Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (204)

Search Parameters:
Keywords = lutetium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3765 KiB  
Article
PSMA-Targeted Radiolabeled Peptide for Imaging and Therapy in Prostate Cancer: Preclinical Evaluation of Biodistribution and Therapeutic Efficacy
by Ming-Wei Chen, Yuan-Ruei Huang, Wei-Lin Lo, Shih-Ying Lee, Sheng-Nan Lo, Shih-Ming Wang and Kang-Wei Chang
Int. J. Mol. Sci. 2025, 26(15), 7580; https://doi.org/10.3390/ijms26157580 - 5 Aug 2025
Abstract
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine [...] Read more.
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine the specific binding of 177Lu-PSMA-NARI-56 towards PSMA, assess its biodistribution, and evaluate therapeutic effectiveness by tumor-bearing mice. The effect of 177Lu-PSMA-NARI-56 viability of PSMA-positive cell (LNCaP) was evaluated. Biodistribution and endoradiotherapy studies were utilized to determine the distribution, targeting, and anti-tumor efficacy by tumor-bearing mice identified by 111In-PSMA-NARI-56. 177Lu-PSMA-NARI-56 exhibited a significant impact on the viability of the LNCaP cell. Biodistribution results revealed the maximum tumor uptake of 177Lu-PSMA-NARI-56 occurring within 24 h, reaching 40.56 ± 10.01%ID/g. In radionuclide therapy, at 58 days post-injection (p.i.), 177Lu-PSMA-NARI-56 demonstrated superior tumor inhibition (98%) compared to 177Lu-PSMA-617 (58%), and the mouse survival rate after 90 days of radiotherapy (90%) was also higher than that of 177Lu-PSMA-617 (30%) in LNCaP tumor-bearing mice. In the PSMA-positive animal model, 177Lu-PSMA-NARI-56 shows higher potential radiotheranostic and prolonged accumulation (identify by 111In-PSMA-NARI-56/nanoSPECT/CT image), offering the potential for improved treatment effectiveness and increased survival rates when compared to 177Lu-PSMA-617. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 1018 KiB  
Systematic Review
Efficacy and Safety of Radioligand Therapy with Actinium-225 DOTATATE in Patients with Advanced, Metastatic or Inoperable Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis
by Alessio Rizzo, Alessio Imperiale, Salvatore Annunziata, Roberto C. Delgado Bolton, Domenico Albano, Francesco Fiz, Arnoldo Piccardo, Marco Cuzzocrea, Gaetano Paone and Giorgio Treglia
Medicina 2025, 61(8), 1341; https://doi.org/10.3390/medicina61081341 - 24 Jul 2025
Viewed by 548
Abstract
Background and Objectives: Peptide receptor radionuclide therapy (PRRT) using radiopharmaceuticals labelled with Lutetium-177 is currently a therapeutic option for patients with advanced neuroendocrine neoplasms overexpressing somatostatin receptors (SSTRs). One promising option that has gained interest for PRRT is using alpha-emitting radioisotopes such [...] Read more.
Background and Objectives: Peptide receptor radionuclide therapy (PRRT) using radiopharmaceuticals labelled with Lutetium-177 is currently a therapeutic option for patients with advanced neuroendocrine neoplasms overexpressing somatostatin receptors (SSTRs). One promising option that has gained interest for PRRT is using alpha-emitting radioisotopes such as Actinium-225. The aim of this study was to perform a systematic review and meta-analysis on the efficacy and safety of radioligand therapy with Actinium-225 DOTATATE in advanced, metastatic or inoperable neuroendocrine neoplasms. Materials and Methods: A comprehensive literature search of studies on radioligand therapy with Actinium-225 DOTATATE in neuroendocrine neoplasms was carried out. Three different bibliographic databases (Cochrane Library, Embase, and PubMed/MEDLINE) were screened up to May 2025. Eligible articles were selected, relevant data were extracted, and the main findings on efficacy and safety are summarized through a systematic review. Furthermore, proportional meta-analyses on the disease response rate and disease control rate were performed. Results: Five studies (153 patients) published from 2020 were included in the systematic review. The pooled disease response rate and disease control rate of radioligand therapy using Actinium-225 DOTATATE were 51.6% and 88%, respectively. This treatment was well-tolerated in most patients with advanced, metastatic or inoperable neuroendocrine neoplasms. Conclusions: Radioligand therapy with Actinium-225 DOTATATE in advanced, metastatic or inoperable neuroendocrine neoplasms is effective with an acceptable toxicity profile and potential advantages compared with SSTR-ligands labelled with Lutetium-177. Currently, the number of published studies on this treatment is still limited, and results from multicenter randomized controlled trials are needed to translate this therapeutic option into clinical practice. Full article
(This article belongs to the Special Issue Clinical Treatment of Neuroendocrine Neoplasm)
Show Figures

