Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,261)

Search Parameters:
Keywords = lupus erythematosus systemic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 731 KB  
Review
Can Phagocytosis, Neutrophil Extracellular Traps, and IFN-α Production in Systemic Lupus Erythematosus Be Simultaneously Modulated? A Pharmacological Perspective
by Stephanie Seidlberger, Sindi Huti, Santos Castañeda, Michael Schirmer, Julian Fenkart, Georg Wietzorrek and Sandra Santos-Sierra
Int. J. Mol. Sci. 2026, 27(2), 956; https://doi.org/10.3390/ijms27020956 (registering DOI) - 18 Jan 2026
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple and heterogeneous clinical manifestations (e.g., skin lesions, kidney damage, neuropsychiatric dysfunction), that primarily affects women and whose etiology remains unclear. Various therapies that regulate and reduce the immune system activity are in use [...] Read more.
Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple and heterogeneous clinical manifestations (e.g., skin lesions, kidney damage, neuropsychiatric dysfunction), that primarily affects women and whose etiology remains unclear. Various therapies that regulate and reduce the immune system activity are in use or are being developed; however, many of them have serious side effects. Therefore, new approaches are needed to maximize remission periods and reduce associated side effects. In this review, we summarize the currently recommended therapeutic strategies. Furthermore, we hypothesize that the combined use of drugs targeting various dysregulated cellular processes in SLE (i.e., cytokine production, neutrophil extracellular traps (NETs), phagocytosis) might have therapeutic potential, at least in some disease phenotypes. Preliminary data show that Toll-like receptors 7/8 (TLR 7/8) inhibition (e.g., Enpatoran) may reduce interferon-α (IFN-α) production by monocytes and NET formation by neutrophils. Our hypothesis is that future therapies combining compounds that modulate the three cellular processes might result in a better disease management as current therapies. Full article
(This article belongs to the Special Issue Systemic Lupus: Molecular Research, New Biomarkers and Novel Therapy)
Show Figures

Figure 1

32 pages, 3412 KB  
Review
Engineering Immunity: Current Progress and Future Directions of CAR-T Cell Therapy
by Mouldy Sioud and Nicholas Paul Casey
Int. J. Mol. Sci. 2026, 27(2), 909; https://doi.org/10.3390/ijms27020909 - 16 Jan 2026
Viewed by 149
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a transformative form of immunotherapy, enabling the precise engineering of T cells to recognize and eliminate pathogenic cells. In hematologic malignancies, CAR-T cells targeting CD19 or B cell maturation antigens have achieved remarkable remission [...] Read more.
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a transformative form of immunotherapy, enabling the precise engineering of T cells to recognize and eliminate pathogenic cells. In hematologic malignancies, CAR-T cells targeting CD19 or B cell maturation antigens have achieved remarkable remission rates and durable responses in patients with otherwise refractory disease. Despite these successes, extending CAR-T cell therapy to solid tumors remains challenging due to antigen heterogeneity, poor T cell infiltration, and the immunosuppressive tumor microenvironment (TME). Beyond oncology, CAR-T cell therapy has also shown promise in autoimmune diseases, where early clinical studies suggest that B cell-directed CAR-T cells can induce sustained remission in conditions such as systemic lupus erythematosus. This review highlights advances in CAR-T cell engineering, including DNA- and mRNA-based platforms for ex vivo and in vivo programming, and discusses emerging strategies to enhance CAR-T cell trafficking, persistence, and resistance to TME. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Immunotherapy in Cancer)
Show Figures

