Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,019)

Search Parameters:
Keywords = low-protein diet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 755 KiB  
Article
Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows
by Rong Zhao, Jiajin Sun, Yitong Lin, Haichao Yan, Shiyue Zhang, Wenjie Huo, Lei Chen, Qiang Liu, Cong Wang and Gang Guo
Microorganisms 2025, 13(8), 1848; https://doi.org/10.3390/microorganisms13081848 (registering DOI) - 7 Aug 2025
Abstract
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given [...] Read more.
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given four dietary treatments: (1) control (basal diet); (2) T (basal diet + 0.4% DM tannic acid); (3) TP (basal diet + 0.4% DM tea polyphenols); and (4) T+TP (basal diet + 0.2% DM tannic acid + 0.2% DM tea polyphenols). We comprehensively analyzed rumen fermentation, methane production, nutrient digestibility, milk parameters, and microbiota dynamics. Compared with the control group, all diets supplemented with additives significantly reduced enteric methane production (13.68% for T, 11.40% for TP, and 10.89% for T+TP) and significantly increased milk protein yield. The crude protein digestibility significantly increased in the T group versus control. The results did not impair rumen health or fiber digestion. Critically, microbiota analysis revealed treatment-specific modulation: the T group showed decreased Ruminococcus flavefaciens abundance, while all tannin treatments reduced abundances of Ruminococcus albus and total methanogens. These microbial shifts corresponded with functional outcomes—most notably, the T+TP synergy drove the largest reductions in rumen ammonia-N (34.5%) and milk urea nitrogen (21.1%). Supplementation at 0.4% DM, particularly the T+TP combination, effectively enhances nitrogen efficiency and milk protein synthesis while reducing methane emissions through targeted modulation of key rumen microbiota populations, suggesting potential sustainability benefits linked to altered rumen fermentation. Full article
(This article belongs to the Section Veterinary Microbiology)
12 pages, 1252 KiB  
Article
Low Dietary Folate Increases Developmental Delays in the Litters of Mthfr677TT Mice
by Karen E. Christensen, Marie-Lou Faquette, Vafa Keser, Alaina M. Reagan, Aaron T. Gebert, Teodoro Bottiglieri, Gareth R. Howell and Rima Rozen
Nutrients 2025, 17(15), 2536; https://doi.org/10.3390/nu17152536 - 1 Aug 2025
Viewed by 240
Abstract
Background/Objectives: Low folate intake before and during pregnancy increases the risk of neural tube defects and other adverse outcomes. Gene variants such as MTHFR 677C>T (rs1801133) may increase risks associated with suboptimal folate intake. Our objective was to use BALB/cJ Mthfr677C>T [...] Read more.
Background/Objectives: Low folate intake before and during pregnancy increases the risk of neural tube defects and other adverse outcomes. Gene variants such as MTHFR 677C>T (rs1801133) may increase risks associated with suboptimal folate intake. Our objective was to use BALB/cJ Mthfr677C>T mice to evaluate the effects of the TT genotype and low folate diets on embryonic development and MTHFR protein expression in pregnant mice. Methods: Female 677CC (mCC) and 677TT (mTT) mice were fed control (2 mg folic acid/kg (2D)), 1 mg folic acid/kg (1D) and 0.3 mg folic acid/kg (0.3D) diets before and during pregnancy. Embryos and maternal tissues were collected at embryonic day 10.5. Embryos were examined for developmental delays and defects. Methyltetrahydrofolate (methylTHF) and total homocysteine (tHcy) were measured in maternal plasma, and MTHFR protein expression was evaluated in maternal liver. Results: MethylTHF decreased due to the experimental diets and mTT genotype. tHcy increased due to 0.3D and mTT genotype; mTT 0.3D mice had significantly higher tHcy than the other groups. MTHFR expression was lower in mTT liver than mCC. MTHFR protein expression increased due to low folate diets in mCC mice, whereas in mTT mice, MTHFR expression increased only due to 1D. Developmental delays were increased in the litters of mTT mice fed 1D and 0.3D. Conclusions: The Mthfr677C>T mouse models the effects of the MTHFR 677TT genotype in humans and provides a folate-responsive model for examination of the effects of folate intake and the MTHFR 677C>T variant during gestation. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