Figure 1

18 pages, 2427 KiB  
Article
Exploring the Therapeutic Potential of 177Lu-PSMA-617 in a Mouse Model of Prostate Cancer Bone Metastases
by Cheng-Liang Peng, Chun-Tang Chen and I-Chung Tang
Int. J. Mol. Sci. 2025, 26(13), 5970; https://doi.org/10.3390/ijms26135970 - 21 Jun 2025
Viewed by 639
Abstract
Prostate cancer is the second leading cause of cancer-related death in men, with metastatic castration-resistant prostate cancer (mCRPC) and bone metastases representing a critical clinical challenge. Although radium-223 (Ra-223) is approved for treating mCRPC with bone metastases, its efficacy remains limited, necessitating the [...] Read more.
Prostate cancer is the second leading cause of cancer-related death in men, with metastatic castration-resistant prostate cancer (mCRPC) and bone metastases representing a critical clinical challenge. Although radium-223 (Ra-223) is approved for treating mCRPC with bone metastases, its efficacy remains limited, necessitating the development of more effective therapies. This study investigates the therapeutic potential of 177Lu-PSMA-617, a PSMA-targeted radiopharmaceutical, in a murine model of prostate cancer bone metastases. To our knowledge, this is the first study to systematically evaluate 177Lu-PSMA-617 in an orthotopic bone metastatic prostate cancer model, providing a clinically relevant preclinical platform to assess both imaging and therapeutic performance. We conducted comprehensive preclinical evaluations, including synthesis, stability analysis, cell binding assays, nuclear imaging, in vivo biodistribution, pharmacokinetics, and antitumor efficacy. The synthesis of 177Lu-PSMA-617 demonstrated high radiochemical yield (99.2%), molar activity (25.5 GBq/μmol), and purity (>98%), indicating high product quality. Stability studies confirmed minimal release of free Lutetium-177, maintaining the compound’s integrity under physiological conditions. In vitro assays showed selective binding and internalization in PSMA-positive LNCaP prostate cancer cells, with negligible uptake in PSMA-negative PC-3 cells. In vivo biodistribution studies demonstrated efficient tumor targeting, with peak uptake in LNCaP tumors (23.31 ± 0.94 %IA/g) at 4 h post-injection. The radiopharmaceutical exhibited favorable pharmacokinetics, with high tumor-to-background ratios (tumor-to-blood, 434.4; tumor-to-muscle, 857.4). Therapeutic efficacy was confirmed by significant survival extension in treated mice (30.7% for 37 MBq and 53.8% for 111 MBq), with median survival times of 34 and 40 days, respectively, compared to 26 days in the control group. Radiation dosimetry analysis indicated a favorable safety profile with a calculated effective dose of 0.127 mSv/MBq. These findings highlight the novelty and translational relevance of using 177Lu-PSMA-617 in a clinically relevant bone metastasis model, reinforcing its potential as a dual-purpose agent for both targeted therapy and molecular imaging in advanced prostate cancer. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

12 pages, 700 KiB  
Article
The Influence of Radioligand Therapy on Immunogenicity Against SARS-CoV-2—A Retrospective Single-Arm Cohort Study of Metastatic Prostate Cancer Patients Receiving PSMA Radioligand Therapy
by Carsten S. Kramer, Aleksandr Eismant, Aditi Mishra, Corinna Müller, Christian Landvogt and Richard P. Baum
Cancers 2025, 17(11), 1865; https://doi.org/10.3390/cancers17111865 - 2 Jun 2025
Viewed by 689
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a rising threat for immunocompromised cancer patients. The reduced immune defense may be a result of the malignancy itself or a side effect of therapy. While many chemotherapies can severely diminish the [...] Read more.
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a rising threat for immunocompromised cancer patients. The reduced immune defense may be a result of the malignancy itself or a side effect of therapy. While many chemotherapies can severely diminish the effect of vaccines against SARS-CoV-2, the effect of radioligand therapy has not yet been studied so far. Methods: In our database, 64 patient records of patients with metastatic castration-resistant prostate cancer that were treated with PSMA-directed radioligand therapy (PRLT) were randomly selected and checked for specific information (vaccination status, past corona virus disease 2019 (COVID-19) infections, the period between PRLT and vaccination, and antibody titers). A total of 30 patient records had sufficient information to examine the interference between PRLT and the vaccination against SARS-CoV-2. Results: In the analyzed cohort, 96.7% of the patients achieved seroconversion after receiving—on average—the third (booster) vaccination against SARS-CoV-2 and two PRLT cycles with average administered activities of 16.1 ± 7.2 GBq (435.1 ± 194.6 mCi) of lutetium-177 and 13.7 ± 6.6 MBq (0.37 ± 0.18 mCi) of actinium-225 (as part of ‘TANDEM therapies’) per patient. Conclusions: In the reviewed population, neither the initial response nor the maintenance of a positive immune response against the SARS-CoV-2 virus was undesirably affected by PRLT. The seroconversion rate and the absolute immune titers (in many cases >25,000 BAU/mL) are comparable to the normal population. This result implies the clinically important conclusion that neither an initial nor a booster vaccination against COVID-19 must be postponed if a PRLT is planned (and vice versa). Full article
(This article belongs to the Special Issue How COVID-19 Affects Cancer Patients)
Show Figures