Figure 1

41 pages, 4351 KB  
Review
Autoantibodies as Precision Tools in Connective Tissue Diseases: From Epiphenomenon to Endophenotype
by Muhammad Soyfoo and Julie Sarrand
Antibodies 2026, 15(1), 7; https://doi.org/10.3390/antib15010007 - 13 Jan 2026
Viewed by 121
Abstract
Autoantibodies have long been regarded as passive reflections of immune dysregulation in connective tissue diseases (CTDs). Recent advances in systems immunology and molecular pathology have fundamentally redefined them as active molecular fingerprints that delineate distinct disease endophenotypes with predictive power for clinical trajectories [...] Read more.
Autoantibodies have long been regarded as passive reflections of immune dysregulation in connective tissue diseases (CTDs). Recent advances in systems immunology and molecular pathology have fundamentally redefined them as active molecular fingerprints that delineate distinct disease endophenotypes with predictive power for clinical trajectories and therapeutic responses. Rather than mere epiphenomena, autoantibodies encode precise information about dominant immune pathways, organ tropism, and pathogenic mechanisms. This review synthesizes emerging evidence that autoantibody repertoires—defined by specificity, structural properties, and functional characteristics—stratify patients beyond traditional clinical taxonomy into discrete pathobiological subsets. Specific signatures such as anti-MDA5 in rapidly progressive interstitial lung disease, anti-RNA polymerase III in scleroderma renal crisis, and anti-Ro52/TRIM21 in systemic overlap syndromes illustrate how serological profiles predict outcomes with remarkable precision. Mechanistically, autoantibody pathogenicity is modulated by immunoglobulin isotype distribution, Fc glycosylation patterns, and tissue-specific receptor expression—variables that determine whether an antibody functions as a biomarker or pathogenic effector. The structural heterogeneity of autoantibodies, shaped by cytokine microenvironments and B-cell subset imprinting, creates a dynamic continuum between pro-inflammatory and regulatory states. The integration of serological, transcriptomic, and imaging data establishes a precision medicine framework: autoantibodies function simultaneously as disease classifiers and therapeutic guides. This endophenotype-driven approach is already influencing trial design and patient stratification in systemic lupus erythematosus, systemic sclerosis, and inflammatory myopathies, and is reshaping both clinical practice and scientific taxonomy in CTDs. Recognizing autoantibodies as endophenotypic determinants aligns disease classification with pathogenic mechanism and supports the transition towards immunologically informed therapeutic strategies. Full article
(This article belongs to the Special Issue Antibody and Autoantibody Specificities in Autoimmunity)
Show Figures

Graphical abstract

23 pages, 1257 KB  
Review
Connective Tissue Disease-Associated Pulmonary Arterial Hypertension: Current Therapeutic Strategies and Future Prospects
by Yukina Mizuno Yokoyama, Ryu Watanabe, Tomohiro Yamaguchi, Ryuhei Ishihara, Mayu Shiomi, Yuya Fujita, Masao Katsushima, Kazuo Fukumoto, Yoichiro Haji, Shinsuke Yamada and Motomu Hashimoto
Biomolecules 2026, 16(1), 140; https://doi.org/10.3390/biom16010140 - 13 Jan 2026
Viewed by 141
Abstract
Connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) is a severe form of pulmonary hypertension with poor prognosis. It most commonly arises in systemic sclerosis (SSc), followed by systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD). Its pathogenesis involves a complex interplay [...] Read more.
Connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) is a severe form of pulmonary hypertension with poor prognosis. It most commonly arises in systemic sclerosis (SSc), followed by systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD). Its pathogenesis involves a complex interplay of immune dysregulation, chronic inflammation, endothelial injury, vascular remodeling, and fibrosis. Although vasodilators targeting the endothelin, nitric oxide, and prostacyclin pathways remain the therapeutic backbone, newer agents—including the activin signal inhibitor sotatercept and inhaled treprostinil—have expanded treatment options. Immune-targeted therapies such as glucocorticoids, cyclophosphamide, mycophenolate mofetil, rituximab, and IL-6 receptor inhibitors may benefit inflammation-dominant PAH phenotypes, while fibrotic phenotypes continue to demonstrate limited responsiveness. In addition to brain natriuretic peptide (BNP), N-terminal (NT)-proBNP and disease-specific autoantibodies, emerging biomarkers show promise for early detection, risk stratification, and personalized treatment, though validation in CTD-PAH is lacking. Advances in animal models replicating immune-mediated vascular injury and fibrosis have further improved mechanistic understanding. Despite these developments, substantial unmet needs remain, including the absence of disease-specific therapeutic strategies, limited biomarker integration into clinical practice, and a scarcity of large, well-designed trials targeting individual CTD subtypes. Addressing these gaps will be essential for improving prognosis in patients with CTD-PAH. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