11 pages, 1914 KiB  
Case Report
Case Report of Nephrogenic Diabetes Insipidus with a Novel Mutation in the AQP2 Gene
by Alejandro Padilla-Guzmán, Vanessa Amparo Ochoa-Jiménez, Jessica María Forero-Delgadillo, Karen Apraez-Murillo, Harry Pachajoa and Jaime M. Restrepo
Int. J. Mol. Sci. 2025, 26(15), 7415; https://doi.org/10.3390/ijms26157415 - 1 Aug 2025
Viewed by 148
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the [...] Read more.
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the AVPR2 gene, which encodes the vasopressin receptor type 2. The remaining 10% are attributed to mutations in the AQP2 gene, which encodes aquaporin-2, and may follow either autosomal dominant or recessive inheritance patterns. We present the case of a male infant, younger than nine months of age, who was clinically diagnosed with NDI at six months. The patient presented recurrent episodes of polydipsia, polyuria, dehydration, hypernatremia, and persistently low urine osmolality. Despite adjustments in pharmacologic treatment and strict monitoring of urinary output, the clinical response remained suboptimal. Given the lack of improvement and the radiological finding of an absent posterior pituitary (neurohypophysis), the possibility of coexistent central diabetes insipidus (CDI) was raised, prompting a therapeutic trial with desmopressin. Nevertheless, in the absence of clinical improvement, desmopressin was discontinued. The patient’s management was continued with hydrochlorothiazide, ibuprofen, and a high-calorie diet restricted in sodium and protein, resulting in progressive clinical stabilization. Whole-exome sequencing identified a novel homozygous missense variant in the AQP2 gene (c.398T > A; p.Val133Glu), classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria: PM2 (absent from population databases), PP2 (missense variant in a gene with a low rate of benign missense variation), and PP3 (multiple lines of computational evidence supporting a deleterious effect)]. NDI is typically diagnosed during early infancy due to the early onset of symptoms and the potential for severe complications if left untreated. In this case, although initial clinical suspicion included concomitant CDI, the timely initiation of supportive management and the subsequent incorporation of molecular diagnostics facilitated a definitive diagnosis. The identification of a previously unreported homozygous variant in AQP2 contributed to diagnostic confirmation and therapeutic decision-making. The diagnosis and comprehensive management of NDI within the context of polyuria-polydipsia syndrome necessitates a multidisciplinary approach, integrating clinical evaluation with advanced molecular diagnostics. The novel AQP2 c.398T > A (p.Val133Glu) variant described herein was associated with early and severe clinical manifestations, underscoring the importance of genetic testing in atypical or treatment-refractory presentations of diabetes insipidus. Full article
(This article belongs to the Special Issue A Molecular Perspective on the Genetics of Kidney Diseases)
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Tartary Buckwheat Flavonoids and 25-Hydroxyvitamin D3 Mitigate Fatty Liver Syndrome in Laying Hens: Association with Cecal Microbiota Remodeling and Lipid Metabolic Homeostasis
by Dongdong Li, Binlong Chen, Yi Zhang, Zengwen Huang, Zhiqiu Huang, Xi Chen, Caiyun Sun, Yunxia Qi, Yaodong Hu, Ting Chen and Silu Wang
Animals 2025, 15(15), 2210; https://doi.org/10.3390/ani15152210 - 27 Jul 2025
Viewed by 358
Abstract
The objective of this experiment was to investigate the effects of tartary buckwheat flavonoids (TBF) and 25-hydroxyvitamin D3 (25-OHD) on fatty liver syndrome (FLS) in laying hens. A total of 450 35-wk-old Lohmann laying hens were selected and randomly divided into five [...] Read more.
The objective of this experiment was to investigate the effects of tartary buckwheat flavonoids (TBF) and 25-hydroxyvitamin D3 (25-OHD) on fatty liver syndrome (FLS) in laying hens. A total of 450 35-wk-old Lohmann laying hens were selected and randomly divided into five groups, with six replicates per treatment and 15 laying hens in each replicate. The control group was fed a corn-soybean meal basal diet. The FLS group was fed a high- energy–low-protein (HELP) diet, and the other three experimental groups were fed HELP diets supplemented with 60 mg/kg TBF, 69 μg/kg 25-OHD, and 60 mg/kg TBF plus 69 μg/kg 25-OHD, respectively. The experiment lasted 8 weeks. The results demonstrated that feeding laying hens with a HELP diet led to a significant accumulation of fat in their livers, liver enlargement and yellowing, as well as a decline in liver antioxidant capacity and an aggravation of inflammation. TBF alone, 25-OHD alone, and their combination had no effect on the laying performance of laying hens fed with a HELP diet. However, 25-OHD significantly enhanced the albumin content, eggshell strength, and eggshell thickness of eggs (p < 0.05). Compared with the HELP group, TBF, 25-OHD, or their combination reduced serum LDL-C and TG (p < 0.05). The combined treatment further lowered serum NEFA and MDA, enhanced liver SOD activity (p < 0.05), and unlike TBF alone (which reduced hepatic TG) or 25-OHD alone (which decreased liver index), reduced both liver index and hepatic TG (p < 0.05). Liver gene expression analysis showed that combined TBF and 25-OHD significantly inhibited the expression of fat synthesis-related genes (ACC, FAS, GPAT1, ChREBP1, LXRα, SREBP-1C, SREBP-2, FABP) as well as inflammation-related genes (IL-6, TNF-α, NF-κB, TLR4) (p < 0.05). At the phylum level of the cecal microbiota, TBF increased the abundance of Bacteroidota (p < 0.05), and combined TBF and 25-OHD tended to increase the abundance of Firmicutes_D. At the genus level, TBF increased the abundance of Phocaeicola_A (p < 0.05). Furthermore, TBF, 25-OHD, or their combination reduced the abundance of Faecalibacterium (p < 0.05). These findings suggest that combined TBF and 25-OHD mitigates FLS in laying hens potentially through remodeling gut microbiota and maintaining lipid metabolic homeostasis. Full article
Show Figures

