Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (419)

Search Parameters:
Keywords = low-frequency vibration measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2796 KB  
Article
Study on Ultrasonic Vibration Lapping of 9310 Small-Size Internal Spline After Heat Treatment
by Zemin Zhao, Jinshilong Huang, Qiang Liu, Zhian Zhang and Fangcheng Li
Coatings 2025, 15(9), 1052; https://doi.org/10.3390/coatings15091052 - 8 Sep 2025
Abstract
As a key component of aero transmission systems, internal splines suffer from problems of low efficiency and poor precision in traditional lapping processes due to geometric deformation and high hardness after heat treatment. To address this, this study proposes an ultrasonic vibration lapping [...] Read more.
As a key component of aero transmission systems, internal splines suffer from problems of low efficiency and poor precision in traditional lapping processes due to geometric deformation and high hardness after heat treatment. To address this, this study proposes an ultrasonic vibration lapping technology, which combines the synergistic mechanism of high-frequency vibration and free abrasive particles to achieve efficient and precise machining of small-sized hardened internal splines. By establishing an abrasive grain impact trajectory model and a rolling abrasive grain material removal model, the mechanisms of micro-cutting and impact removal of abrasive particles under ultrasonic vibration are revealed. Based on the local resonance theory, a longitudinal ultrasonic vibration system is designed, and its resonant frequency is optimized through finite element modal analysis. An ultrasonic lapping experimental platform is built, and heat-treated 9310 internal spline samples are used for experimental verification. The results show that, compared with traditional manual lapping, ultrasonic vibration lapping significantly improves the tooth profile and tooth lead deviations. After measurement, following ultrasonic vibration lapping, both the total tooth profile deviation and tooth lead deviation of the internal spline meet the Grade 6 accuracy requirements specified in GB/T 3478.1-2008 Cylindrical straight-tooth involute splines (Metric Module, Tooth Side Fit)—Part 1: General. This study confirms that ultrasonic vibration lapping can effectively correct the geometric accuracy of tooth surfaces and suppress thermal damage, and provides an innovative solution for the high-quality repair of aero transmission components. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

14 pages, 3923 KB  
Article
Low-Frequency Band Gap Expansion of Acoustic Metamaterials Based on Multi-Mode Coupling Effect
by Yudong Wu, Zhiyuan Wu, Wang Yan, Shiqi Deng, Fangjun Zuo, Mingliang Yang and Weiping Ding
Crystals 2025, 15(9), 764; https://doi.org/10.3390/cryst15090764 - 27 Aug 2025
Viewed by 485
Abstract
To address the problem of low-frequency broadband vibration and noise encountered in engineering, a method for expanding the low-frequency band gap of locally resonant acoustic metamaterials is proposed based on the multi-mode coupling effect. A computational method for the band gap characteristics of [...] Read more.
To address the problem of low-frequency broadband vibration and noise encountered in engineering, a method for expanding the low-frequency band gap of locally resonant acoustic metamaterials is proposed based on the multi-mode coupling effect. A computational method for the band gap characteristics of second-order multi-mode acoustic metamaterials has been derived. By incorporating the vibrational modes obtained from band structure calculations, a systematic investigation of the formation mechanisms of multiple band gaps was conducted, revealing that the emergence of these multiple band gaps stems from the coupled resonance between elastic waves and distinct vibrational modes of the local resonator units. Furthermore, the influence of design parameter variations on the bandgap was investigated, and the strategy of realizing low-frequency multi-order bandgaps by increasing the order of local resonance units was examined. Finally, vibration tests were conducted on the second-, third-, and fourth-order multi-mode coupled acoustic metamaterials. The results demonstrated that these materials exhibit an expanded vibration band gap within the low-frequency range, and the measured frequency response aligns closely with the theoretical calculations. This type of acoustic metamaterial offers viable applicability for controlling low-frequency broadband vibrations. Full article
(This article belongs to the Special Issue Functional Acoustic Metamaterials)
Show Figures