29 pages, 3045 KB  
Review
Plasmablasts as Translational Biomarkers in Autoimmune Diseases: From Cellular Dynamics to Clinical Decision-Making
by Muhammad Soyfoo and Julie Sarrand
Curr. Issues Mol. Biol. 2026, 48(1), 77; https://doi.org/10.3390/cimb48010077 - 12 Jan 2026
Viewed by 211
Abstract
B cells are key drivers of immune dysregulation across systemic autoimmune diseases. Among their progeny, plasmablasts occupy a uniquely revealing niche: short-lived, highly proliferative intermediates that mirror real-time B-cell activation. Their appearance in peripheral blood integrates antigenic stimulation, cytokine-driven differentiation, and aberrant germinal-center [...] Read more.
B cells are key drivers of immune dysregulation across systemic autoimmune diseases. Among their progeny, plasmablasts occupy a uniquely revealing niche: short-lived, highly proliferative intermediates that mirror real-time B-cell activation. Their appearance in peripheral blood integrates antigenic stimulation, cytokine-driven differentiation, and aberrant germinal-center dynamics, transforming them into sensitive indicators of ongoing immunological activity. This review synthesizes current knowledge on plasmablast biology and highlights disease-specific phenotypes across systemic lupus erythematosus (SLE), primary Sjögren disease (pSjD), IgG4-related disease (IgG4-RD), ANCA-associated vasculitis (AAV), and rheumatoid arthritis (RA). We incorporate molecular insights from single-cell technologies that have uncovered previously unrecognized plasmablast subsets, metabolic states, and interferon-related signatures with prognostic and mechanistic value. Beyond descriptive immunology, plasmablasts are emerging as dynamic biomarkers capable of informing real-time clinical decisions. One of the most robustly supported applications is the prognostic interpretation of plasmablast kinetics following B-cell-depleting therapies, where early reconstitution patterns consistently predict relapse across multiple autoimmune conditions. As clinical immunology shifts from static serological markers toward kinetic, cell-based monitoring, plasmablast quantification offers a path toward precision immune surveillance. Integrating plasmablast dynamics into routine care may ultimately allow clinicians to anticipate disease flares, time therapeutic reinforcements, and transition from reactive management to preventive intervention. Full article
Show Figures

Figure 1

16 pages, 13794 KB  
Article
BTK-Inhibitor Loaded Polymeric Nanoparticles Alleviate Systemic Lupus Erythematosus by Targeting Elimination of Autoreactive BAFFRhigh B Cells
by Yamin Zhang, Jingjing Wen, Biling Jiang, Hao Jiang, Jian Xu and Juan Tao
Int. J. Mol. Sci. 2026, 27(2), 729; https://doi.org/10.3390/ijms27020729 - 11 Jan 2026
Viewed by 157
Abstract
Systemic lupus erythematosus (SLE) is a chronic and refractory autoimmune disease characterized by multi-organ damage, for which reliably safe and effective treatment remains an unmet need. Autoantibodies, secreted by autoreactive B cells, deposition is the central pathogenesis of organ damage in SLE. Current [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic and refractory autoimmune disease characterized by multi-organ damage, for which reliably safe and effective treatment remains an unmet need. Autoantibodies, secreted by autoreactive B cells, deposition is the central pathogenesis of organ damage in SLE. Current studies reported B cell receptor and B cell activating factor (BAFF)-mediated signals regulate the activation and survival of B cells and production of autoantibodies. We showed that marginal zone B cells and CD11c+T-bet+ autoreactive B cells expressed higher levels of BAFF receptor and BTK in MRL/lpr mice. Here, a liposome-delivery system capable of targeting BAFFRhigh autoreactive B cells by conjugating anti-BAFFR antibody on the surface of the PEG-liposomes and loading BTK-inhibitor ibrutinib (BTEL) was rationally designed. Notably, the BTEL nanoparticles could inhibit the survival and activation of B cells, and systemic administration of BTEL could alleviate the development of the lupus mouse model by decreasing the production of anti-dsDNA autoantibodies, along with reduced secretion of inflammatory cytokines and kidney damage, and without apparent side effects. These findings suggest the potential of BTEL in targeting autoreactive B cells, blocking signaling pathways, and improving the efficacy of BTK inhibitors, providing a promising therapeutic approach for SLE, while also reducing toxicity. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