Figure 1

25 pages, 3460 KiB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 464
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

19 pages, 3780 KiB  
Article
Effects of Soy Protein on Liver and Adipose Tissue Inflammation and Gut Microbiota in Mice Fed with Ketogenic Diets
by Wen-Keng Li, I-Ting Wu, Wan-Ju Yeh, Wen-Chih Huang and Hsin-Yi Yang
Nutrients 2025, 17(15), 2428; https://doi.org/10.3390/nu17152428 - 25 Jul 2025
Viewed by 341
Abstract
Background: Studies on ketogenic diets with a higher percentage of fat composition have revealed conflicting results regarding the modulation of lipid metabolism and tissue inflammation. Furthermore, studies on soy protein consumption in ketogenic diets remain limited. In this study, the effects of [...] Read more.
Background: Studies on ketogenic diets with a higher percentage of fat composition have revealed conflicting results regarding the modulation of lipid metabolism and tissue inflammation. Furthermore, studies on soy protein consumption in ketogenic diets remain limited. In this study, the effects of ketogenic diets on hepatic and adipose tissue inflammation and of soy protein replacement in ketogenic diets were investigated. Methods: Mice were randomly assigned to a control diet (C), ketogenic diet (KD), or ketogenic with soy protein (KS) groups for an 18-week experiment. Both ketogenic diet groups were fed a low-carbohydrate, high-fat diet during the first 12 weeks and a ketogenic diet during the last 6 weeks of the experiment. The KS group was fed the same diet as the KD group, but soy protein was substituted for casein during the last 6 weeks. Results: The KD and KS groups exhibited higher plasma β-hydroxybutyrate levels; a higher incidence of hyperlipidemia; and lower blood glucose, mesenteric fat mass, adipose tissue TNF-α, IL-1β levels, and NLRP3 protein expression compared with the C group. In the gut microbiota analysis, the KD group had a higher F-B ratio than the C group. Greater A. muciniphila abundance and a lower F-B ratio were noted in the KS group compared with the KD group. Conclusions: Although ketogenic diets decreased mesenteric fat mass and adipose tissue inflammation and modulated NLRP3 expression, they were associated with hepatic inflammation and gut dysbiosis. Soy protein consumption in a ketogenic diet did not differ from casein consumption regarding diet-induced tissue inflammation, but it may have altered the gut microbiota. Full article
Show Figures

