In Silico Functional and Structural Analysis of STAT4 Variants of Uncertain Significance
Abstract
1. Introduction
2. Materials and Methods
2.1. In Silico Prediction of STAT4 Variants
2.2. Data Collection and Variant Filtering
2.3. Functional and Structural Predictions of Variants
2.4. Evaluation of Protein Stability
2.5. Structural Protein Modeling
2.6. Structural Impact of Variants
2.7. Molecular Dynamics and Structural Stability
2.8. Statistical Analysis
2.9. Workflow Diagram
3. Results
3.1. Functional and Structural Predictions of Variants
3.2. Evaluation of Protein Stability
3.3. Evaluation of the Structural Impact of Variants
3.4. Molecular Dynamics and Structural Stability Analysis
3.5. Validation of In Silico Predictive Tools
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balsa, A.; Cabezón, A.; Orozco, G.; Cobo, T.; Miranda-Carus, E.; López-Nevot, M.Á.; Vicario, J.L.; Martín-Mola, E.; Martín, J.; Pascual-Salcedo, D. Influence of HLA DRB1 Alleles in the Susceptibility of Rheumatoid Arthritis and the Regulation of Antibodies against Citrullinated Proteins and Rheumatoid Factor. Arthritis Res. Ther. 2010, 12, R62. [Google Scholar] [CrossRef]
- Das, S.; Baruah, C.; Saikia, A.K.; Bose, S. Associative Role of HLA-DRB1 SNP Genotypes as Risk Factors for Susceptibility and Severity of Rheumatoid Arthritis: A North-East Indian Population-Based Study. Int. J. Immunogenet. 2018, 45, 1–7. [Google Scholar] [CrossRef]
- Lamana, A.; López-Santalla, M.; Castillo-González, R.; Ortiz, A.M.; Martín, J.; García-Vicuña, R.; González-Álvaro, I. The Minor Allele of Rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression. PLoS ONE 2015, 10, e0142683. [Google Scholar] [CrossRef]
- Hagberg, N.; Joelsson, M.; Leonard, D.; Reid, S.; Eloranta, M.L.; Mo, J.; Nilsson, M.K.; Syvänen, A.C.; Bryceson, Y.T.; Rönnblom, L. The STAT4 SLE Risk Allele Rs7574865[T] Is Associated with Increased IL-12-Induced IFN-γ Production in t Cells from Patients with SLE. Ann. Rheum. Dis. 2018, 77, 1070–1077. [Google Scholar] [CrossRef]
- de Durán-Avelar, M.J.; Vibanco-Pérez, N.; Hernández-Pacheco, R.R.; Castro-Zambrano, A.d.C.; Ortiz-Martínez, L.; Zambrano-Zaragoza, J.F. STAT4 Rs7574865 G/T Polymorphism Is Associated with Rheumatoid Arthritis and Disease Activity, but Not with Anti-CCP Antibody Levels in a Mexican Population. Clin. Rheumatol. 2016, 35, 2909–2914. [Google Scholar] [CrossRef]
- Bravo-Villagra, K.M.; Muñoz-Valle, J.F.; Baños-Hernández, C.J.; Cerpa-Cruz, S.; Navarro-Zarza, J.E.; Parra-Rojas, I.; Aguilar-Velázquez, J.A.; García-Arellano, S.; López-Quintero, A. STAT4 Gene Variant Rs7574865 Is Associated with Rheumatoid Arthritis Activity and Anti-CCP Levels in the Western but Not in the Southern Population of Mexico. Genes 2024, 15, 241. [Google Scholar] [CrossRef] [PubMed]
- Esparza Guerrero, Y.; Vazquez Villegas, M.L.; Nava Valdivia, C.A.; Ponce Guarneros, J.M.; Perez Guerrero, E.E.; Gomez Ramirez, E.E.; Ramirez Villafaña, M.; Contreras Haro, B.; Martinez Hernandez, A.; Cardona Muñoz, E.G.; et al. Association of the STAT4 Gene Rs7574865 Polymorphism with IFN-γ Levels in Patients with Systemic Lupus Erythematosus. Genes 2023, 14, 537. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Mai, H.; Peng, J.; Zhou, B.; Hou, J.; Jiang, D. STAT4: An Immunoregulator Contributing to Diverse Human Diseases. Int. J. Biol. Sci. 2020, 16, 1575–1585. [Google Scholar] [CrossRef]