10 pages, 236 KB  
Brief Report
The H159Y Variant of the BAFF-R Gene (TNFRSF13C) Is Unrelated to the Risk of Developing Systemic Lupus Erythematosus and Sjögren’s Disease in a Mexican Population
by Itzel María Borunda-Calderón, Jazz Alan Corona-Angeles, Noemí Espinoza-García, Miguel Marín-Rosales, Diana Celeste Salazar-Camarena, Edith Oregon-Romero, Ramsés Alejandro Morales-Zambrano and Claudia Azucena Palafox-Sánchez
Int. J. Mol. Sci. 2026, 27(2), 726; https://doi.org/10.3390/ijms27020726 - 10 Jan 2026
Viewed by 126
Abstract
Systemic Lupus Erythematosus (SLE) and primary Sjögren’s Disease (SjD) are autoimmune diseases characterized by the presence of autoantibodies that lead to damage in healthy tissues. The production of autoantibodies requires the activation and differentiation of B-lymphocytes into plasma cells. To achieve this effect, [...] Read more.
Systemic Lupus Erythematosus (SLE) and primary Sjögren’s Disease (SjD) are autoimmune diseases characterized by the presence of autoantibodies that lead to damage in healthy tissues. The production of autoantibodies requires the activation and differentiation of B-lymphocytes into plasma cells. To achieve this effect, BAFF (B-lymphocyte activating factor), APRIL (A proliferation-inducing ligand), and their receptors are key factors. BAFF is a cytokine recognized by BAFF-R (BAFF receptor), which is increased and related to disease activity in both SLE and SjD patients. The H159Y mutation (rs61756766) in the gene encoding the BAFF-R, TNFRSF13C (Tumor Necrosis Factor Receptor Superfamily) has been shown in vitro to cause receptor hyperactivation via the NF-κB2 pathway. This study evaluated the frequency of this variant in a western Mexican population and its association with the risk of developing SLE and SjD. Genotypes of the TNFRSF13C H159Y (rs61756766) variant were determined by PCR-RFLP assay. sBAFF levels were measured by ELISA. The study included 300 SLE patients, 110 SjD patients, and 300 healthy subjects (HS). HS were in Hardy–Weinberg equilibrium. The data distribution was assessed using the Kolmogorov–Smirnov test. Group comparisons were conducted using the Chi-square test, Fisher’s exact test, or the Mann–Whitney U test, as appropriate. A p-value of <0.05 was considered statistically significant. In the Mexican population, allelic and genotypic distribution frequencies of the H159Y variant (rs61756766) were similar between SLE patients and HSs, while the variant was not found in SjD patients. SLE patients carrying the heterozygous CT genotype showed a trend toward higher soluble BAFF (sBAFF) levels than wild-type genotype patients. This variant does not confer risk to SLE or SjD in the Mexican population. However, the heterozygous genotype may be associated with high levels of sBAFF in SLE patients. Full article
(This article belongs to the Special Issue Genetics and Omics in Autoimmune Diseases)
14 pages, 1404 KB  
Article
In Silico Functional and Structural Analysis of STAT4 Variants of Uncertain Significance
by Karla Mayela Bravo-Villagra, Eric Jonathan Maciel-Cruz, Rosa Michel Martínez-Contreras, Itzae Adonai Gutiérrez-Hurtado, Alexis Missael Vizcaíno-Quirarte, José Francisco Muñoz-Valle and Andres López-Quintero
Genes 2026, 17(1), 72; https://doi.org/10.3390/genes17010072 - 7 Jan 2026
Viewed by 275
Abstract
Background: The STAT4 gene plays a key role in immune regulation and is associated with susceptibility to autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Objectives: The objective of this study is to analyze variants of uncertain significance (VUSs) [...] Read more.
Background: The STAT4 gene plays a key role in immune regulation and is associated with susceptibility to autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Objectives: The objective of this study is to analyze variants of uncertain significance (VUSs) in STAT4 using bioinformatics tools to predict their functional and structural impact. Methods: A total of 48,295 variants of the STAT4 gene (ENSG00000138378) were retrieved from the Ensembl database. A tiered filtering approach was used to assess VUS pathogenicity, integrating in silico prediction tools such as SIFT, PolyPhen, MutPred2, and Align-GVGD, as well as structural modeling platforms including Chimera, ModRefiner, Missense3D, HOPE, and DynaMut2. Results: Eighty missense VUSs were identified; of these, 13 were prioritized based on concordant signals across multiple computational predictors. These variants showed significant alterations in the physicochemical properties of the protein, including changes in hydrophobicity and disruption of hydrogen bonding. Notably, the rs140675301 (Glu128Val) variant lies within a conserved loop, and in silico analyses suggest that this mutation may alter kinase specificity regarding the phosphorylation of serine 130. Conclusions: The integrative use of the bioinformatic tools employed represents a valuable preliminary step prior to undertaking more complex and resource-intensive functional studies. This complementary strategy strengthens the interpretative framework for VUS, guiding subsequent experimental validation and supporting a structured assessment of variant relevance, particularly in the context of immune-related genes such as STAT4. Full article
(This article belongs to the Special Issue Advances in Bioinformatics of Human Diseases)
Show Figures