Graphical abstract

12 pages, 486 KiB  
Article
Stepwise Incremental Hemodialysis and Low-Protein Diet Supplemented with Keto-Analogues Preserve Residual Kidney Function: A Randomized Controlled Trial
by Piyawan Kittiskulnam, Khajohn Tiranathanagul, Paweena Susantitaphong, Jeerath Phannajit, Yuda Chongpison, Pagaporn Asavapujanamanee, Bongkod Surattichaiyakul, Kullaya Takkavatakarn, Pisut Katavetin, Kamonchanok Metta and Kearkiat Praditpornsilpa
Nutrients 2025, 17(15), 2422; https://doi.org/10.3390/nu17152422 - 24 Jul 2025
Viewed by 342
Abstract
Background: Rapid loss of residual kidney function (RKF) is associated with unfavorable outcomes. We conducted an RCT to compare the effects on RKF preservation of incremental HD between once-weekly HD (1-WHD) and twice-weekly HD (2-WHD). Methods: ESKD patients with an eGFR of 5–10 [...] Read more.
Background: Rapid loss of residual kidney function (RKF) is associated with unfavorable outcomes. We conducted an RCT to compare the effects on RKF preservation of incremental HD between once-weekly HD (1-WHD) and twice-weekly HD (2-WHD). Methods: ESKD patients with an eGFR of 5–10 mL/min/1.73 m2 and urine output of ≥800 mL/day were randomly assigned to receive either once-weekly HD (1-WHD) or twice-weekly HD (2-WHD) for 12 months. Patients in the 1-WHD group were prescribed once-weekly HD combined with low-protein diet (0.6 g/kg/day) supplemented with keto-analogues (KAs) 0.12 g/kg/day. In the 2-WHD group, patients received twice-weekly HD with a regular-protein diet. Primary outcomes were changes in RKF by renal clearance and urine volume. Nutritional status, muscle parameters, and quality of life (QoL) were also assessed. Results: A total of 30 incident HD patients were randomized. Baseline RKF, urine volume, and demographic were not different between groups. After 3 months, urine volume was significantly higher in the 1-WHD group than in the 2-WHD group (1921 ± 767 mL/day vs. 1305 ± 599 mL/day, p = 0.02), and these significant findings persisted throughout the entire study period. For RKF, 1-WHD also had a lesser decline in urinary urea (CUrea) and creatinine clearance (CCr) than 2-WHD, with statistically significant differences observed from months 6–12. By month 6, the 1-WHD group exhibited significantly higher CUrea and CCr compared to the 2-WHD group, with CUrea at 3.2 ± 2.3 vs. 1.7 ± 1.0 mL/min (p = 0.03) and CCr at 5.9 ± 3.6 vs. 3.8 ± 1.4 mL/min (p = 0.04), respectively. Serum albumin levels, skeletal muscle mass, anemia status, metabolic parameters, protein-bound uremic toxins, and QoL scores were comparable between the two groups. Conclusions: Incremental HD, starting with once-weekly HD combined with protein restriction supplemented with KAs, appears to better preserve RKF among incident HD patients compared to twice-weekly HD with a regular-protein diet. This HD regimen was also associated with safety in metabolic and nutritional profiles. Full article
(This article belongs to the Special Issue Protein Diet and Keto-Analogues in Chronic Kidney Disease)
Show Figures

Figure 1

23 pages, 8683 KiB  
Article
Comparative Analysis of Fecal Microbiota and Metabolomic Profiles in Male and Female Leizhou Goats Offered a 10% Crude Protein Diet Among Four Energy Levels
by Hu Liu, Wenji Wang, Weishi Peng, Anmiao Chen, Xiaogao Diao, Xia Yang, Jianmin Chai, Yuanting Yang, Ke Wang, Jiancheng Han and Hanlin Zhou
Animals 2025, 15(15), 2174; https://doi.org/10.3390/ani15152174 - 23 Jul 2025
Viewed by 251
Abstract
The gut microbiota plays a crucial role in maintaining the host’s metabolism and can influence the host’s productivity. Both dietary composition and gender have distinct effects on the composition of the gut microbiota. Therefore, to investigate the differences in the structure and function [...] Read more.
The gut microbiota plays a crucial role in maintaining the host’s metabolism and can influence the host’s productivity. Both dietary composition and gender have distinct effects on the composition of the gut microbiota. Therefore, to investigate the differences in the structure and function of the gut microbiota between female and male goats, we analyzed their fecal microbiota and metabolites when fed a 10% crude protein diet at four different energy levels—7.01, 8.33, 9.66, and 10.98 MJ/kg DM. Four non-pregnant female and four male Leizhou goats (all 8 months of age) were used in the experiment, with an average body weight of 10.3 ± 0.8 kg for females and 13.6 ± 1.1 kg for males (mean ± SD). The animals were assigned to two separate 4 × 4 Latin square designs according to their gender, each consisting of four treatments and four 28-day periods, including 25 days of a dietary adaptation period and 3 days of fecal sample collection per period. The data were analyzed using the SAS statistical package and Pearson’s correlation analysis. The dominant phyla for all samples were Firmicutes and Bacteroidota, regardless of dietary energy levels or gender. Among fecal bacteria, unclassified_f_Lachnospiraceae was the dominant genus in the female goats, and Oscillospiraceae_UCG-005 was the dominant genus in the male goats. The relative abundance of unclassified_f_Lachnospiraceae (p < 0.001), Bacteroides (p = 0.007), norank_f_Ruminococcaceae (p = 0.024), Mediterraneibacter (p = 0.001), and norank_f_Muribaculaceae (p = 0.008) was greater in the female goats than in the male goats. In contrast, the relative abundance of Oscillospiraceae_UCG-005 (p < 0.001), Ruminococcus (p = 0.035), Monoglobus (p = 0.006), Oscillospiraceae-NK4A214_group (p = 0.008), norank_f_F082 (p < 0.001), and Prevotellaceae_UCG-003 (p < 0.001) was lower in the female goats than in the male goats. The volcano plot showed that there were 153, 171, 171, and 183 differential metabolites between the female and male goats at dietary energy levels of 7.01, 8.33, 9.66, and 10.98 MJ/kg DM, respectively. Numerous correlations were observed between differential metabolites and microflora genera. We concluded that the non-pregnant female and male goats exhibited distinct metabolic abilities when consuming a 10% crude protein diet at four different energy levels. Interestingly, in the female and male goats, the fecal microbiota also showed some differing responses to the energy levels. These results provide a gender-based reference for formulating low-protein dietary strategies for 8-month-old Leizhou goats. Full article
Show Figures