Figure 1

17 pages, 2956 KiB  
Article
Design and Evaluation of a Portable Pinhole SPECT System for 177Lu Imaging: Monte Carlo Simulations and Experimental Study
by Georgios Savvidis, Vasileios Eleftheriadis, Valentina Paneta, Eleftherios Fysikopoulos, Maria Georgiou, Efthimis Lamprou, Sofia Lagoumtzi, George Loudos, Paraskevi Katsakiori, George C. Kagadis and Panagiotis Papadimitroulas
Diagnostics 2025, 15(11), 1387; https://doi.org/10.3390/diagnostics15111387 - 30 May 2025
Viewed by 571
Abstract
Background/Objectives: Lutetium-177 is a widely used radioisotope in targeted radionuclide therapy, particularly for treating certain types of cancers relying on beta and low-energy gamma emissions, making it suitable for both therapeutic and post-therapy monitoring purposes. The purpose of this study was [...] Read more.
Background/Objectives: Lutetium-177 is a widely used radioisotope in targeted radionuclide therapy, particularly for treating certain types of cancers relying on beta and low-energy gamma emissions, making it suitable for both therapeutic and post-therapy monitoring purposes. The purpose of this study was to evaluate the technical parameters for developing a prototype portable gamma camera dedicated to 177Lu imaging applications. Methods: The well-validated GATE Monte Carlo toolkit was used to study the characteristics of the system and evaluate its performance in terms of spatial resolution, sensitivity, and image quality. For this purpose, a series of Monte Carlo simulations were executed, modeling a channel-edge aperture pinhole collimator incorporating a variety of computational phantoms. The final configuration of the prototype was standardized, incorporating the crystal size, collimator design, shielding, and the optimal FOV. After the development of the actual prototype camera, the system was also validated experimentally on the same setups as the simulations. Results: The final configuration of the prototype imaging system was standardized based on simulation results and then experimentally validated using physical phantoms under equivalent conditions. A minification of 1:5, spatial resolution of 1.0 cm, and sensitivity of 5.2 Cps/MBq at 10 cm distance source-to-collimator distance were assessed and confirmed. The experimental results agreed within 5% of simulated values. Conclusions: This study establishes the technical feasibility and foundational performance of a portable pinhole imaging system for potential clinical use in 177Lu imaging workflows and thereby improving therapeutic effectiveness. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

13 pages, 3137 KiB  
Article
Studies and Rejection of Intercrystal Crosstalk on FPGA in a High-Energy Photon-Counting System
by Jiahao Chang, Huaxia Zhang, Shibo Jiang, Zhifang Wu and Shuo Xu
Appl. Sci. 2025, 15(11), 6050; https://doi.org/10.3390/app15116050 - 28 May 2025
Viewed by 399
Abstract
Intercrystal scatter reduces system sensitivity and spatial resolution, a phenomenon that has been extensively studied in positron emission tomography (PET) systems. However, the issue is even more significant in high-energy systems. The purpose of this study is to propose a practical crosstalk rejection [...] Read more.
Intercrystal scatter reduces system sensitivity and spatial resolution, a phenomenon that has been extensively studied in positron emission tomography (PET) systems. However, the issue is even more significant in high-energy systems. The purpose of this study is to propose a practical crosstalk rejection technique and demonstrate its applicability in high-energy photon-counting systems. The effect of inter-crystal scattering interactions between 60Co γ photons and lutetium yttrium oxyorthosilicate (LYSO) scintillator crystals is investigated through Monte Carlo simulations conducted using the Geant4 toolkit. To suppress the crosstalk phenomenon, a field-programmable gate array (FPGA)-based algorithm is proposed to suppress inter-crystal scattering events, characterized by a time window of 5 nanoseconds and detector window sizes of one or two. The 250 mm Fe steel penetration model is used to evaluate the proposed algorithm, showing improved radiation image quality, particularly with a detector window size of two, which performs better under low-count-rate conditions. Laboratory testing indicates that the proposed algorithm can enhance steel penetration (SP) by 60–70 mm of Fe when compared to the existing current integration system under the same settings. The suggested method has been proven effective in producing higher-quality images and demonstrates good adaptability by adapting the detector window width according to different system count rates. Full article
Show Figures