Figure 1

28 pages, 942 KB  
Review
The Role of Vitamin D in Autoimmune Diseases
by Federica Vincenzi, Carlo Smirne, Stelvio Tonello and Pier Paolo Sainaghi
Int. J. Mol. Sci. 2026, 27(1), 555; https://doi.org/10.3390/ijms27010555 - 5 Jan 2026
Viewed by 758
Abstract
Vitamin D is a steroid hormone whose relevant immunomodulatory role has been widely described. Therefore, its contribution to the pathogenesis of immune-mediated diseases is an important and ongoing matter of research. Specifically, the active form of vitamin D, i.e., 1,25-dihydroxyvitamin D, through the [...] Read more.
Vitamin D is a steroid hormone whose relevant immunomodulatory role has been widely described. Therefore, its contribution to the pathogenesis of immune-mediated diseases is an important and ongoing matter of research. Specifically, the active form of vitamin D, i.e., 1,25-dihydroxyvitamin D, through the interaction with its receptor, exerts different activities on the innate and adaptive immune system, among which are suppression of inflammation and promotion of tolerogenic responses. Indeed, vitamin D insufficiency/deficiency has been related to the pathogenesis and/or disease activity of several autoimmune diseases, including, amongst others, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes mellitus. Based on these premises, in this review, we will describe the main molecular mechanisms modulated by vitamin D in the regulation of immune responses, including the induction of immune tolerance. Moreover, we will focus on the current knowledge regarding the contribution of vitamin D depletion to the aforementioned autoimmune diseases, seeking to provide evidence as to why its supplementation in the context of these immune-mediated disorders may potentially ameliorate disease activity and its related clinical manifestations. Full article
Show Figures

Figure 1

10 pages, 703 KB  
Case Report
Inferior Vena Cava-Atrial Anastomosis in Liver Transplant Recipient with Inferior Vena Cava Occlusion: A Case Report and Literature Review
by Jakub Rochoń, Piotr Kalinowski, Joanna Marczak, Krzysztof Gibiński and Michał Grąt
J. Clin. Med. 2026, 15(1), 384; https://doi.org/10.3390/jcm15010384 - 5 Jan 2026
Viewed by 324
Abstract
A 25-year-old woman with decompensated liver cirrhosis and complete inferior vena cava (IVC) occlusion was referred to our department for liver transplantation. The etiology of cirrhosis was Budd-Chiari syndrome (BCS) related to systemic lupus erythematosus, autoimmune hepatitis, and primary biliary cholangitis (AIH-PBC) overlap [...] Read more.
A 25-year-old woman with decompensated liver cirrhosis and complete inferior vena cava (IVC) occlusion was referred to our department for liver transplantation. The etiology of cirrhosis was Budd-Chiari syndrome (BCS) related to systemic lupus erythematosus, autoimmune hepatitis, and primary biliary cholangitis (AIH-PBC) overlap syndrome. Transplantation was feasible due to an extensive collateral circulation of pre-vertebral veins that drained blood from the lower extremities and both kidneys to the azygos-hemiazygos veins. This venous anomaly enabled the excision of the obstructed retrohepatic IVC, followed by an alternative anastomosis of the suprahepatic IVC to the right atrium without reconstruction of the infrahepatic IVC. Despite good venous patency and normalization of liver graft function, the patient developed cecum perforation, cardiovascular and respiratory insufficiency, which led to the patient’s death two months after transplantation. This case report supports an individual approach and highlights the feasibility of liver transplantation despite an extensive IVC thrombosis. To our knowledge, it is the first description of the application of a deceased donor liver transplantation in patients with AIH-PBC overlap syndrome and lupus-related BCS. A concise review of published literature on IVC-atrial anastomosis in adult liver transplant recipients is provided, and the technique is discussed based on our recent experience. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