Figure 1

27 pages, 4050 KiB  
Article
The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study
by Malgorzata Ostrowska, Elwira Komoń-Janczara, Bozena Mikoluc, Katarzyna Iłowiecka, Justyna Jarczak, Justyna Zagórska, Paulina Zambrzycka, Silvia Turroni and Hubert Szczerba
Nutrients 2025, 17(15), 2405; https://doi.org/10.3390/nu17152405 - 23 Jul 2025
Viewed by 240
Abstract
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and [...] Read more.
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and dietary profiles of paediatric PKU patients and healthy controls, stratified by age (<10 and 10–18 years). Methods: Stool samples from 20 children (10 PKU, 10 controls) were analysed using ITS1/ITS2 amplicon sequencing. Nutritional status was assessed using Body Mass Index percentiles (Polish standards), and nutrient intake was evaluated from three-day dietary records compared to national reference values. Correlations between fungal taxa and dietary factors were explored. Results: Although alpha diversity did not differ significantly, beta diversity and LEfSe analyses revealed distinct fungal profiles between PKU patients and controls, indicating a trend toward group separation (PERMANOVA: F = 1.54646, p = 0.09; ANOVA: p = 0.0609). PKU patients showed increased Eurotiales (p = 0.029), Aspergillaceae (p = 0.029), and Penicillium (p = 0.11) and decreased Physalacriaceae (0% vs. 5.84% in controls) and Malassezia (p = 0.13). Spearman’s analysis showed significant correlations between Geotrichum and intake of protein (ρ = 0.55, p = 0.0127) and phenylalanine (ρ = 0.70, p = 0.0005). Conclusions: Dietary treatment in PKU is associated with age-dependent shifts in the gut mycobiome, notably increasing the abundance of taxa such as Eurotiales, Aspergillaceae, and Penicillium, involved in carbohydrate/lipid metabolism and mucosal inflammation. These findings highlight the potential of gut fungi as nutritional and clinical biomarkers in PKU. Full article
(This article belongs to the Special Issue Nutrients: 15th Anniversary)
Show Figures

Figure 1

13 pages, 4863 KiB  
Article
p53 Protein Stability Plays a Crucial Role in NaB-Mediated Apoptosis in Colorectal Cancer Cells
by Jeong Yeon Lee and Hyunju Kim
Curr. Issues Mol. Biol. 2025, 47(8), 579; https://doi.org/10.3390/cimb47080579 - 22 Jul 2025
Viewed by 344
Abstract
Colorectal cancer (CRC) is associated with factors such as an unhealthy diet, physical inactivity, obesity, diabetes, and chronic inflammatory conditions like inflammatory bowel disease (IBD), as well as TP53 mutations, which are observed in a broad spectrum of CRC. Additionally, alteration in the [...] Read more.
Colorectal cancer (CRC) is associated with factors such as an unhealthy diet, physical inactivity, obesity, diabetes, and chronic inflammatory conditions like inflammatory bowel disease (IBD), as well as TP53 mutations, which are observed in a broad spectrum of CRC. Additionally, alteration in the composition of the gut microbiome community and metabolism plays a significant role in the development of colorectal cancer and its therapeutic effects. It is well known that treatment with sodium butyrate (NaB), an intestinal microbial metabolite, can induce apoptosis by activating histone deacetylase (HDAC) in cancer cells. Therefore, this study examined the relationship between NaB-induced apoptosis and p53 protein level in colorectal cancer cells. Treatment with NaB triggered cell death in the HCT116 cell line. Furthermore, a notable elevation in p53 protein level was detected following treatment with a high concentration of NaB, compared to both the control group and the low concentration NaB. Furthermore, apoptotic cell death was diminished in a p53-deficient cell line (HCT 116 p53−/−) and p53 protein expression was more stabilized. Although p53 mRNA expression was not affected, acetylation of p53 protein was clearly observed by high concentration NaB treatment. To demonstrate the relationship between p53 acetylation and cell death, HT29 cells were treated with a high concentration of NaB. In HT29 cells with a mutation in the p53 gene, increased cell viability, overproduction p53 protein, and hyperacetylation of p53 were observed compared to the control. The results of this study suggest that p53 protein expression plays an important role in the effectiveness of therapy utilizing gut microbiota metabolites. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

