Comparative Analysis of Fecal Microbiota and Metabolomic Profiles in Male and Female Leizhou Goats Offered a 10% Crude Protein Diet Among Four Energy Levels
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal, Experimental Design, and Treatments
2.2. Sample Collections
2.3. Fecal Bacterial Communities’ Analysis
2.4. Metabolites Extraction, UHPLC-MS/MS, and Metabolomic Analysis
2.5. Statistics Analysis
3. Results
3.1. Sequencing Metrics for the Fecal Microbiota of Goats
3.2. Fecal Metabolomics Profiling Between Female and Male Goats When Consuming a Low-Protein Diet with Different Energy Levels
3.3. Correlation Analysis Between Fecal Metabolites and Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nudda, A.; Carta, S.; Correddu, F.; Caratzu, M.F.; Cesarani, A.; Hidalgo, J.; Pulina, G.; Lunesu, M.F. A meta-analysis on use of agro-industrial by-products rich in polyphenols in dairy small ruminant nutrition. Animal 2025, 101522. [Google Scholar] [CrossRef]
- Jing, X.; Ding, L.; Zhou, J.; Huang, X.; Degen, A.; Long, R. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef]
- Zhi, W.; Tang, K.; Yang, J.; Yang, T.; Chen, R.; Huang, J.; Tan, H.; Zhao, J.; Sheng, Z. Research on the gut microbiota of Hainan black goat. Animals 2022, 12, 3129. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, T.; Wu, Y.; Xu, Y.; Du, L.; Wang, T.; Luo, Y.; Wang, Y.; Li, Z.; Xuan, Z.; et al. The multi-kingdom microbiome of the goat gastrointestinal tract. Microbiome 2023, 11, 219. [Google Scholar] [CrossRef]
- Pan, Y.; Li, H.; Wang, J.; Sun, X.; Liang, E.; Guo, J.; Wang, J.; Zhang, K.; Li, B.; Zan, M.; et al. Gender and age-related variations in rumen fermentation and microbiota of Qinchuan cattle. Anim. Biosci. 2025, 38, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sha, Y.; Lv, W.; Pu, X.; Liu, X.; Luo, Y.; Hu, J.; Wang, J.; Li, S.; Zhao, Z. Sex differences in rumen fermentation and microbiota of Tibetan goat. Microb. Cell Fact. 2022, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, J.; Lu, M.; Zhao, S.; Li, W.; Quan, G.; Xue, B. Effects of dietary energy levels on growth performance, nutrient digestibility, rumen barrier and microflora in sheep. Animals 2024, 14, 2525. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Peng, W.; Mao, K.; Yang, Y.; Wu, Q.; Wang, K.; Zeng, M.; Han, X.; Han, J.; Zhou, H. The changes in fecal bacterial communities in goats offered rumen-protected fat. Microorganisms 2024, 12, 822. [Google Scholar] [CrossRef]
- Wei, X.; Wu, H.; Wang, Z.; Zhu, J.; Wang, W.; Wang, J.; Wang, Y.; Wang, C. Rumen-protected lysine supplementation improved amino acid balance, nitrogen utilization and altered hindgut microbiota of dairy cows. Anim. Nutr. 2023, 15, 320–331. [Google Scholar] [CrossRef]
- Zierer, J.; Jackson, M.A.; Kastenmüller, G.; Mangino, M.; Long, T.; Telenti, A.; Mohney, R.P.; Small, K.S.; Bell, J.T.; Steves, C.J.; et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 2018, 50, 790–795. [Google Scholar] [CrossRef]