Figure 1

11 pages, 1801 KiB  
Article
Lanthanide Exposure In Vitro Differentially Diminishes MTT Cell Viability in Axenic Neuronal or Glial Cell Model Systems
by David C. Platt, Linda M. Ferrence, Faith Breausche, Katelyn Terry, Gregory M. Ferrence and Marjorie A. Jones
Inorganics 2025, 13(4), 127; https://doi.org/10.3390/inorganics13040127 - 20 Apr 2025
Viewed by 433
Abstract
Applications of lanthanide chemistry have been successful in metallics and the petroleum industry. In the medical realm, lanthanides have shown utility in radiotherapy agents, photodynamic therapy agents, and magnetic resonance imaging (MRI) contrast agents. The lanthanide group elements have a few known biological [...] Read more.
Applications of lanthanide chemistry have been successful in metallics and the petroleum industry. In the medical realm, lanthanides have shown utility in radiotherapy agents, photodynamic therapy agents, and magnetic resonance imaging (MRI) contrast agents. The lanthanide group elements have a few known biological roles, notably among some bacteria and the yeast Saccharomyces cerevisiae, which have been used as models for changes in gene expression. However, the systematic effects of lanthanide nitrates on eukaryotic cell model systems have not yet been reported. This study presents the first documented effects on cell viability, after acute incubations of various lanthanide nitrate salts, using axenic C6 glial or PC12 neuronal cells in vitro. Cultures were exposed to a 1 mM concentration of lanthanide nitrate salts for 24 h. In comparison to the saline control, several cultures demonstrated significantly lower cell viability, as measured by the MTT viability assay. Data were analyzed as an average absorbance of n = 4 replicate samples, corrected for the average absorbance of cell-free blanks. The reported results were normalized to the average of the saline control cells. Among the 13 lanthanides tested, Praseodymium, Holmium, Erbium, Thulium, and Ytterbium nitrates exhibited the most pronounced inhibitory effects, resulting in over 40% reduction in cell viability at 1 mM for either or both cell types. Recovery after lanthanide exposure also was cell-type-dependent as well as lanthanide-type-dependent, with Lutetium having the greatest effect on both cell types. PC12 cells displayed greater sensitivity for inhibition than the C6 cells with some of the lanthanides but not all. Furthermore, the controls of sodium nitrate and calcium nitrate showed only modest discernible impacts on cell viability for PC12 and C6 cells, highlighting the role of the lanthanides in influencing cell viability. Full article
(This article belongs to the Section Bioinorganic Chemistry)
Show Figures

Figure 1

16 pages, 2041 KiB  
Article
Preclinical and Clinical Feasibility Studies as the First Step Before Forthcoming Intravesical Instillation of [211At]At-anti-CA-IX Antibody (ATO-101™) Study in Patients with Non-Muscle-Invasive Bladder Cancer Unresponsive to Standard of Care
by Caroline Rousseau, Pierre Baumgartner, Marie-Françoise Heymann, Manon Taupin, Maïwenn Geffroy, Jean-François Chatal, Gaëlle Gautier, Nadia Allam, Joëlle Gaschet, Romain Eychenne, François Guérard, Jean-François Gestin, Nicolas Varmenot and Michel Chérel
Cancers 2025, 17(7), 1190; https://doi.org/10.3390/cancers17071190 - 31 Mar 2025
Viewed by 974
Abstract
Introduction: Recently, alpha-emitting radionuclides like astatine-211 have offered promising results in clinical development. Non-muscle-invasive bladder cancer (NMIBC) presents a need for novel therapies. One promising approach is radioimmunotherapy targeting Carbonic Anhydrase IX (CA-IX), which is supported by preclinical and clinical evidence. The aim [...] Read more.
Introduction: Recently, alpha-emitting radionuclides like astatine-211 have offered promising results in clinical development. Non-muscle-invasive bladder cancer (NMIBC) presents a need for novel therapies. One promising approach is radioimmunotherapy targeting Carbonic Anhydrase IX (CA-IX), which is supported by preclinical and clinical evidence. The aim of our preclinical and clinical studies was to evaluate the [211At]At-anti-CA-IX antibody (ATO-101™) for future use in NMIBC patient care. Methods: The anti-CA-IX antibody, girentuximab (TLX250), was labeled with lutetium-177 and astatine-211 for in vitro studies. Affinity constant measurements of [211At]At-girentuximab in RT-112 cells were taken, and toxicity evaluations were conducted in vitro and in healthy mice. Additionally, a clinical proof-of-concept study, PERTINENCE, that used [89Zr]Zr-girentuximab for PET/CT imaging in bladder cancer patients was conducted. Results: The measurement of the affinity constant of [211At]At-girentuximab in RT112 cells revealed high binding affinity and significant cytotoxicity compared to [177Lu]Lu-girentuximab. Biodistribution studies in healthy mice indicated low systemic radioactivity uptake, and a bladder post-instillation examination showed no abnormalities in bladder mucosa, suggesting safety. In the PERTINENCE study, which involved patients with NMIBC tumors expressing CA-IX, [89Zr]Zr-girentuximab PET/CT showed no extravesical leakage. Wall bladder uptake spots correlated with recurrence or inflammatory reaction. A dosimetric study suggested the potential efficacy and favorable safety profile of intravesical alpha therapy with the [211At]At-anti-CA-IX antibody (ATO-101™) in NMIBC treatment. Conclusions: Preclinical and clinical data demonstrate the promising therapeutic role of 211At-targeted alpha agents in NMIBC, and the [211At]At-anti-CA-IX antibody (ATO-101™) could fulfill this role. A phase I FIH clinical trial is in preparation, and results are expected within the next years. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