- Berg, A.; Gräber, M.; Schmutzler, S.; Hoffmann, R.; Berg, T. A High-Throughput Fluorescence Polarization-Based Assay for the SH2 Domain of STAT4. Methods Protoc. 2022, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Malemud, C.J. The Role of the JAK/STAT Signal Pathway in Rheumatoid Arthritis. Ther. Adv. Musculoskelet. Dis. 2018, 10, 117–127. [Google Scholar] [CrossRef]
- Salaffi, F.; Giacobazzi, G.; Carlo, M.D. Pain and the JAK-STAT Pathwsy. Pain Res. Manag. 2018, 2018, 15. [Google Scholar] [CrossRef]
- Beltrán Ramírez, O.; Mendoza Rincón, J.F.; Barbosa Cobos, R.E.; Alemán Ávila, I.; Ramírez Bello, J. STAT4 Confers Risk for Rheumatoid Arthritis and Systemic Lupus Erythematosus in Mexican Patients. Immunol. Lett. 2016, 175, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Shree, M.; Vaishnav, J.; Gurudayal; Ampapathi, R.S. In-Silico Assessment of Novel Peptidomimetics Inhibitor Targeting STAT3 and STAT4 N-Terminal Domain Dimerization: A Comprehensive Study Using Molecular Docking, Molecular Dynamics Simulation, and Binding Free Energy Analysis. Biochem. Biophys. Res. Commun. 2024, 733, 150584. [Google Scholar] [CrossRef]
- Hunt, S.E.; Moore, B.; Amode, R.M.; Armean, I.M.; Lemos, D.; Mushtaq, A.; Parton, A.; Schuilenburg, H.; Szpak, M.; Thormann, A.; et al. Annotating and Prioritizing Genomic Variants Using the Ensembl Variant Effect Predictor-A Tutorial. Hum. Mutat. 2022, 43, 986–997. [Google Scholar] [CrossRef]
- Hunt, S.E.; McLaren, W.; Gil, L.; Thormann, A.; Schuilenburg, H.; Sheppard, D.; Parton, A.; Armean, I.M.; Trevanion, S.J.; Flicek, P.; et al. Ensembl Variation Resources. Database 2018, 2018, bay119. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef]
- Chen, J.; Bataillon, T.; Glémin, S.; Lascoux, M. Hunting for Beneficial Mutations: Conditioning on SIFT Scores When Estimating the Distribution of Fitness Effect of New Mutations. Genome Biol. Evol. 2022, 14, evab151. [Google Scholar] [CrossRef] [PubMed]
- Hicks, S.; Wheeler, D.A.; Plon, S.E.; Kimmel, M. Prediction of Missense Mutation Functionality Depends on Both the Algorithm and Sequence Alignment Employed. Hum. Mutat. 2011, 32, 661–668. [Google Scholar] [CrossRef]
- Mathe, E.; Olivier, M.; Kato, S.; Ishioka, C.; Hainaut, P.; Tavtigian, S.V. Computational Approaches for Predicting the Biological Effect of P53 Missense Mutations: A Comparison of Three Sequence Analysis Based Methods. Nucleic Acids Res. 2006, 34, 1317–1325. [Google Scholar] [CrossRef]
- Tavtigian, S.V.; Deffenbaugh, A.M.; Yin, L.; Judkins, T.; Scholl, T.; Samollow, P.B.; de Silva, D.; Zharkikh, A.; Thomas, A. Comprehensive Statistical Study of 452 BRCA1 Missense Substitutions with Classification of Eight Recurrent Substitutions as Neutral. J. Med. Genet. 2006, 43, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.-J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; et al. Inferring the Molecular and Phenotypic Impact of Amino Acid Variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Y. Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization. Biophys. J. 2011, 101, 2525–2534. [Google Scholar] [CrossRef]