- Wang, D.; Chen, L.; Tang, G.; Yu, J.; Chen, J.; Li, Z.; Cao, Y.; Lei, X.; Deng, L.; Wu, S.; et al. Multi-omics revealed the long-term effect of ruminal keystone bacteria and the microbial metabolome on lactation performance in adult dairy goats. Microbiome 2023, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Kyawt, Y.Y.; Aung, M.; Xu, Y.; Sun, Z.; Zhou, Y.; Zhu, W.; Padmakumar, V.; Tan, Z.; Cheng, Y. Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio-fermented rice straw. J. Anim. Sci. Biotechnol. 2024, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ma, L.; Xue, L.; Jiang, Q.; Feng, Y.; Wang, S.; Tian, J.; Tian, X.; Gu, Y.; Zhang, J. The rumen microbiome and its metabolome together with the host metabolome regulate the growth performance of crossbred cattle. BMC Genom. 2025, 26, 278. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.Y.; Sun, H.Z.; Wu, X.H.; Liu, J.X.; Guan, L.L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 2020, 8, 64. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, T.; Deng, J.; Wei, C.C.; Zhang, Z.J.; Wang, D.M.; Chen, X.Y. Microbiome-metabolomics analysis of the effects of decreasing dietary crude protein content on goat rumen mictobiota and metabolites. Anim. Biosci. 2022, 35, 1535–1544. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, C.; Zhang, H.; Yu, L.; Dong, L.; Gong, D.; Yao, J.; Wang, H. Illumina Sequencing and metabolomics analysis reveal thiamine modulation of ruminal microbiota and metabolome characteristics in goats fed a high-concentrate diet. Front. Microbiol. 2021, 12, 653283. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Zhou, H.; Hou, G.; Li, M.; Shi, L.; Huang, X.; Guan, S. Effects of nutrition level of concentrate-based diets on growth performance and carcass characteristics of Hainan black goats. Trop. Anim. Health Prod. 2014, 46, 783–788. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Zhou, H.; Hou, G.; Shi, L. Effects of dietary α-lipoic acid on carcass characteristics, antioxidant capability and meat quality in Hainan black goats. Ital. J. Anim. Sci. 2017, 16, 61–67. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, W.; Cheng, Y.; Wu, Y.; Wu, H.; He, M.; Chen, S.; Man, C.; Gao, H.; Du, L.; et al. Development and verification of a 10K liquid chip for Hainan black goat based on genotyping by pinpoint sequencing of liquid captured targets. BMC Genom. Data. 2024, 25, 44. [Google Scholar] [CrossRef]
- Feng, H.; Shi, H.; Yang, F.; Yun, Y.; Wang, X. Impact of anthocyanins derived from Dioscorea alata L. on growth performance, carcass characteristics, antioxidant capacity, and immune function of Hainan black goats. Front. Vet. Sci. 2023, 10, 1283947. [Google Scholar] [CrossRef]
- Liu, H.; Hao, L.; Cao, X.; Yang, G.; Degen, A.A.; Xiao, L.; Liu, S.; Zhou, J. Effects of supplementary concentrate and/or rumen-protected lysine plus methionine on productive performance, milk composition, rumen fermentation, and bacterial population in Grazing, Lactating Yaks. Anim. Feed. Sci. Tech. 2023, 297, 115591. [Google Scholar] [CrossRef]
- Luo, Z.; Ou, H.; Tan, Z.; Jiao, J. Rumen-protected methionine and lysine supplementation to the low protein diet improves animal growth through modulating colonic microbiome in lambs. J. Anim. Sci. Biotechnol. 2025, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- NY/T 816-2021; Ministry of Agriculture of the People’s Republic of China. China National Feeding Standard of Meat-Producing Sheep and Goats. China Agriculture Press: Beijing, China, 2021.