17 pages, 988 KB  
Article
Polygenic Risk and Linked Metabolic Profile in Systemic Lupus Erythematosus: Cross-Sectional Insights
by Andrea Higuera-Gómez, María Martínez-Urbistondo, Amanda Cuevas-Sierra, Begoña de Cuevillas, Ulises De la Cruz-Mosso, Carolina F. Nicoletti, Jhulia C. N. L. da Mota, Susana Mellor-Pita, Marta Alonso-Bernáldez, Barbara Vizmanos and J. Alfredo Martínez
Genes 2026, 17(1), 53; https://doi.org/10.3390/genes17010053 - 1 Jan 2026
Viewed by 429
Abstract
Background/Objectives: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a multifactorial origin involving genetic, epigenetic, and environmental determinants as well as some risk factors. Genetic predisposition has been quantified through polygenic risk scores (PRS), which integrate the cumulative effect of [...] Read more.
Background/Objectives: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a multifactorial origin involving genetic, epigenetic, and environmental determinants as well as some risk factors. Genetic predisposition has been quantified through polygenic risk scores (PRS), which integrate the cumulative effect of multiple single nucleotide variants (SNVs) associated with disease risk. Despite extensive research on immune and inflammatory pathways in SLE, the interplay between genetic susceptibility and metabolic dysfunction remains poorly understood. This study aimed to explore associations between SLE-related PRS and metabolic, inflammatory, and clinical parameters in adults participating in the METAINFLAMACIÓN-CM project (Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain). Methods: Ninety-three participants were included: 56 SLE patients and 37 individuals with metabolic syndrome (MetS) as a reference group. PRS were computed based on validated lupus-associated SNVs. Results: SLE patients showed a distinct metabolic profile compared with the MetS group, characterized by lower BMI, visceral fat, blood pressure, glucose, and liver enzyme levels. Within the SLE cohort, PRS values varied markedly and correlated with specific clinical and biochemical features. Linear regression models revealed a significant inverse association between PRS in SLE and ferritin levels, whereas other metabolic and inflammatory markers (glucose, IL-6, LDL, CRP, neutrophils) were directly influenced by clinical factors. Conclusions: Polygenic predisposition contributes to variability in SLE metabolic phenotype but does not independently drive most inflammatory parameters. SLE patients displayed metabolic and inflammatory alterations relevant to cardiovascular risk, highlighting the importance of comprehensive cardiometabolic assessment. Integrating PRS with metabolic profiling may support precision personalized management and improve cardiovascular risk evaluation in SLE. Full article
(This article belongs to the Special Issue Genetic Aspects of Autoimmune Diseases)
Show Figures

Figure 1

25 pages, 1197 KB  
Review
3D Bioprinting Strategies in Autoimmune Disease Models
by Natalia Wiewiórska-Krata, Bartosz Foroncewicz, Radosław Zagożdżon and Krzysztof Mucha
Int. J. Mol. Sci. 2026, 27(1), 343; https://doi.org/10.3390/ijms27010343 - 29 Dec 2025
Viewed by 541
Abstract
Three-dimensional (3D) bioprinting is a rapidly evolving technology that uses complementary biomaterials to emulate native extracellular matrices, enabling the generation of finely patterned, multicellular tissue architectures. Autoimmune diseases (AD), which are characterized by chronic, often organ-specific, immune response, are ideally suited to these [...] Read more.
Three-dimensional (3D) bioprinting is a rapidly evolving technology that uses complementary biomaterials to emulate native extracellular matrices, enabling the generation of finely patterned, multicellular tissue architectures. Autoimmune diseases (AD), which are characterized by chronic, often organ-specific, immune response, are ideally suited to these in vitro models. This review summarizes the current state of 3D bioprinting for modelling AD, focusing on rheumatoid arthritis (RA), type 1 diabetes (T1D) and inflammatory bowel disease (IBD), as well as applications to systemic lupus erythematosus (SLE), neuroinflammatory conditions such as multiple sclerosis (MS) and other AD. Bioprinting modalities, advances in immune competent bioinks, strategies for vascularization and approaches to the hybridization of printed tissues with organoids and organ-on-chip systems are reviewed. From a clinical perspective, this review focuses on applications with translational potential, including immune-competent models derived from patients for biomarker discovery, drug screening and treatment response prediction. The key challenges, notably the reconstitution of full immune complexity, stable and perfusable vasculature, and maintenance of long-term viability and function are highlighted. Finally, future directions are defined to enhance the clinical utility and impact of 3D bioprinting across preclinical development and precision medicine. Full article
(This article belongs to the Special Issue Bioprinting: Progress and Challenges)
Show Figures