- Altunkulah, E.; Ensari, Y. Protein structure prediction: An in-depth comparison of approaches and tools. Eskişehir Tek. Üniversitesi Bilim Ve Teknol. Derg.-C Yaşam Bilim. Ve Biyoteknoloji 2024, 13, 31–51. [Google Scholar] [CrossRef]
- Ittisoponpisan, S.; Islam, S.A.; Khanna, T.; Alhuzimi, E.; David, A.; Sternberg, M.J.E. Can Predicted Protein 3D Structures Provide Reliable Insights into Whether Missense Variants Are Disease Associated? J. Mol. Biol. 2019, 431, 2197–2212. [Google Scholar] [CrossRef]
- Venselaar, H.; te Beek, T.A.; Kuipers, R.K.; Hekkelman, M.L.; Vriend, G. Protein Structure Analysis of Mutations Causing Inheritable Diseases. An e-Science Approach with Life Scientist Friendly Interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef]
- Rodrigues, C.H.M.; Pires, D.E.V.; Ascher, D.B. DynaMut2: Assessing Changes in Stability and Flexibility upon Single and Multiple Point Missense Mutations. Protein Sci. 2021, 30, 60–69. [Google Scholar] [CrossRef]
- Caballero-Avendaño, A.; Gutiérrez-Angulo, M.; Ayala-Madrigal, M.d.l.L.; Moreno-Ortiz, J.M.; González-Mercado, A.; Peregrina-Sandoval, J. In Silico Analysis of the Missense Variants of Uncertain Significance of CTNNB1 Gene Reported in GnomAD Database. Genes 2024, 15, 972. [Google Scholar] [CrossRef]
- Katsonis, P.; Wilhelm, K.; Williams, A.; Lichtarge, O. Genome Interpretation Using in Silico Predictors of Variant Impact. Hum. Genet. 2022, 141, 1549–1577. [Google Scholar] [CrossRef]
- Li, C.; Luo, Y.; Xie, Y.; Zhang, Z.; Liu, Y.; Zou, L.; Xiao, F. Structural and Functional Prediction, Evaluation, and Validation in the Post-Sequencing Era. Comput. Struct. Biotechnol. J. 2024, 23, 446–451. [Google Scholar] [CrossRef]
- Cannon, S.; Williams, M.; Gunning, A.C.; Wright, C.F. Evaluation of in Silico Pathogenicity Prediction Tools for the Classification of Small In-Frame Indels. BMC Med. Genom. 2023, 16, 36. [Google Scholar] [CrossRef]
- Kamal, E.; Kaddam, L.A.; Ahmed, M.; Alabdulkarim, A. Integrating Artificial Intelligence and Bioinformatics Methods to Identify Disruptive STAT1 Variants Impacting Protein Stability and Function. Genes 2025, 16, 303. [Google Scholar] [CrossRef]
- Ernst, C.; Hahnen, E.; Engel, C.; Nothnagel, M.; Weber, J.; Schmutzler, R.K.; Hauke, J. Performance of in Silico Prediction Tools for the Classification of Rare BRCA1/2 Missense Variants in Clinical Diagnostics. BMC Med. Genom. 2018, 11, 35. [Google Scholar] [CrossRef]
- Poon, K.-S. In Silico Analysis of BRCA1 and BRCA2 Missense Variants and the Relevance in Molecular Genetic Testing. Sci. Rep. 2021, 11, 11114. [Google Scholar] [CrossRef]
- Young, C.C.; Feng, B.-J.; Mackenzie, C.B.; Girard, E.; Hu, D.; Iwasaki, Y.; Momozawa, Y.; Lesueur, F.; Ziv, E.; Neuhausen, S.L.; et al. Evaluation of ACMG Rules for In Silico Evidence Strength Using An Independent Computational Tool Absent of Circularities on ATM and CHEK2 Breast Cancer Cases and Controls. bioRxiv 2019. [Google Scholar] [CrossRef]