- Wuytack, A.; De Visscher, A.; Piepers, S.; Boyen, F.; Haesebrouck, F.; De Vliegher, S. Non-aureus staphylococci in fecal samples of dairy cows: First report and phenotypic and genotypic characterization. J. Dairy. Sci. 2019, 102, 9345–9359. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zheng, N.; Wang, J.; Zhao, S. Relationships among bacterial cell size, diversity, and taxonomy in rumen. Front. Microbiol. 2024, 15, 1376994. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Jin, W.; Feng, P.F.; Liu, J.H.; Mao, S.Y. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal. 2018, 12, 2511–2520. [Google Scholar] [CrossRef]
- Li, B.; Zhang, K.; Li, C.; Wang, X.; Chen, Y.; Yang, Y. Characterization and comparison of microbiota in the gastrointestinal tracts of the goat (Capra hircus) during preweaning development. Front. Microbiol. 2019, 10, 2125. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, Z.; Wang, H.; Zhang, C. Effects of trace minerals supply from rumen sustained release boluses on milk yields and components, rumen fermentation and the rumen bacteria in lactating yaks (Bos grunniens). Animal Feed. Sci. Tech. 2022, 283, 115184. [Google Scholar] [CrossRef]
- Liu, H.; Ran, T.; Zhang, C.; Yang, W.; Wu, X.; Degen, A.; Long, R.; Shi, Z.; Zhou, J. Comparison of rumen bacterial communities between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) fed a low protein diet with different energy levels. Front. Microbiol. 2022, 13, 982338. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhu, L.; Xu, Y.; Liu, N.; Sun, X.; Hu, L.; Huang, H.; Wei, K.; Zhu, R. Dynamic Distribution of Gut Microbiota in Goats at Different Ages and Health States. Front. Microbiol. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Jin, B.; Wang, R.; Hu, J.; Wang, Y.; Cheng, P.; Zhang, J.; Zhang, J.; Xue, G.; Zhu, Y.; Zhang, Y.; et al. Analysis of fecal microbiome and metabolome changes in goats with pregnant toxemia. BMC Vet. Res. 2024, 20, 2. [Google Scholar] [CrossRef]
- Mahayri, T.M.; Fliegerová, K.O.; Mattiello, S.; Celozzi, S.; Mrázek, J.; Mekadim, C.; Sechovcová, H.; Kvasnová, S.; Atallah, E.; Moniello, G. Host species affects bacterial evenness, but not diversity: Comparison of fecal bacteria of cows and goats offered the same Diet. Animals 2022, 12, 2011. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xu, J.; Zhao, Y.; Wang, J.; Fu, T.; Richard, M.L.; Sokol, H.; Wang, M.; Li, Y.; Liu, Y.; et al. Melatonin alleviates heat stress-induced spermatogenesis dysfunction in male dairy goats by regulating arachidonic acid metabolism mediated by remodeling the gut microbiota. Microbiome 2024, 12, 233. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, B.; Gao, M.; Li, Q.; Gao, Y.; Dong, N.; Liu, G.; Wang, Z.; Gao, W.; Chen, Y.; et al. Dietary nutritional level affects intestinal microbiota and health of Goats. Microorganisms 2022, 10, 2322. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Zhao, X.; Khan, M.; Jiang, Y.; Li, W.; Mushtaq, M.; Danzeng, B.; Ni, X.; Azeem, Z.; Shao, Q.; et al. Cecum microbiota composition, fermentation characteristics, and immunometabolic biomarkers of Yunshang black goat fed varying dietary energy and protein levels. Front. Microbiol. 2025, 16, 1523586. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, Y.; Zeng, X.; Wang, X.; Wang, Y.; Dai, C.; Li, J.; Huang, P.; Huang, J.; Hussain, T.; et al. Effects of dietary energy levels on rumen fermentation, gastrointestinal tract histology, and bacterial community diversity in fattening male Hu lambs. Front. Microbiol. 2021, 12, 695445. [Google Scholar] [CrossRef]