Figure 1

34 pages, 7736 KB  
Article
The Influence of PAR 1 and Endothelin 1 on the Course of Specific Kidney Diseases
by Maciej Szymczak, Marcelina Żabińska, Katarzyna Kościelska-Kasprzak, Dorota Bartoszek, Harald Heidecke, Kai Schulze-Forster, Łucja Janek, Krzysztof Kujawa, Jakub Wronowicz, Karolina Marek-Bukowiec, Tomasz Gołębiowski and Mirosław Banasik
J. Clin. Med. 2026, 15(1), 221; https://doi.org/10.3390/jcm15010221 - 27 Dec 2025
Viewed by 299
Abstract
Background: PAR 1 (protease-activated receptor 1) and endothelin 1 are biomarkers that could be of significance in kidney diseases. Methods: We measured the plasma levels of PAR1 and endothelin 1 in patients with membranous nephropathy (n = 19), focal and [...] Read more.
Background: PAR 1 (protease-activated receptor 1) and endothelin 1 are biomarkers that could be of significance in kidney diseases. Methods: We measured the plasma levels of PAR1 and endothelin 1 in patients with membranous nephropathy (n = 19), focal and segmental glomerulosclerosis (FSGS) (n = 30), systemic lupus erythematosus (SLE) (n = 22), IgA nephropathy (n = 16), mesangial proliferative (non-IgA) glomerulonephritis (n = 7), chronic kidney disease (CKD) (n = 27), and hemodialysis (n = 26), as well as a healthy control group (n = 22). Then, for two years, we tracked the patients’ clinical progress (creatinine, total protein, and albumin levels) and compared the outcomes with their initial PAR 1 and endothelin 1 levels. Moreover, we checked the correlations between PAR 1 and endothelin 1 and the results of anti-PAR1 and anti-ETAR (endothelin A receptor) evaluations. Results: Membranous nephropathy, FSGS, IgA nephropathy, CKD, and hemodialysis patients had higher PAR 1 levels than the control group. PAR 1 correlated with total protein, albumin in SLE, total protein in IgA nephropathy, and creatinine in CKD. Endothelin 1 correlated with albumin in membranous nephropathy, total protein, albumin, creatinine in FSGS, total protein in IgA nephropathy, total protein, and albumin in CKD. PAR 1 correlated with anti-PAR 1 in FSGS. Anti-ETAR correlated with anti-PAR 1 in membranous nephropathy, FSGS, and IgA nephropathy. Conclusions: PAR 1 levels are elevated in some kidney diseases compared to the healthy population. Both PAR 1 and endothelin 1 are supposed to be related to the clinical course of specific kidney diseases. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