- MacielCruz, E.; FigueraVillanueva, L.; GómezFloresRamos, L.; HernándezPeña, R.; GallegosArreola, M. In-Silico Method for Predicting Pathogenic Missense Variants Using Online Tools: AURKA Gene A as a Model. Iran. J. Biotechnol. 2024, 22, e3787. [Google Scholar] [CrossRef]
- Koop, J.; Merz, J.; Schembecker, G. Hydrophobicity, Amphilicity, and Flexibility: Relation between Molecular Protein Properties and the Macroscopic Effects of Surface Activity. J. Biotechnol. 2021, 334, 11–25. [Google Scholar] [CrossRef]
- Kemp, M.T.; Lewandowski, E.M.; Chen, Y. Low Barrier Hydrogen Bonds in Protein Structure and Function. Biochim. Biophys. Acta BBA Proteins Proteom. 2021, 1869, 140557. [Google Scholar] [CrossRef]
- Ghosh, R.; Oak, N.; Plon, S.E. Evaluation of in Silico Algorithms for Use with ACMG/AMP Clinical Variant Interpretation Guidelines. Genome Biol. 2017, 18, 225. [Google Scholar] [CrossRef] [PubMed]
- Latini, A.; Borgiani, P.; De Benedittis, G.; Ciccacci, C.; Novelli, L.; Pepe, G.; Helmer-Citterich, M.; Baldini, I.; Perricone, C.; Ceccarelli, F.; et al. Large-Scale DNA Sequencing Identifies Rare Variants Associated with Systemic Lupus Erythematosus Susceptibility in Known Risk Genes. Gene 2024, 907, 148279. [Google Scholar] [CrossRef] [PubMed]
- Saevarsdottir, S.; Stefansdottir, L.; Sulem, P.; Thorleifsson, G.; Ferkingstad, E.; Rutsdottir, G.; Glintborg, B.; Westerlind, H.; Grondal, G.; Loft, I.C.; et al. Multiomics Analysis of Rheumatoid Arthritis Yields Sequence Variants That Have Large Effects on Risk of the Seropositive Subset. Ann. Rheum. Dis. 2022, 81, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Alexov, E.; Basu, S. Structural Perspective on Revealing and Altering Molecular Functions of Genetic Variants Linked with Diseases. Int. J. Mol. Sci. 2019, 20, 548. [Google Scholar] [CrossRef] [PubMed]




| HOPE | Missense 3D | Dynamut2 | ||||||
|---|---|---|---|---|---|---|---|---|
| Variant | Allele Frequencies | Amino Acid Change | ACMG | VarSome | Score | Main Prediction | Main Prediction | Predicted Stability Change (ΔΔG) |
| (gnomAD) | MetaRNN | |||||||
| rs755317297 | T: 1.000 | M517V | VUS | VUS | 0.843 | Smaller, mutant residue located near a highly conserved region. The mutant residue does not prefer α-helices as secondary structure | No structural damage detected | −1.379 |
| A: 6.841 ×10−7 | B | |||||||
| C: 2.736 × 10−6 | ||||||||
| rs1192576162 | C: 0.999992036 | G507V | VUS | P | 0.77 | Bigger, more hydrophobic, residue is located near a conserved region | Glycine in Bend Buried Glycine Replaced | 0.021 |
| A: 7.96400 × 10−6 | VUS | |||||||
| rs1235014939 | G: 0.999992036 | S504L | VUS | 0.796 | Bigger, more hydrophobic, and residue is located a highly conserved region | Cavity altered | 0.417 | |
| A: 7.96400 × 10−6 | VUS | |||||||
| B | ||||||||
| rs1380306157 | T: 0.999992036 | Y470C | VUS | VUS | 0.941 | Smaller and more hydrophobic that will affect hydrogen bond formation | Cavity altered | 0.879 |
| C: 7.96400 × 10−6 | ||||||||
| rs758109437 | G: 0.999952217 | T430R | VUS | VUS | 0.933 | Bigger, charge positive, less hydrophobic and residue is located near a conserved region | Buried/exposed switch | 0.637 |