- Hess, M.; Sczyrba, A.; Egan, R.; Kim, T.W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark, D.S.; Chen, F.; Zhang, T.; et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331, 463–467. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.; Degen, A.; Liu, H.; Cao, X.; Hao, L.; Shang, Z.; Ran, T.; Long, R. A comparison of average daily gain, apparent digestibilities, energy balance, rumen fermentation parameters, and serum metabolites between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) consuming diets differing in energy level. Anim. Nutr. 2022, 12, 77–86. [Google Scholar] [CrossRef]
- Jing, X.P.; Zhou, J.W.; Wang, W.J.; Degen, A.A.; Guo, Y.M.; Kang, J.P.; Xu, W.X.; Liu, P.P.; Yang, C.; Shi, F.Y.; et al. Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities. Animal Feed. Sci. Tech. 2019, 254, 114200. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Wu, K.; Zhang, C.; Fu, T.; Sun, Y.; Gao, T.; Han, L. The Ruminal microbiome alterations associated with diet-induced milk fat depression and milk fat globule size reduction in dairy goats. Animals 2024, 14, 2614. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Ding, W.G.; Zhu, H.X.; Zuo, Y.N.; Hu, G.H.; Liu, J.C.; Xin, H.S.; Lin, X.; Xie, X.L.; Jiao, P.X. Impact of Clostridium butyricum on growth performance, ruminal fermentation, bacterial communities, and immune responses of goats fed milk replacer with varying fat levels. Anim. Feed. Sci. Tech. 2025, 324, 116309. [Google Scholar] [CrossRef]
- Ragaller, V.; Lebzien, P.; Südekum, K.H.; Hüther, L.; Flachowsky, G. Pantothenic acid in ruminant nutrition: A review. J. Anim. Physiol. Anim. Nutr. 2011, 95, 6–16. [Google Scholar] [CrossRef]
- Yoshii, K.; Hosomi, K.; Sawane, K.; Kunisawa, J. Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. Front. Nutr. 2019, 6, 48. [Google Scholar] [CrossRef]
- Yi, S.; Dai, D.; Wu, H.; Chai, S.; Liu, S.; Meng, Q.; Zhou, Z. Dietary concentrate-to-forage ratio affects rumen bacterial community composition and metabolome of yaks. Front. Nutr. 2022, 9, 927206. [Google Scholar] [CrossRef]
- Wang, X.J.; Chen, B.Y.; Yang, B.W.; Yue, T.L.; Guo, C.F. Short communication: Chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli. J. Dairy. Sci. 2021, 104, 1524–1530. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, N.; Shen, W.; Zhao, S.; Wang, J. Synchrony degree of dietary energy and nitrogen release influences microbial community, fermentation, and protein synthesis in a rumen simulation system. Microorganisms 2020, 8, 231. [Google Scholar] [CrossRef]
Items | Gender | Dietary Energy Levels | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LE | MLE | MHE | HE | G | E | G × E | E-L | E-Q | |||
Firmicutes | Female | 71.1 | 82.7 | 78.2 | 70.6 | 0.93 | 0.285 | <0.001 | 0.427 | 0.691 | <0.001 |
Male | 70.3 | 78.7 | 77.4 | 71.5 | |||||||
Bacteroidota | Female | 21.9 | 14.7 | 18.2 | 21.2 | 0.71 | 0.223 | <0.001 | 0.621 | 0.439 | <0.001 |
Male | 24.8 | 17.0 | 17.7 | 21.7 | |||||||
Spirochaetota | Female | 0.46 | 0.92 | 1.79 | 3.94 | 0.234 | 0.126 | <0.001 | 0.059 | <0.001 | 0.316 |
Male | 0.69 | 2.12 | 2.49 | 3.30 | |||||||
Verrucomicrobiota | Female | 0.57 | 0.31 | 0.52 | 1.44 | 0.202 | 0.285 | 0.418 | 0.211 | 0.649 | 0.146 |