15 pages, 2238 KiB  
Article
Evaluation of the Real-Life Efficacy and Safety of the Treatment with Lutetium-177 Dotatate for Metastatic Neuroendocrine Tumors
by Sara Elena Campos Ramírez, Alejandro Andrés García, Carmen Blanco Abad, Paula Gomila Pons, Pablo Gómez Mugarza, Sofía Elena Ruffini Egea, Luis Gallart Caballero, Eduardo Polo Marques and Vicente Alonso Orduña
J. Clin. Med. 2025, 14(7), 2384; https://doi.org/10.3390/jcm14072384 - 30 Mar 2025
Viewed by 1954
Abstract
Background: Therapy using lutetium-177 dotatate (177LU) was approved in Europe for the treatment of advanced neuroendocrine tumors (NETs) in 2017. Since then, it has become part of the strategies in the treatment of NETs, making it now possible to evaluate real-life [...] Read more.
Background: Therapy using lutetium-177 dotatate (177LU) was approved in Europe for the treatment of advanced neuroendocrine tumors (NETs) in 2017. Since then, it has become part of the strategies in the treatment of NETs, making it now possible to evaluate real-life results. Research Design and Methods: Single-arm, retrospective, multicenter, cohort study of all the patients with metastatic NETs treated with 177LU (four cycles of 200 mCi every 8 weeks) in the two medical centers dedicated to the treatment of NETs from the region of Aragón, Spain, from 2017 to 2024. Descriptive analysis of demographic characteristics, efficacy, and survival analysis were performed using the statistics software Jamovi 2.6.14. Results: Sixty-eight patients were included. The majority were male, and the most frequent primary location was the pancreas. The ORR was 30.9%. The DCR was 88%. The median OS was 47.4 months [95% CI, 25.6–NE]. The median PFS was 26.1 months [95% CI, 18.5–68.3]. High-grade tumors, multiple previous treatments, and pancreatic location presented worse OS. In total, 42.6% presented any grade adverse event (17.2% hematologic, 30.9% GI symptoms). Conclusions: The efficacy of 177LU in our study is like that observed in similar studies. Acceptable tolerance has been shown. Pancreatic tumors, previous treatments, and higher grades demonstrated worse outcomes. The new research line must consider the use of treatment with 177LU in earlier lines for metastatic disease as well as its possible use in local or locally advanced disease. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

14 pages, 7373 KiB  
Article
Ultrasound-Assisted Synthesis of Microcrystalline Lanthanide Terephthalates: Insights into Morphology and Structural Properties
by Yulia N. Toikka, Polina B. Guseva, Nikita A. Bogachev, Stefaniia S. Kolesnik, Nikita A. Glukhoedov, Sergey N. Orlov, Mikhail N. Ryazantsev, Mikhail Yu. Skripkin and Andrey S. Mereshchenko
Chemistry 2025, 7(2), 49; https://doi.org/10.3390/chemistry7020049 - 28 Mar 2025
Viewed by 576
Abstract
Crystalline lanthanide terephthalates, Ln2bdc3‧nH2O (Ln = La–Lu, excluding Pm), were synthesized using a surfactant-free, ultrasound-assisted method. This approach yielded microcrystals with diverse shapes and sizes ranging from 2 to 10 μm. Notably, under these conditions, lutetium terephthalate [...] Read more.
Crystalline lanthanide terephthalates, Ln2bdc3‧nH2O (Ln = La–Lu, excluding Pm), were synthesized using a surfactant-free, ultrasound-assisted method. This approach yielded microcrystals with diverse shapes and sizes ranging from 2 to 10 μm. Notably, under these conditions, lutetium terephthalate uniquely crystallized as Lu2(1,4-bdc)3·2.5H2O, while the remaining lanthanides formed tetrahydrate terephthalates, Ln2bdc3‧4H2O (Ln = La–Nd, Sm–Yb). Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