Figure 1

13 pages, 2579 KB  
Article
Analysis and Mitigation of Vibrations in Front Loader Mechanisms Using Hydraulic Suspension Systems
by Shankar Bhandari, Eglė Jotautienė and Jonas Braska
AgriEngineering 2025, 7(9), 276; https://doi.org/10.3390/agriengineering7090276 - 27 Aug 2025
Viewed by 750
Abstract
Agricultural tractors possess front loaders that are employed for the handling and transportation of materials, but are exposed to mechanical vibrations and shocks from ground undulations and sudden variations in the load. These vibrations are harmful to the durability of the parts, the [...] Read more.
Agricultural tractors possess front loaders that are employed for the handling and transportation of materials, but are exposed to mechanical vibrations and shocks from ground undulations and sudden variations in the load. These vibrations are harmful to the durability of the parts, the comfort of the driver, and the longevity of the machine. In this current study, the performance of the hydraulic accumulator to mitigate such vibrations for a Foton 904 wheeled tractor equipped with a TZ10C-824 front loader is studied. Vibration measurements were taken by an experimental Brüel & Kjær 3050-A040 analyzer under various loading configurations (no loading, 180 kg, and 312 kg), with or without a 1.4 L, 50-bar nitrogen gas-charged Fox Opera Mi Italy hydraulic accumulator. Results reveal that maximum accelerations were as much as 6.24 m·s−2 without an accumulator during testing of a 312 kg load, whereas they were extremely low at 2.66 m·s−2 when the accumulator was activated. Frequency-domain analysis verified that the main vibrations were within the range of 3–4 Hz, with FFT peak amplitudes dropping from 5.6 m·s−2 to 2.4 m·s−2 upon the accumulator’s operation. The observations verify the effectiveness of the accumulator in vibration intensity reduction, absence of high-frequency shock loads, and ride comfort, along with structural safety improvement. The study provides a solid platform for further enhancement in vibration control techniques for agricultural machines and loader system design. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

27 pages, 16089 KB  
Article
Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation
by Chun Gong, Faisal Rafique and Fengpeng Yang
Appl. Sci. 2025, 15(17), 9279; https://doi.org/10.3390/app15179279 - 23 Aug 2025
Viewed by 572
Abstract
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. [...] Read more.
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. The enclosed air cavity significantly improves the sound insulation capability of the acoustic membrane. Parametric studies were conducted to investigate key factors affecting the sound transmission loss (STL) of the proposed acoustic membrane. The analysis examined the influence of foil thickness, substrate thickness, and back cavity depth on acoustic performance. Results demonstrate that the membrane structure enriches vibration modes in the 500–6000 Hz frequency range, exhibiting multiple acoustic attenuation peaks and broader noise reduction bandwidth (average STL of 40–55 dB across the researched frequency range) compared to conventional resonant cavities and membrane-type acoustic metamaterials. The STL characteristics can be tuned across different frequency bands by adjusting the back cavity depth, foil thickness, and substrate thickness. Experimental validation was performed through noise reduction tests on an air compressor pump. Comparative acoustic measurements confirmed the superior noise attenuation performance and practical applicability of the proposed membrane over conventional acoustic treatments. Compared to uniform foil resonators, the combination of plastic and steel materials with single-layer and double-layer membranes reduced the overall sound level (OA) by an additional 2–3 dB, thereby offering exceptional STL performance in the low- to medium-frequency range. These lightweight, easy-to-manufacture membranes exhibit considerable potential for noise control applications in household appliances and industrial settings. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