30 pages, 4839 KiB  
Article
Acceptability of a Colorectal Cancer-Preventive Diet Promoting Red Meat Reduction and Increased Fiber and Micronutrient Intake: A Cross-Sectional Study in Romanian Adults
by Marius-Cătălin Belean, Teodor-Andrei Maghiar, Anca-Maria Căpraru, Andreea-Adriana Neamțu, Dan Iliescu, Valentin-Cristian Iovin, Flaviu-Ionuț Faur, Meda-Ada Bugi, Alina Totorean, Sorina Tăban, Sorin Dema, Cristina-Adriana Dehelean, Bogdan Dan Totolici, Ovidiu Laurian Pop, Octavian Crețu and Carmen Neamțu
Nutrients 2025, 17(14), 2386; https://doi.org/10.3390/nu17142386 - 21 Jul 2025
Viewed by 570
Abstract
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting [...] Read more.
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting CRC through dietary interventions. Methods: A one-day sample diet for colorectal cancer prevention, consisting of fiber-rich meals excluding red meat and incorporating whole grains, legumes, vegetables, fruits, nuts, and lean protein alternatives (such as fish and poultry), was developed. Its acceptability was assessed in a cross-sectional study using an online questionnaire among healthy Romanian adults aged 18–50, with a total of 395 included participants. Results: Of the 395 respondents meeting the inclusion criteria (aged 18–50, no cancer or chronic gastrointestinal disorders), 63.5% were females, predominantly urban (90.1%), and highly educated. Mean age was 32.4 years; mean BMI was 25.07 kg/m2. The proposed colorectal cancer-preventive diet was rated as “quite attractive” and “very attractive” by 74.9% of participants. All meals received high ratings, with dinner and the first snack being most favored. Most respondents (77.2%) found the diet satisfying and the satiety level and energy adequate, and 90.4% were willing to adopt it at least a few times per week. Financial accessibility was affirmed by 77.2% of the respondents. However, 61.8% reported difficulty eliminating red meat consumption. Female participants rated the diet significantly more attractive than males did (p = 0.041). Willingness to adopt the diet strongly correlated with higher acceptability (p < 0.0001), while BMI and education level showed no significant effect. Conclusions: The proposed colorectal cancer-preventive diet was well accepted by Romanian adults aged 18–50, with higher receptivity among women and those with higher education; willingness to adopt the diet at least a few days per week was high, especially among those psychologically ready for dietary change, while key barriers included red meat reduction and perceived cost, underscoring the need for gender-sensitive, culturally adapted interventions and further research on long-term adherence and clinical impact. Full article
(This article belongs to the Special Issue Nutrition and Dietary Guidelines for Colorectal Cancer Patients)
Show Figures