19 pages, 8785 KiB  
Article
Novel 177Lu-Labeled [Thz14]Bombesin(6–14) Derivatives with Low Pancreas Accumulation for Targeting Gastrin-Releasing Peptide Receptor-Expressing Cancer
by Lei Wang, Devon E. Chapple, Hsiou-Ting Kuo, Sara Kurkowska, Ryan P. Wilson, Wing Sum Lau, Pauline Ng, Carlos Uribe, François Bénard and Kuo-Shyan Lin
Pharmaceuticals 2025, 18(4), 449; https://doi.org/10.3390/ph18040449 - 23 Mar 2025
Viewed by 666
Abstract
Background/Objectives: Gastrin-releasing peptide receptor is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake of reported GRPR-targeted radioligands limits their clinical applications. Our group previously reported one 68Ga-labeled GRPR antagonist, [68Ga]Ga-TacsBOMB5 (68Ga-DOTA-Pip-[D-Phe6,NMe-Gly [...] Read more.
Background/Objectives: Gastrin-releasing peptide receptor is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake of reported GRPR-targeted radioligands limits their clinical applications. Our group previously reported one 68Ga-labeled GRPR antagonist, [68Ga]Ga-TacsBOMB5 (68Ga-DOTA-Pip-[D-Phe6,NMe-Gly11,Leu13ψThz14]Bombesin(6–14)), and two agonists, [68Ga]Ga-LW01110 (68Ga-DOTA-Pip-[D-Phe6,Tle10,NMe-His12,Thz14]Bombesin(6–14)) and [68Ga]Ga-LW01142 (68Ga-DOTA-Pip-[D-Phe6,His7,Tle10,NMe-His12,Thz14]Bombesin(6–14)) showing minimal pancreas uptake. Thus, in this study, we prepared their 177Lu-labeled analogs, evaluated their therapeutic potentials, and compared them with the clinically evaluated [177Lu]Lu-AMBA. Methods: GRPR binding affinities were determined by in vitro competition binding assay using PC-3 prostate cancer cells. Longitudinal SPECT/CT imaging and ex vivo biodistribution studies were conducted in PC-3 tumor-bearing mice. Dosimetry data were calculated from the biodistribution results. Results: The Ki(GRPR) values of Lu-TacsBOMB5, Lu-LW01110, Lu-LW01142, and Lu-AMBA were 12.6 ± 1.02, 3.07 ± 0.15, 2.37 ± 0.28, and 0.33 ± 0.16 nM, respectively. SPECT/CT images and biodistribution results demonstrated good tumor accumulation of [177Lu]Lu-TacsBOMB5, [177Lu]Lu-LW01110, and [177Lu]Lu-LW01142 at early time points with rapid clearance over time. The pancreas uptake of all three [Thz14]Bombesin(6–14)-derived ligands was significantly lower than that of [177Lu]Lu-AMBA at all time points. The calculated absorbed doses of [177Lu]Lu-TacsBOMB5, [177Lu]Lu-LW01110, and [177Lu]Lu-LW01142 in PC-3 tumor xenografts were 87.1, 312, and 312 mGy/MBq, respectively, higher than that of [177Lu]Lu-AMBA (79.1 mGy/MBq), but lower than that of the previously reported [177Lu]Lu-RM2 (429 mGy/MBq). Conclusions: Our data suggest that [177Lu]Lu-TacsBOMB5 and [177Lu]Lu-LW01142 reduce radiation exposure to the pancreas. However, further optimizations are needed for both radioligands to prolong their tumor retention and enhance treatment efficacy. Full article
Show Figures