25 pages, 6919 KB  
Article
Research on the Vibration Characteristics of Non-Axisymmetric Exhaust Duct Under Thermal Environment
by Jintao Ding and Lina Zhang
Aerospace 2025, 12(8), 739; https://doi.org/10.3390/aerospace12080739 - 19 Aug 2025
Viewed by 309
Abstract
The exhaust duct of aero-engine exhibits complex vibration response characteristics under the influence of temperature fields and vibration loads. Taking the non-axisymmetric exhaust duct of turboshaft engine as the object of study, a finite element model of the exhaust duct was established using [...] Read more.
The exhaust duct of aero-engine exhibits complex vibration response characteristics under the influence of temperature fields and vibration loads. Taking the non-axisymmetric exhaust duct of turboshaft engine as the object of study, a finite element model of the exhaust duct was established using three-dimensional finite element analysis methods to analyze the thermal modal and random vibration response characteristics under axial loading for large thin-walled non-axisymmetric exhaust ducts. The simulation analysis method was validated through thermal vibration experiments on the scaled model. In a thermal environment, the shape of the power spectral density curves for displacement and stress of the exhaust duct remains largely unchanged in the low-frequency range; however, the response frequencies exhibit a significant forward shift. When subjected to Y-axial loading, the amplitude of the X- and Z-direction displacement response at 1st order (12.96 Hz) and the stress response at 6th order (30.92 Hz) significantly increase. Random vibration loads excite multiple modes of the exhaust duct, with lower-order modes being more easily stimulated. When subjected to X- and Z-axial loading, 1st order (12.96 Hz) has the greatest impact on the X- and Z-direction displacement responses, while 2nd order (16.93 Hz) and 13th order (82.79 Hz) frequencies have the greatest impact on the displacement response in the Y-direction and equivalent stress response. When subjected to Y-axial loading, the 5th order (22.35 Hz) and 12th order (81.69 Hz) modes have the most significant effects on the displacement responses in the X, Y, and Z directions and equivalent stress responses. Attention to these orders is essential during the design process, along with implementing certain stiffness reinforcement measures to reduce response amplitudes. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 2424 KB  
Article
Predicting Vehicle-Engine-Radiated Noise Based on Bench Test and Machine Learning
by Ruijun Liu, Yingqi Yin, Yuming Peng and Xu Zheng
Machines 2025, 13(8), 724; https://doi.org/10.3390/machines13080724 - 15 Aug 2025
Viewed by 364
Abstract
As engines trend toward miniaturization, lightweight design, and higher power density, noise issues have become increasingly prominent, necessitating precise radiated noise prediction for effective noise control. This study develops a machine learning model based on surface vibration test data, which enhances the efficiency [...] Read more.
As engines trend toward miniaturization, lightweight design, and higher power density, noise issues have become increasingly prominent, necessitating precise radiated noise prediction for effective noise control. This study develops a machine learning model based on surface vibration test data, which enhances the efficiency of engine noise prediction and has the potential to serve as an alternative to traditional high-cost engine noise test methods. Experiments were conducted on a four-cylinder, four-stroke diesel engine, collecting surface vibration and radiated noise data under full-load conditions (1600–3000 r/min). Five prediction models were developed using support vector regression (SVR, including linear, polynomial, and radial basis function kernels), random forest regression, and multilayer perceptron, suitable for non-anechoic environments. The models were trained on time-domain and frequency-domain vibration data, with performance evaluated using the maximum absolute error, mean absolute error, and median absolute error. The results show that polynomial kernel SVR performs best in time domain modelling, with an average relative error of 0.10 and a prediction accuracy of up to 90%, which is 16% higher than that of MLP; the model does not require Fourier transform and principal component analysis, and the computational overhead is low, but it needs to collect data from multiple measurement points. The linear kernel SVR works best in frequency domain modelling, with an average relative error of 0.18 and a prediction accuracy of about 82%, which is suitable for single-point measurement scenarios with moderate accuracy requirements. Analysis of measurement points indicates optimal performance using data from the engine top between cylinders 3 and 4. This approach reduces reliance on costly anechoic facilities, providing practical value for noise control and design optimization. Full article
(This article belongs to the Special Issue Intelligent Applications in Mechanical Engineering)
Show Figures

Figure 1

17 pages, 2219 KB  
Article
Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters
by Yihan Pan, Xingliang Liu, Jinzhong Wu, Haocheng Zhou and Lina Zhu
Energies 2025, 18(15), 4144; https://doi.org/10.3390/en18154144 - 5 Aug 2025
Viewed by 500
Abstract
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative [...] Read more.
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative environmental conditions: temperature, vibration, shock, and low atmospheric pressure. Field measurements were conducted across road, rail, and air transport modes using a self-developed data acquisition system based on the NearLink communication technology. The measured data were then compared with the threshold values defined in current international and national standards. The results reveal that certain measured values exceeded the upper limits prescribed by existing standards, indicating limitations in their applicability under extreme transport conditions. Based on these findings, we propose revised testing parameters that better reflect actual transport risks, including a temperature cycling range of 72 ± 2 °C (high) and −40 ± 2 °C (low), a shock acceleration limit of 50 gn, adjusted peak frequencies in the vibration PSD profile, and a minimum pressure threshold of 11.6 kPa. These results provide a scientific basis for optimising safety standards and improving the safety of lithium-ion battery transportation. Full article
Show Figures