Male | 2.23 | 0.72 | 0.94 | 0.67 | |||||||
Patescibacteria | Female | 2.55 | 0.42 | 0.09 | 0.08 | 0.274 | 0.365 | 0.130 | 0.603 | 0.038 | 0.213 |
Male | 0.80 | 0.24 | 0.09 | 0.05 | |||||||
Others | Female | 3.34 | 0.90 | 1.17 | 2.82 | 0.195 | 0.128 | <0.001 | 0.008 | 0.245 | <0.001 |
Male | 1.21 | 1.27 | 1.41 | 2.71 |
Items | Gender | Dietary Energy Levels | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LE | MLE | MHE | HE | G | E | G × E | E-L | E-Q | |||
unclassified_f__ Lachnospiraceae | Female | 9.52 | 13.93 | 12.32 | 13.42 | 0.46 | <0.001 | 0.001 | 0.008 | 0.223 | 0.013 |
Male | 8.06 | 9.94 | 11.28 | 7.41 | |||||||
Oscillospiraceae _UCG-005 | Female | 11.40 | 14.00 | 8.43 | 7.57 | 0.42 | <0.001 | <0.001 | 0.005 | <0.001 | 0.086 |
Male | 13.15 | 13.26 | 10.74 | 10.63 | |||||||
Christensenellacea e_R-7_group | Female | 7.55 | 11.72 | 14.24 | 10.46 | 0.45 | 0.459 | 0.026 | 0.015 | 0.059 | 0.047 |
Male | 10.10 | 10.42 | 9.94 | 11.36 | |||||||
norank_f__[Eubacterium]_ coprostanoligenes_group | Female | 3.11 | 5.70 | 10.56 | 6.28 | 0.48 | 0.086 | <0.001 | 0.007 | <0.001 | 0.002 |
Male | 4.51 | 6.30 | 8.67 | 9.53 | |||||||
Rikenellaceae_RC9 _gut_group | Female | 6.53 | 7.11 | 5.37 | 7.50 | 0.25 | 0.913 | 0.014 | 0.002 | 0.515 | 0.009 |
Male | 8.45 | 4.83 | 6.49 | 6.58 | |||||||
Ruminococcus | Female | 1.86 | 4.64 | 3.79 | 4.97 | 0.29 | 0.035 | <0.001 | 0.446 | <0.001 | 0.232 |
Male | 2.49 | 4.64 | 4.64 | 6.58 | |||||||
norank_o__Clostridia_ UCG-014 | Female | 2.28 | 3.28 | 3.93 | 3.96 | 0.30 | 0.379 | 0.265 | 0.457 | 0.327 | 0.101 |
Male | 3.03 | 5.21 | 4.06 | 3.25 | |||||||
Bacteroides | Female | 4.80 | 3.05 | 6.07 | 5.91 | 0.31 | 0.007 | 0.045 | 0.059 | 0.856 | 0.278 |
Male | 4.79 | 3.00 | 3.59 | 2.79 | |||||||
Monoglobus | Female | 2.44 | 2.15 | 2.99 | 1.94 | 0.22 | 0.006 | 0.003 | 0.073 | 0.019 | 0.060 |
Male | 4.08 | 3.87 | 3.90 | 1.46 | |||||||
Prevotellaceae_UCG -004 | Female | 4.56 | 1.35 | 2.27 | 1.67 | 0.29 | 0.726 | 0.008 | 0.325 | 0.002 | 0.235 |
Male | 3.74 | 3.10 | 2.27 | 1.45 | |||||||
Treponema | Female | 0.46 | 0.91 | 1.77 | 3.90 | 0.24 | 0.178 | <0.001 | 0.103 | <0.001 | 0.385 |
Male | 0.68 | 2.12 | 2.46 | 3.23 | |||||||
norank_f__UCG-010 | Female | 1.71 | 1.91 | 2.46 | 1.46 | 0.12 | 0.395 | 0.326 | 0.554 | 0.455 | 0.125 |
Male | 2.22 | 2.24 | 2.07 | 1.82 | |||||||
Akkermansia | Female | 0.25 | 0.26 | 0.41 | 1.39 | 0.20 | 0.352 | 0.503 | 0.123 | 0.745 | 0.168 |
Male | 2.06 | 0.62 | 0.60 | 0.48 | |||||||
unclassified_c__ Clostridia | Female | 2.62 | 2.09 | 1.24 | 0.73 | 0.22 | 0.950 | 0.013 | 0.769 | 0.001 | 0.419 |
Male | 2.03 | 2.70 | 1.22 | 0.62 | |||||||
Alistipes | Female | 2.12 | 0.98 | 0.77 | 2.08 | 0.14 | 0.665 | 0.068 | 0.173 | 0.272 | 0.017 |
Male | 2.02 | 1.63 | 1.45 | 1.30 | |||||||
norank_o__RF39 | Female | 0.90 | 1.43 | 1.37 | 1.65 | 0.10 | 0.944 | 0.039 | 0.064 | 0.160 | 0.020 |
Male | 0.96 | 1.44 | 2.04 | 0.86 | |||||||
Lachnospiraceae_ AC2044_group | Female | 0.85 | 1.86 | 1.44 | 1.89 | 0.13 | 0.372 | 0.764 | 0.196 | 0.420 | 0.679 |
Male | 1.48 | 1.12 | 1.38 | 1.14 | |||||||
norank_f__Rumin- ococcaceae | Female | 3.75 | 1.34 | 0.69 | 0.86 | 0.19 | 0.024 | <0.001 | 0.002 | <0.001 | 0.003 |
Male | 1.67 | 1.15 | 0.66 | 1.18 | |||||||
Oscillospiraceae-NK4A214_group | Female | 1.35 | 0.89 | 1.00 | 0.99 | 0.06 | 0.008 | 0.143 | 0.524 | 0.231 | 0.084 |