Figure 1

19 pages, 769 KiB  
Review
Meningioma: Novel Diagnostic and Therapeutic Approaches
by Carlen A. Yuen, Michelle Zheng, Max A. Saint-Germain and David O. Kamson
Biomedicines 2025, 13(3), 659; https://doi.org/10.3390/biomedicines13030659 - 7 Mar 2025
Cited by 2 | Viewed by 2490
Abstract
Background/Objectives: Meningiomas are the most common intracranial tumors. Surgery and radiation therapy are the cornerstones of treatment and no standard of care therapy exists for refractory meningiomas. This manuscript aims to provide a comprehensive review of novel diagnostic and therapeutic approaches against [...] Read more.
Background/Objectives: Meningiomas are the most common intracranial tumors. Surgery and radiation therapy are the cornerstones of treatment and no standard of care therapy exists for refractory meningiomas. This manuscript aims to provide a comprehensive review of novel diagnostic and therapeutic approaches against these tumors. Methods: A search for the existing literature on systemic therapies for meningiomas was performed on PubMed and a search for presently accruing clinical trials was performed on ClinicalTrials.gov. Results: Systemic treatments, including chemotherapy, somatostatin analogs, anti-hormone therapy, and anti-angiogenic therapy, have been extensively studied with marginal success. Targeted therapies are actively being studied for the treatment of meningiomas, including focal adhesion kinase (FAK), sonic hedgehog signaling pathway, phosphoinositide-3-kinase (PI3K), and cyclin-dependent kinases (CDK) inhibitors. These driver mutations are present only in a subset of meningiomas. In stark contrast, somatostatin receptor 2 (SSTR2) is ubiquitously expressed in meningiomas and was formerly targeted with somatostatin analogs with modest success. Theranostic SSTR2-targeting via [68Ga]DOTATATE for PET imaging and β-emitting [177Lu]DOTATATE for the treatment of meningiomas are currently under active investigation. Conclusions: A nuanced approach is needed for the treatment of refractory meningiomas. Targeted therapies show promise. Full article
(This article belongs to the Special Issue Meningioma: Novel Diagnostic and Therapeutic Approaches)
Show Figures

Figure 1

12 pages, 5231 KiB  
Article
Rare Earth Metal Ion-Associates in Ln3+—CO32−—H2O System
by Tatiana Litvinova, Stepan Gerasev, Vasiliy Sergeev and Egor Lidanovskiy
Metals 2025, 15(3), 239; https://doi.org/10.3390/met15030239 - 24 Feb 2025
Cited by 2 | Viewed by 767
Abstract
This study focused on the nature of rare earth metal complex compounds that can form during the carbonate–alkaline processing of industrial waste materials, such as phosphogypsum and red mud, at 70–100 °C and 1–10 atm. Experimental findings revealed that the dissolution of synthetic [...] Read more.
This study focused on the nature of rare earth metal complex compounds that can form during the carbonate–alkaline processing of industrial waste materials, such as phosphogypsum and red mud, at 70–100 °C and 1–10 atm. Experimental findings revealed that the dissolution of synthetic carbonates of rare earth elements (REEs) in a concentrated carbonate-ion medium (3 mol/L) leads to the formation of ion-associates of varying strengths. Light (lanthanum, praseodymium, and neodymium) and medium (samarium) REE groups exhibited a tendency to form loose ion-associates, whereas heavy REEs (terbium, dysprosium, holmium, erbium, thulium, lutetium, and yttrium) formed close ion-associates. To confirm the existence of these ion-associates, the specific conductivity of solutions was measured after dissolving thulium (III) and samarium (III) carbonates at phase ratios ranging from 1:2000 g/mL to 1:40 g/mL in a potassium carbonate medium. The decay of ion-associates, leading to the precipitation of rare earth metal (III) carbonates, was tested in an ammonium carbonate medium. Thermal decomposition of ammonium carbonate at 70–75 °C during 1–4 h was accompanied by full rare earth carbonates’ sedimentation and its in-the-way separation into groups because of the varied strength of ion-associates. The results of this study provide a basis for developing processes to separate rare earth metals into groups during their carbonate–alkaline extraction into solution. Full article
Show Figures