Figure 1

17 pages, 1404 KB  
Article
Securing Biomechanical Data Quality: A Comprehensive Evaluation of On-Board Accelerometers for Shock and Vibration Analysis
by Corentin Bosio, Christophe Sauret, Patricia Thoreux and Delphine Chadefaux
Sensors 2025, 25(15), 4569; https://doi.org/10.3390/s25154569 - 23 Jul 2025
Viewed by 406
Abstract
(1) On-board accelerometers are increasingly employed in real-world biomechanics to monitor vibrations and shocks. This study assesses the accuracy, repeatability, and variability of three commercially available inertial measurement units (IMUs)—Xsens, Blue Trident, and Shimmer 3—in measuring vibration and shock parameters relevant to human [...] Read more.
(1) On-board accelerometers are increasingly employed in real-world biomechanics to monitor vibrations and shocks. This study assesses the accuracy, repeatability, and variability of three commercially available inertial measurement units (IMUs)—Xsens, Blue Trident, and Shimmer 3—in measuring vibration and shock parameters relevant to human motion analysis. (2) A controlled laboratory setup utilizing an electrodynamic shaker was employed to generate sine waves at varying frequencies and amplitudes, as well as shock profiles with defined peak accelerations and durations. (3) The results showed that Blue Trident demonstrated the highest accuracy in shock amplitude and timing, with relative errors below 6%, while Xsens provided stable measurements for low-frequency vibrations. In contrast, Shimmer 3 exhibited considerable variability in signal quality. (4) These findings offer critical insights into sensor selection based on specific application needs, ensuring optimal accuracy and reliability in dynamic measurement environments. This study lays the groundwork for improved IMU application in biomechanical research and practical deployments. Future research should continue to investigate sensor performance, particularly in angular motion contexts, to further enhance motion analysis capabilities. Full article
Show Figures

Figure 1

30 pages, 10277 KB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 377
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

15 pages, 2070 KB  
Article
Synthesis of Vibration Environment Spectra and Fatigue Assessment for Underfloor Equipment in High-Speed EMU Trains
by Can Chen, Lirong Guo, Guoshun Li, Yongheng Li, Yichao Zhang, Hongwei Zhang and Dao Gong
Machines 2025, 13(7), 628; https://doi.org/10.3390/machines13070628 - 21 Jul 2025
Viewed by 281
Abstract
With the continuous development of high-speed electric multiple units (EMUs), vibration issues of vehicles have become increasingly prominent. During operation, the underfloor equipment installed on the carbody is subjected to random multi-point vibrations transmitted from the carbody, inducing significant fatigue damage. This paper [...] Read more.
With the continuous development of high-speed electric multiple units (EMUs), vibration issues of vehicles have become increasingly prominent. During operation, the underfloor equipment installed on the carbody is subjected to random multi-point vibrations transmitted from the carbody, inducing significant fatigue damage. This paper presents a comprehensive analysis of multi-channel vibration environment data for various underfloor equipment across different operating speeds obtained through on-site measurements. A spectral synthetic method grounded in statistical principles is then proposed to generate vibration environment spectra for diverse underfloor equipment. Finally, utilizing fatigue analysis in the frequency domain, the fatigue damage to underfloor equipment is assessed under different operational environments. The research results show that the vibration environment spectrum of the underfloor equipment in high-speed EMU trains differs significantly from the vibration spectrum specified in the IEC 61373 standard, especially at high frequencies. Despite this difference in spectral characteristics, the overall vibration energy values of the two spectra are comparable. Additionally, the vibration spectra of different underfloor equipment exhibit variations that can be attributed to their installation positions. As operational speed increases, the fatigue damage to the underfloor equipment exhibits exponential growth. However, the total accumulated fatigue damage remains relatively low, consistently staying below a value of 1. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