Male | 1.43 | 1.32 | 1.18 | 1.40 | |||||||
Oscillospiraceae- UCG-002 | Female | 0.68 | 0.99 | 1.11 | 1.90 | 0.12 | 0.999 | 0.170 | 0.473 | 0.024 | 0.796 |
Male | 0.97 | 1.00 | 1.45 | 1.25 | |||||||
norank_f__F082 | Female | 0.85 | 0.25 | 0.31 | 0.53 | 0.14 | 0.001 | 0.098 | 0.134 | 0.219 | 0.111 |
Male | 0.96 | 0.71 | 1.35 | 2.06 | |||||||
Mediterraneibacter | Female | 1.52 | 0.99 | 0.59 | 1.24 | 0.08 | 0.001 | 0.018 | 0.154 | 0.767 | 0.018 |
Male | 0.55 | 0.55 | 0.44 | 0.85 | |||||||
Prevotellaceae_UCG-003 | Female | 0.06 | 0.02 | 0.02 | 0.07 | 0.10 | <0.001 | <0.001 | <0.001 | 0.145 | 0.050 |
Male | 0.64 | 0.64 | 0.19 | 1.59 | |||||||
[Eubacterium]_siraeum _group | Female | 0.32 | 0.72 | 0.85 | 0.89 | 0.05 | 0.790 | 0.004 | 0.360 | 0.002 | 0.017 |
Male | 0.52 | 0.81 | 0.85 | 0.69 | |||||||
unclassified_f__Oscill-ospiraceae | Female | 0.81 | 0.66 | 0.61 | 0.55 | 0.06 | 0.551 | 0.521 | 0.983 | 0.153 | 0.729 |
Male | 0.87 | 0.67 | 0.75 | 0.62 | |||||||
g__Family_XIII_ AD3011_group | Female | 0.58 | 0.65 | 0.87 | 0.53 | 0.04 | 0.810 | 0.300 | 0.718 | 0.812 | 0.152 |
Male | 0.67 | 0.62 | 0.69 | 0.56 | |||||||
norank_o__Bacteroidales | Female | 1.01 | 0.15 | 1.37 | 0.51 | 0.11 | 0.263 | 0.077 | 0.108 | 0.261 | 0.468 |
Male | 0.97 | 0.46 | 0.29 | 0.40 | |||||||
Ruminiclostridium | Female | 0.72 | 2.56 | 0.32 | 0.11 | 0.21 | 0.202 | 0.080 | 0.102 | 0.348 | 0.063 |
Male | 0.12 | 0.51 | 0.91 | 0.19 | |||||||
norank_f__Muriba- culaceae | Female | 0.25 | 0.80 | 0.67 | 1.62 | 0.09 | 0.008 | <0.001 | 0.133 | <0.001 | 0.718 |
Male | 0.10 | 0.64 | 0.52 | 0.85 | |||||||
[Eubacterium]_ruminan tium_group | Female | 0.17 | 0.30 | 0.72 | 0.72 | 0.07 | 0.213 | 0.004 | 0.696 | 0.002 | 0.296 |
Male | 0.41 | 0.40 | 1.04 | 0.67 | |||||||
others | Female | 24.96 | 13.31 | 11.44 | 12.71 | 0.80 | 0.487 | <0.001 | <0.001 | 0.001 | <0.001 |
Male | 16.27 | 14.06 | 12.86 | 17.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, W.; Peng, W.; Chen, A.; Diao, X.; Yang, X.; Chai, J.; Yang, Y.; Wang, K.; Han, J.; et al. Comparative Analysis of Fecal Microbiota and Metabolomic Profiles in Male and Female Leizhou Goats Offered a 10% Crude Protein Diet Among Four Energy Levels. Animals 2025, 15, 2174. https://doi.org/10.3390/ani15152174
Liu H, Wang W, Peng W, Chen A, Diao X, Yang X, Chai J, Yang Y, Wang K, Han J, et al. Comparative Analysis of Fecal Microbiota and Metabolomic Profiles in Male and Female Leizhou Goats Offered a 10% Crude Protein Diet Among Four Energy Levels. Animals. 2025; 15(15):2174. https://doi.org/10.3390/ani15152174
Chicago/Turabian StyleLiu, Hu, Wenji Wang, Weishi Peng, Anmiao Chen, Xiaogao Diao, Xia Yang, Jianmin Chai, Yuanting Yang, Ke Wang, Jiancheng Han, and et al. 2025. "Comparative Analysis of Fecal Microbiota and Metabolomic Profiles in Male and Female Leizhou Goats Offered a 10% Crude Protein Diet Among Four Energy Levels" Animals 15, no. 15: 2174. https://doi.org/10.3390/ani15152174
APA StyleLiu, H., Wang, W., Peng, W., Chen, A., Diao, X., Yang, X., Chai, J., Yang, Y., Wang, K., Han, J., & Zhou, H. (2025). Comparative Analysis of Fecal Microbiota and Metabolomic Profiles in Male and Female Leizhou Goats Offered a 10% Crude Protein Diet Among Four Energy Levels. Animals, 15(15), 2174. https://doi.org/10.3390/ani15152174