Figure 1

19 pages, 2699 KiB  
Article
Nitrogen Utilization and Ruminal Microbiota of Hu Lambs in Response to Varying Dietary Metabolizable Protein Levels
by Yitao Cai, Jifu Zou, Yibang Zhou, Jinyong Yang, Chong Wang and Huiling Mao
Animals 2025, 15(14), 2147; https://doi.org/10.3390/ani15142147 - 21 Jul 2025
Viewed by 316
Abstract
Optimizing the metabolizable protein level in ruminant diets represents a promising strategy to increase nitrogen use efficiency and mitigate environmental pollution. This study explored the impacts of varying metabolizable protein (MP) levels on amino acid (AA) balance, nitrogen (N) utilization, and the ruminal [...] Read more.
Optimizing the metabolizable protein level in ruminant diets represents a promising strategy to increase nitrogen use efficiency and mitigate environmental pollution. This study explored the impacts of varying metabolizable protein (MP) levels on amino acid (AA) balance, nitrogen (N) utilization, and the ruminal microbiota in Hu lambs. Fifty-four female Hu lambs of 60 d old, with an average body weight (BW) of 18.7 ± 2.37 kg, were randomly allocated to three dietary MP groups: (1) low MP (LMP, 7.38% of DM), (2) moderate MP (MMP, 8.66% of DM), and (3) high MP (HMP, 9.93% of DM). Three lambs with similar BW within each group were housed together in a single pen, serving as one experimental replicate (n = 6). The feeding trial lasted for 60 days with 10 days for adaptation. The final BW of lambs in the MMP and HMP groups increased (p < 0.05) by 5.64% and 5.26%, respectively, compared to the LMP group. Additionally, lambs fed the MMP diet exhibited an 11.6% higher (p < 0.05) average daily gain than those in the LMP group. Increasing dietary MP levels enhanced (p < 0.05) N intake, urinary N, retained N, and percent N retained, but decreased apparent N digestibility (p < 0.05). Urinary uric acid, total purine derivatives, intestinally absorbable dietary protein, microbial crude protein, intestinally absorbable microbial crude protein, and actual MP supply all increased (p < 0.05) with higher MP values in the diet. The plasma concentrations of arginine, lysine, methionine, phenylalanine, threonine, aspartic acid, proline, total essential AAs, and total nonessential AAs were the lowest (p < 0.05) in the LMP group. In the rumen, elevated MP levels led to a significant increase (p < 0.05) in the ammonia N content. The relative abundances of Candidatus_Saccharimonas, Ruminococcus, and Oscillospira were the lowest (p < 0.05), whereas the relative abundances of Terrisporobacter and the Christensenellaceae_R-7_group were the highest (p < 0.05) in the MMP group. In conclusion, the moderate dietary metabolizable protein level could enhance growth performance, balance the plasma amino acid profiles, and increase nitrogen utilization efficiency in Hu lambs, while also altering the rumen bacterial community by increasing beneficial probiotics like the Christensenellaceae_R-7_group. Full article
Show Figures

Figure 1

19 pages, 1771 KiB  
Article
Neutral Sodium Humate Modulates Growth, Slaughter Traits, Antioxidant Status, and Gut Health in Yellow-Feathered Broilers
by Junran Lv, Mingzhu Cen, Benkuan Li, Xin Feng, Hongyu Cai and Huihua Zhang
Animals 2025, 15(14), 2142; https://doi.org/10.3390/ani15142142 - 19 Jul 2025
Viewed by 403
Abstract
In this study, we explored the dose-dependent effects of neutral sodium humate (NSH) on the growth performance, slaughter traits, antioxidant capacity, and intestinal health of yellow-feathered broilers. A total of 240 one-day-old male yellow-feathered broilers were randomly allocated into three groups, with each [...] Read more.
In this study, we explored the dose-dependent effects of neutral sodium humate (NSH) on the growth performance, slaughter traits, antioxidant capacity, and intestinal health of yellow-feathered broilers. A total of 240 one-day-old male yellow-feathered broilers were randomly allocated into three groups, with each group consisting of four replicates containing 20 birds per replicate. The control group (Blank) received a basal diet, while the NSH-L and NSH-H groups were provided with the same basal diet included with neutral sodium humate at concentrations of 0.15% and 0.3%, respectively. The results indicate that dietary inclusion of neutral sodium humate at both low (NSH-L) and high (NSH-H) doses significantly increased the body weight and leg muscle yield of yellow-feathered broilers and improved meat quality (p < 0.05). Furthermore, NSH inclusion effectively reduced serum total cholesterol levels and elevated total protein concentration (p < 0.05). In addition, NSH significantly improved duodenal and ileal morphology (e.g., increased villus height and reduced crypt depth), strengthened intestinal barrier integrity (p < 0.05), and enhanced antioxidant capacity (p < 0.05). Notably, the high-dose NSH group (NSH-H) demonstrated significantly greater enhancements in intestinal and barrier integrity compared to the low-dose group (NSH-L). Microbiome analysis revealed that, compared to the Blank group, both the NSH-L and NSH-H groups exhibited significant shifts in cecal microbiota composition, including increased abundance of Bacteroidota and Rikenellaceae_RC9_gut_group and reduced abundance of Euryarchaeota and Methanobrevibacter. Collectively, these findings demonstrate that neutral sodium humate acts as a multifunctional feed additive in yellow-feathered broilers, enhancing productivity and gut health. The study provides a theoretical foundation for the scientific application of neutral sodium humate in broiler production. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