12 pages, 2871 KB  
Article
Multi-Objective Optimization Design of Low-Frequency Band Gap for Local Resonance Acoustic Metamaterials Based on Genetic Algorithm
by Jianjiao Deng, Yunuo Qin, Xi Chen, Yanyong He, Yu Song, Xinpeng Zhang, Wenting Ma, Shoukui Li and Yudong Wu
Machines 2025, 13(7), 610; https://doi.org/10.3390/machines13070610 - 16 Jul 2025
Viewed by 441
Abstract
Driven by the urgent demand for low-frequency vibration and noise control in engineering scenarios such as automobiles, acoustic metamaterials (AMs), as a new class of functional materials, have demonstrated significant application potential. This paper proposes a low-frequency band gap optimization design method for [...] Read more.
Driven by the urgent demand for low-frequency vibration and noise control in engineering scenarios such as automobiles, acoustic metamaterials (AMs), as a new class of functional materials, have demonstrated significant application potential. This paper proposes a low-frequency band gap optimization design method for local resonance acoustic metamaterials (LRAMs) based on a multi-objective genetic algorithm. Within a COMSOL Multiphysics 6.2 with MATLAB R2024b co-simulation framework, a parameterized unit cell model of the metamaterial is constructed. The optimization process targets two objectives: minimizing the band gap’s deviation from the target and reducing the structural mass. A multi-objective fitness function is formulated by incorporating the band gap deviation and structural mass constraints, and non-dominated sorting genetic algorithm II (NSGA-II) is employed to perform a global search over the geometric parameters of the resonant unit. The resulting Pareto-optimal solution set achieves a unit cell mass as low as 26.49 g under the constraint that the band gap deviation does not exceed 2 Hz. The results of experimental validation show that the optimized metamaterial configuration reduces the peak of the low-frequency frequency response function (FRF) at 63 Hz by up to 75% in a car door structure. Furthermore, the simulation predictions exhibit good agreement with the experimental measurements, confirming the effectiveness and reliability of the proposed method in engineering applications. The proposed multi-objective optimization framework is highly general and extensible and capable of effectively balancing between the acoustic performance and structural mass, thus providing an efficient engineering solution for low-frequency noise control problems. Full article
(This article belongs to the Special Issue Intelligent Applications in Mechanical Engineering)
Show Figures

Figure 1

11 pages, 2716 KB  
Communication
Measurement of Ultra-Low Frequency Vibrations Using an Atom Interferometer
by Zenghan Ma, Wei Zhuang, Yang Zhao, Chuanjing Ruan, Qin Tian, Jiamin Yao, Jinyang Feng, Shuqing Wu, Fang Fang and Ling Wan
Sensors 2025, 25(13), 4136; https://doi.org/10.3390/s25134136 - 2 Jul 2025
Viewed by 484
Abstract
Measuring low-frequency and ultra-low-frequency vibration signals is of critical importance in fields such as structural mechanics, geological exploration, aerospace, precision machining, and biomedicine. Existing methods face limitations in achieving both ultra-low-frequency range and high precision. We present an ultra-low-frequency vibration measurement method based [...] Read more.
Measuring low-frequency and ultra-low-frequency vibration signals is of critical importance in fields such as structural mechanics, geological exploration, aerospace, precision machining, and biomedicine. Existing methods face limitations in achieving both ultra-low-frequency range and high precision. We present an ultra-low-frequency vibration measurement method based on the atom interferometer, capable of measuring vibration signals from 0.01 Hz to DC. The performance of measurement was experimentally demonstrated for vibrations between 0.007 Hz and 0.01 Hz, achieving a sensitivity of 1.1 μm/s2/Hz. Incorporating active vibration isolation can further enhance the measurement range, increasing the optimal sensitivity to 0.2 μm/s2/Hz. Full article
(This article belongs to the Special Issue Novel Quantum Devices for Sensing and Other Applications)
Show Figures

Figure 1

27 pages, 7037 KB  
Article
Research on Three-Axis Vibration Characteristics and Vehicle Axle Shape Identification of Cement Pavement Under Heavy Vehicle Loads Based on EMD–Energy Decoupling Method
by Pengpeng Li, Linbing Wang, Songli Yang and Zhoujing Ye
Sensors 2025, 25(13), 4066; https://doi.org/10.3390/s25134066 - 30 Jun 2025
Viewed by 2787
Abstract
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring [...] Read more.
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring and early warning system deployment. This investigation examines the triaxial dynamic response characteristics of cement concrete pavement subjected to low-speed, heavy-duty vehicular excitations, employing data acquired through in situ field measurements. A monitoring system incorporating embedded triaxial MEMS accelerometers was developed to capture vibration signals directly within the pavement structure. Raw data underwent preprocessing utilising a smoothing wavelet transform technique to attenuate noise, followed by empirical mode decomposition (EMD) and short-time energy (STE) analysis to scrutinise the time–frequency and energetic properties of triaxial vibration signals. The findings demonstrate that heavy, slow-moving vehicles generate substantial triaxial vibrations, with the vertical (Z-axis) response exhibiting the greatest amplitude and encompassing higher dominant frequency components compared to the horizontal (X and Y) axes. EMD successfully decomposed the complex signals into discrete intrinsic mode functions (IMFs), identifying high-frequency components (IMF1–IMF3) associated with transient vehicular impacts, mid-frequency components (IMF4–IMF6) presumably linked to structural and vehicle dynamics, and low-frequency components (IMF7–IMF9) representing system trends or ambient noise. The STE analysis of the selected IMFs elucidated the transient nature of axle loading, revealing pronounced, localised energy peaks. These findings furnish a comprehensive understanding of the dynamic behaviour of cement concrete pavements under heavy vehicle loads and establish a robust methodological framework for pavement performance assessment and refined axle load identification. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