| A: 3.98190 × 10−5 | B | |||||||
| C: 7.96400 × 10−6 | ||||||||
| rs199633613 | C: 0.99993629 | G393A | VUS | VUS | 0.548 | Bigger, more hydrophobic and mutant residue reduced flexibility | Buried/exposed switch | 0.358 |
| G: 6.37100 × 10−5 | Buried Glycine replaced | |||||||
| rs746642521 | T: 1.000 | T341S | VUS | VUS | 0.917 | Smaller and residue is located near a conserved region | No structural damage detected | −0.598 |
| A: 8.894 × 10−6 | ||||||||
| C: 1.368 × 10−6 | ||||||||
| rs764990697 | G: 0.999 | R241Q | VUS | B | 0.889 | Smaller, uncharged residue; potential disruption of a salt bridge | Buried charge replaced | −0.301 |
| T: 0.001 | Buried salt bridge breakage | |||||||
| rs758217844 | C: 1.000 | E234K | VUS | VUS | 0.812 | Bigger, positively charged; potential disruption of a salt bridge | Cavity altered | −0.563 |
| T: 4.723 × 10−5 | Buried/exposed switch | |||||||
| rs866566754 | A: 1.000 | V143G | VUS | VUS | 0.615 | Smaller, less hydrophobic and the mutation will cause loss of hydrophobic interactions in the core of the protein | Cavity altered | −2.698 |
| C: 4.105 × 10−6 | Buried/exposed switch | |||||||
| rs140675301 | T: 0.999 | E128V | B | VUS | 0.031 | Smaller, more hydrophobic, charge is neutral can cause loss of interactions with other molecules | No structural damage detected | −0.274 |
| A: 0.001 | ||||||||
| rs2125268711 | Not reported | A117V | VUS | VUS | 0.453 | Bigger and mutant residue located at the protein surface can disturb interactions with other molecules | No structural damage detected | 0.142 |
| B | ||||||||
| rs1697316431 | C: 1.000 | C108S | VUS | 0.887 | More hydrophobic and residue is located near a highly conserved region | No structural damage detected | −0.676 | |
| G: 2.053 × 10−6 | VUS | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bravo-Villagra, K.M.; Maciel-Cruz, E.J.; Martínez-Contreras, R.M.; Gutiérrez-Hurtado, I.A.; Vizcaíno-Quirarte, A.M.; Muñoz-Valle, J.F.; López-Quintero, A. In Silico Functional and Structural Analysis of STAT4 Variants of Uncertain Significance. Genes 2026, 17, 72. https://doi.org/10.3390/genes17010072
Bravo-Villagra KM, Maciel-Cruz EJ, Martínez-Contreras RM, Gutiérrez-Hurtado IA, Vizcaíno-Quirarte AM, Muñoz-Valle JF, López-Quintero A. In Silico Functional and Structural Analysis of STAT4 Variants of Uncertain Significance. Genes. 2026; 17(1):72. https://doi.org/10.3390/genes17010072
Chicago/Turabian StyleBravo-Villagra, Karla Mayela, Eric Jonathan Maciel-Cruz, Rosa Michel Martínez-Contreras, Itzae Adonai Gutiérrez-Hurtado, Alexis Missael Vizcaíno-Quirarte, José Francisco Muñoz-Valle, and Andres López-Quintero. 2026. "In Silico Functional and Structural Analysis of STAT4 Variants of Uncertain Significance" Genes 17, no. 1: 72. https://doi.org/10.3390/genes17010072
APA StyleBravo-Villagra, K. M., Maciel-Cruz, E. J., Martínez-Contreras, R. M., Gutiérrez-Hurtado, I. A., Vizcaíno-Quirarte, A. M., Muñoz-Valle, J. F., & López-Quintero, A. (2026). In Silico Functional and Structural Analysis of STAT4 Variants of Uncertain Significance. Genes, 17(1), 72. https://doi.org/10.3390/genes17010072