Figure 1

14 pages, 1574 KiB  
Article
Efficacy of 177Lu-PSMA-617 Therapy in mCRPC Patients with Liver Metastases: Insights into Survival Outcomes and Predictors of Response
by Ebuzer Kalender, Edanur Ekinci, Umut Elboğa and Ertan Şahin
Biomedicines 2025, 13(3), 569; https://doi.org/10.3390/biomedicines13030569 - 24 Feb 2025
Viewed by 1396
Abstract
Objectives: Metastatic castration-resistant prostate cancer (mCRPC) is associated with poor prognosis, particularly in cases of liver metastases. 177Lu-PSMA-617 (commercially known as Pluvicto) is an FDA-approved radioligand therapy for mCRPC patients. This study aimed to evaluate the efficacy of 177Lu-PSMA-617 radioligand therapy [...] Read more.
Objectives: Metastatic castration-resistant prostate cancer (mCRPC) is associated with poor prognosis, particularly in cases of liver metastases. 177Lu-PSMA-617 (commercially known as Pluvicto) is an FDA-approved radioligand therapy for mCRPC patients. This study aimed to evaluate the efficacy of 177Lu-PSMA-617 radioligand therapy (RLT) in mCRPC patients with liver metastases, focusing on progression-free survival (PFS), overall survival (OS), and factors influencing treatment response. Materials and Methods: This retrospective study included mCRPC patients (n = 32) with liver metastases treated with Lu-PSMA-617. Patient data, including prostate-specific antigen (PSA) levels, liver SUVmax values, Lutetium-PSMA therapy cycles, and survival outcomes, were collected. Kaplan–Meier survival analysis was used to calculate PFS and OS, while regression analysis was employed to identify factors associated with treatment response. Results: The median PFS and OS were 6 and 9 months, respectively. Partial regression was observed in patients with significantly lower PSA levels (median: 90.0 ng/mL, range: 22–699 ng/mL, p = 0.001) and liver SUVmax values (median: 17.9, range: 8.3–57.0, p = 0.008). A higher number of Lutetium-PSMA cycles correlated with improved treatment response (p = 0.010) and reduced liver SUVmax values (p = 0.043). Conclusions: Lu-PSMA-617 therapy is effective in managing mCRPC with liver metastases. Increased intensity of therapy exposure, reflected by a higher number of treatment cycles, is associated with a greater biochemical response, as indicated by reduced PSA levels, thereby supporting the rationale for personalized treatment strategies. These findings support the use of Lu-PSMA-617 in mCRPC patients with liver metastases, warranting further prospective studies. Full article
Show Figures

Figure 1

22 pages, 9584 KiB  
Article
Synthesis and Evaluation of 68Ga- and 177Lu-Labeled [diF-Pro14]Bombesin(6−14) Analogs for Detection and Radioligand Therapy of Gastrin-Releasing Peptide Receptor-Expressing Cancer
by Lei Wang, Chao-Cheng Chen, Devon Chapple, Antonio A. W. L. Wong, Sara Kurkowska, Wing Sum Lau, Carlos F. Uribe, François Bénard and Kuo-Shyan Lin
Pharmaceuticals 2025, 18(2), 234; https://doi.org/10.3390/ph18020234 - 8 Feb 2025
Viewed by 1301
Abstract
Background/Objectives: Overexpressed in various solid tumors, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake of the current clinically evaluated GRPR-targeted radiopharmaceuticals limits their applications. In this study, we replaced the Pro14 [...] Read more.
Background/Objectives: Overexpressed in various solid tumors, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake of the current clinically evaluated GRPR-targeted radiopharmaceuticals limits their applications. In this study, we replaced the Pro14 residue in our previously reported GRPR-targeted LW02056 and ProBOMB5 with 4,4-difluoroproline (diF-Pro) to obtain an agonist LW02060 (DOTA-Pip-[D-Phe6,Tle10,NMe-His12,diF-Pro14]Bombesin(6–14)) and an antagonist LW02080 (DOTA-Pip-[D-Phe6,NMe-Gly11,Leu13(ψ)diF-Pro14]Bombesin(6–14)), respectively. Methods/Results: The binding affinities (Ki) of Ga-LW02060, Ga-LW02080, Lu-LW02060, and Lu-LW02080 were measured by in vitro competition binding assays using PC-3 cells and were found to be 5.57 ± 2.47, 21.7 ± 6.69, 8.00 ± 2.61, and 32.1 ± 8.14 nM, respectively. The 68Ga- and 177Lu-labeled ligands were obtained in 36–75% decay-corrected radiochemical yields with >95% radiochemical purity. PET imaging, SPECT imaging, and ex vivo biodistribution studies were conducted in PC-3 tumor-bearing mice. Both [68Ga]Ga-LW02060 and [68Ga]Ga-LW02080 enabled clear tumor visualization in PET images at 1 h post-injection (pi). Tumor uptake values of [68Ga]Ga-LW02060 and [68Ga]Ga-LW02080 at 1 h pi were 16.8 ± 2.70 and 7.36 ± 1.33 %ID/g, respectively, while their pancreas uptake values were 3.12 ± 0.89 and 0.38 ± 0.04 %ID/g, respectively. Compared to [177Lu]Lu-LW02080, [177Lu]Lu-LW02060 showed higher tumor uptake at all time points (1, 4, 24, 72, and 120 h pi). However, fast tumor clearance was observed for both [177Lu]Lu-LW02060 and [177Lu]Lu-LW02080. Conclusions: Our data demonstrate that [68Ga]Ga-LW02060 is promising for clinical translation for the detection of GRPR-expressing tumor lesions. However, further optimizations are needed for [177Lu]Lu-LW02060 and [177Lu]Lu-LW02080 to prolong tumor retention for therapeutic applications. Full article
Show Figures

Graphical abstract

Back to TopTop