23 pages, 3401 KB  
Article
Modulation of Protein Dynamics by Glycerol in Water-Soluble Chlorophyll-Binding Protein (WSCP)
by Mina Hajizadeh, Maksym Golub, Inga Bektas, Leonid L. Rusevich, Jan P. Embs, Wiebke Lohstroh, Harald Paulsen and Jörg Pieper
Crystals 2025, 15(6), 569; https://doi.org/10.3390/cryst15060569 - 17 Jun 2025
Cited by 1 | Viewed by 411
Abstract
Proteins are inherently dynamic entities that rely on flexibility across multiple timescales to perform their biological functions. The surrounding environment plays a critical role in modulating protein dynamics by exerting plasticizing or stabilizing effects. In order to characterize the conformational dynamics of Water-Soluble [...] Read more.
Proteins are inherently dynamic entities that rely on flexibility across multiple timescales to perform their biological functions. The surrounding environment plays a critical role in modulating protein dynamics by exerting plasticizing or stabilizing effects. In order to characterize the conformational dynamics of Water-Soluble Chlorophyll-Binding Protein (WSCP), we measured Quasielastic Neutron Scattering (QENS) spectra over a wide temperature range between 100 and 300 K. The impact of glycerol, a common stabilizer, is investigated by comparing WSCP dissolved in a glycerol–water-containing buffer (WSCPW+G) with WSCP in a water-containing buffer (WSCPW). The results indicate that conformational protein dynamics are widely suppressed below 200 K but increase above this threshold, with the appearance of localized protein motions on the picosecond timescale. Glycerol appears to limit protein mobility between 280 and 300 K due to its high viscosity and hydrogen bonding in contrast to WSCP in water. Inelastic Neutron Scattering (INS) reveals the vibrational dynamics of WSCP with pronounced low-energy protein vibrations observed at about 2.5 and 6 meV. In the presence of glycerol, however, a stiffening of the vibrational motions which shifts the vibrational peaks to higher frequencies is observed. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

19 pages, 1681 KB  
Article
An Energy-Function-Based Approach for Power System Inertia Assessment
by Shizheng Wang and Zhenglong Sun
Energies 2025, 18(12), 3105; https://doi.org/10.3390/en18123105 - 12 Jun 2025
Viewed by 395
Abstract
With the increasing popularity of low-cost, clean, and environmentally friendly new energy sources, the proportion of grid-connected new energy units has increased significantly. However, since these units are frequency decoupled from the grid through a power electronic interface, they are unable to provide [...] Read more.
With the increasing popularity of low-cost, clean, and environmentally friendly new energy sources, the proportion of grid-connected new energy units has increased significantly. However, since these units are frequency decoupled from the grid through a power electronic interface, they are unable to provide inertia support during active power perturbations, which leads to a decrease in system inertia and reduced frequency stability. In this study, the urgent need to accurately assess inertia is addressed by developing an energy-function-based inertia identification technique that eliminates the effect of damping terms. By integrating vibration mechanics, the proposed method calculates the inertia value after a perturbation using port measurements (active power, voltage phase, and frequency). Simulation results of the Western System Coordinating Council (WSCC) 9-bus system show that the inertia estimation error of the method is less than 1%, which is superior to conventional methods such as rate-of-change-of-frequency (RoCoF) and least squares methods. Notably, the technique accurately evaluates the inertia of synchronous generators and doubly fed induction generators (DFIGs) under virtual inertia control, providing a robust inertia evaluation framework for low-inertia power systems with high renewable energy penetration. This research deepens the understanding of inertial dynamics and contributes to practical applications in grid stability analysis and control strategy optimalization. Full article
Show Figures

Figure 1

Back to TopTop