-self-service 3D-DNA walker for ultrasensitive detection of 17β-estradiol. J. Hazard. Mater. 2022, 439, 129590. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Asumadu, P.; Zhou, S.; Wang, M.; Liu, C.; Zhang, Q.; Zhong, J.; Guan, H.; Ye, H. Recognition mechanism of split T-2 toxin aptamer coupled with reliable dual-mode detection in peanut and beer. Food Biosci. 2024, 60, 104268. [Google Scholar] [CrossRef]
- Ma, P.; Ye, H.; Guo, H.; Ma, X.; Yue, L.; Wang, Z. Aptamer truncation strategy assisted by molecular docking and sensitive detection of T-2 toxin using SYBR Green I as a signal amplifier. Food Chem. 2022, 381, 132171. [Google Scholar] [CrossRef]
- He, C.; Liu, X.; Yu, M.; Qiu, Z.; Huang, T.; Xie, W.; Cheng, H.; Yang, Y.; Hao, X.; Wang, X. Smartphone conducted DNA portable quantitative detection platform based on photonic crystals chip and magnetic nanoparticles. Talanta 2023, 265, 124849. [Google Scholar] [CrossRef]
- Liao, X.; Liu, Y.; Qiu, L.; Cao, L.; Yang, X.; Hu, X. A quantum dot aptamer fluorescent sensor based on magnetic graphene oxide for the detection of zearalenone. Anal. Methods 2023, 15, 4946–4953. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; McCormick, S.P.; Maragos, C.M. An Imaging Surface Plasmon Resonance Biosensor Assay for the Detection of T-2 Toxin and Masked T-2 Toxin-3-Glucoside in Wheat. Toxins 2018, 10, 119. [Google Scholar] [CrossRef]
- Fan, L.; Du, B.; Pei, F.; Hu, W.; Guo, A.; Xie, Z.; Liu, B.; Tong, Z.; Mu, X.; Tan, W. Surface Plasmon Resonance Sensor Based on Core-Shell Fe3O4@SiO2@Au Nanoparticles Amplification Effect for Detection of T-2 Toxin. Sensors 2023, 23, 3078. [Google Scholar] [CrossRef]
- Xu, H.; Dong, Y.; Guo, J.; Jiang, X.; Liu, J.; Xu, S.; Wang, H. Monoclonal antibody production and the development of an indirect competitive enzyme-linked immunosorbent assay for screening T-2 toxin in milk. Toxicon 2018, 156, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nolan, P.; Auer, S.; Spehar, A.; Oplatowska-Stachowiak, M.; Campbell, K. Evaluation of Mass Sensitive Micro-Array biosensors for their feasibility in multiplex detection of low molecular weight toxins using mycotoxins as model compounds. Talanta 2021, 222, 121521. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Zhu, P.; Zhou, C.; Kong, D.; Ye, H. Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection. Molecules 2025, 30, 2853. https://doi.org/10.3390/molecules30132853
Yan Z, Zhu P, Zhou C, Kong D, Ye H. Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection. Molecules. 2025; 30(13):2853. https://doi.org/10.3390/molecules30132853
Chicago/Turabian StyleYan, Ziyi, Ping Zhu, Chaoyi Zhou, Dezhao Kong, and Hua Ye. 2025. "Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection" Molecules 30, no. 13: 2853. https://doi.org/10.3390/molecules30132853
APA StyleYan, Z., Zhu, P., Zhou, C., Kong, D., & Ye, H. (2025). Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection. Molecules, 30(13), 2853. https://doi.org/10.3390/molecules30132853