16 pages, 391 KiB  
Systematic Review
High-Protein Dietary Interventions in Heart Failure: A Systematic Review of Clinical and Functional Outcomes
by Lorraine S. Evangelista, Rebecca Meraz, Kelly L. Wierenga, Angelina P. Nguyen, Alona D. Angosta and Jennifer Kawi
Nutrients 2025, 17(14), 2361; https://doi.org/10.3390/nu17142361 - 18 Jul 2025
Viewed by 539
Abstract
Background: Heart failure (HF) is frequently associated with skeletal muscle wasting, reduced functional capacity, and malnutrition. High-protein diets offer a promising nutritional intervention to improve these outcomes in individuals with HF. Objective: This systematic review evaluated randomized controlled trials of high-protein dietary interventions [...] Read more.
Background: Heart failure (HF) is frequently associated with skeletal muscle wasting, reduced functional capacity, and malnutrition. High-protein diets offer a promising nutritional intervention to improve these outcomes in individuals with HF. Objective: This systematic review evaluated randomized controlled trials of high-protein dietary interventions in HF populations, with emphasis on intervention characteristics, quantitative benefits, and risk of bias. Methods: We conducted a comprehensive search in PubMed, MEDLINE, Embase, and Cochrane CENTRAL from inception to June 2025. Eligible studies enrolled adults (≥18 years) with HF, implemented high-protein regimens (≥1.1 g/kg/day or ~25–30% of energy), and reported on functional capacity, body composition, muscle strength, clinical outcomes, or biochemical markers. Two reviewers independently screened, extracted data, and assessed bias (Cochrane RoB 2). Heterogeneity in dosing, duration, and outcomes precluded meta-analysis; we therefore provide a narrative synthesis. Results: Ten trials (nine randomized controlled trials, one pilot) involving 1080 patients (median n = 38; range 21–652) were included. High-protein interventions yielded mean improvements in six-minute walk distance of +32 ± 14 m, lean body mass gain of +1.6 ± 0.9 kg, and 9 ± 4% enhancement in quality-of-life scores; muscle strength effects varied from −2% to +11%. Two studies reported an 18% reduction in HF readmissions (p < 0.05). The risk-of-bias assessment identified two low-risk, three moderate-risk, and one high-risk study. Key limitations include small sample sizes, varied protein dosing (1.1–1.5 g/kg/day), short follow-up (2–6 months), and outcome heterogeneity. Conclusions: High-protein dietary strategies appear to confer modest, clinically relevant gains in functional capacity, nutritional status, and HF readmission risk. Larger, well-powered trials with standardized dosing and longer follow-up are necessary to establish optimal protein targets, long-term efficacy, and safety. Full article
Show Figures

Figure 1

17 pages, 1694 KiB  
Article
Gut Microbiota Shifts After a Weight Loss Program in Adults with Obesity: The WLM3P Study
by Vanessa Pereira, Amanda Cuevas-Sierra, Victor de la O, Rita Salvado, Inês Barreiros-Mota, Inês Castela, Alexandra Camelo, Inês Brandão, Christophe Espírito Santo, Ana Faria, Conceição Calhau, Marta P. Silvestre and André Moreira-Rosário
Nutrients 2025, 17(14), 2360; https://doi.org/10.3390/nu17142360 - 18 Jul 2025
Viewed by 552
Abstract
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss [...] Read more.
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss outcomes and long-term health. Objective: This study investigated the effects of the multicomponent Weight Loss Maintenance 3 Phases Program (WLM3P), which integrates caloric restriction, a high-protein low-carbohydrate diet, time-restricted eating (10h TRE), dietary supplementation (prebiotics and phytochemicals), and digital app-based support on gut microbiota composition compared to a standard low-carbohydrate diet (LCD) in adults with obesity. The analysis focused exclusively on the 6-month weight loss period corresponding to Phases 1 and 2 of the WLM3P intervention. Methods: In this sub-analysis of a randomized controlled trial (ClinicalTrials.gov Identifier: NCT04192357), 58 adults with obesity (BMI 30.0–39.9 kg/m2) were randomized to the WLM3P (n = 29) or LCD (n = 29) groups. Stool samples were collected at baseline and 6 months for 16S rRNA sequencing. Alpha and beta diversity were assessed, and genus-level differential abundance was determined using EdgeR and LEfSe. Associations between microbial taxa and clinical outcomes were evaluated using regression models. Results: After 6-month, the WLM3P group showed a significant increase in alpha diversity (p = 0.03) and a significant change in beta diversity (p < 0.01), while no significant changes were observed in the LCD group. Differential abundance analysis revealed specific microbial signatures in WLM3P participants, including increased levels of Faecalibacterium. Notably, higher Faecalibacterium abundance was associated with greater reductions in fat mass (kg, %) and visceral adiposity (cm2) in the WLM3P group compared to LCD (p < 0.01). Conclusions: These findings suggest a potential microbiota-mediated mechanism in weight loss, where Faecalibacterium may enhance fat reduction effectiveness in the context of the WLM3P intervention. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

Back to TopTop