33 pages, 1276 KB  
Review
Neutrophil Extracellular Traps in Systemic Lupus Erythematosus: Pathogenic Mechanisms, Crosstalk with Oxidative Stress, and Antioxidant Therapeutic Potential
by Xi Chen, Danni Gao, Matthew Wang, Lisheng Wang, Honghua Hu, Chengping Wen and Yujun Tang
Antioxidants 2026, 15(1), 25; https://doi.org/10.3390/antiox15010025 - 23 Dec 2025
Viewed by 686
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and the formation of immune complexes (ICs), which lead to widespread inflammation and tissue damage. Neutrophil extracellular traps (NETs), web-like structures composed of DNA, histones, and antimicrobial proteins released by [...] Read more.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and the formation of immune complexes (ICs), which lead to widespread inflammation and tissue damage. Neutrophil extracellular traps (NETs), web-like structures composed of DNA, histones, and antimicrobial proteins released by activated neutrophils, play a crucial role in innate immunity by defending against pathogens. However, excessive NET formation and ineffective clearance of these structures contribute to the development of SLE. This review explores the mechanisms behind NET formation in SLE, their relationship with oxidative stress, and the potential role of antioxidants in treatment. Research indicates that SLE patients exhibit two key abnormalities: excessive NET formation and impaired NET clearance. Excessive NET formation is driven by proinflammatory low-density granulocytes (LDGs) and immune complexes (ICs). Impaired NET clearance stems from reduced DNase1/DNase1L3 activity or anti-nuclease autoantibodies. These two abnormalities lead to elevated circulating NETs. These NETs act as autoantigen reservoirs, forming pathogenic NET–ICs that amplify autoimmune responses. Oxidative stress drives NET formation by activating NADPH oxidase. In contrast, various antioxidants, including enzymatic and non-enzymatic types, can inhibit NET formation via scavenging reactive oxygen species (ROS) and blocking NADPH oxidase activation. Preclinical studies show that antioxidants such as curcumin, resveratrol, and mitochondrial-targeted MitoQ reduce NET formation and ameliorate lupus nephritis; clinical trials confirm that curcumin and N-acetylcysteine (NAC) lower SLE disease activity and reduce proteinuria, supporting their role as safe adjuvant therapies. However, high-dose vitamin E may exacerbate autoimmunity, highlighting the need for dose optimization. Future research should aim to clarify the mechanisms underlying NET formation in SLE and to optimize new antioxidant therapies, including assessments of their long-term efficacy and safety. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

14 pages, 2401 KB  
Article
Extracellular Vesicular Proteins in Plasma from Patients with Cutaneous Lupus Correlate with Disease Activity
by Mariko Ogawa-Momohara, Avital Baniel, Nilesh Kodali, Fazelinia Hossein, Hua Ding, Spruce Lynn, Julianne Kleitsch, DeAnna Diaz, Thomas Vazquez and Victoria P. Werth
Curr. Issues Mol. Biol. 2026, 48(1), 13; https://doi.org/10.3390/cimb48010013 - 23 Dec 2025
Viewed by 236
Abstract
Cutaneous lupus erythematosus (CLE) can occur independently of lupus erythematosus. SLE, and its responsiveness to treatment, does not necessarily align with that of coexisting SLE. Extracellular vesicles (EVs) allow communication between cells and rapid delivery throughout the body. We hypothesized that EVs may [...] Read more.
Cutaneous lupus erythematosus (CLE) can occur independently of lupus erythematosus. SLE, and its responsiveness to treatment, does not necessarily align with that of coexisting SLE. Extracellular vesicles (EVs) allow communication between cells and rapid delivery throughout the body. We hypothesized that EVs may support disease-specific inflammation in CLE and SLE patients. Plasma EVs from healthy controls (n = 5), CLE (n = 6), and dermatomyositis (n = 17) were purified by ultracentrifugation and size-exclusion chromatography, phenotyped by flow cytometry, and profiled by LC-MS/MS. Circulating EVs were mainly platelet-, endothelial-, and antigen-presenting cell-derived examples. CLE EVs harbored four proteins absent in the controls—mimecan, IFI27, fibulin-2, and snRNP B/B′ (anti-Sm an-tigens)—and their cumulative number increased with SLEDAI. Relative to the controls, 18 proteins were upregulated and 15 downregulated in CLE EVs. The number of upregulated proteins showed a trend toward a correlation with SLEDAI (r = 0.79, p = 0.06) but not with CLASI (r = 0.21). Among upregulated proteins, lysozyme C and hyaluronan-binding protein 2 tracked with cutaneous activity (CLASI r = 0.74 and r = 0.86) but not with systemic activity (SLEDAI r = 0.52 and r = 0.31). CLE plasma EVs were enriched in antigen-presenting cell markers and disease-related cargo, including anti-Sm antigens and proinflammatory proteins. Although overall protein diversity correlated primarily with systemic disease activity, a subset of proteins appeared to reflect cutaneous activity. Full article
(This article belongs to the Special Issue Molecular Research in Chronic Dermatoses, 2nd Edition)
Show Figures

Figure 1

Back to TopTop