Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters
Abstract
1. Introduction
2. Review of Literature and Current Standards
2.1. Selection of Representative Transport Conditions
2.2. Overview of Critical Environmental Conditions
2.2.1. Temperature
2.2.2. Vibration
2.2.3. Shock
2.2.4. Pressure
2.3. Comparison of Test Standards
2.3.1. Temperature Parameters
2.3.2. Vibration Parameters
2.3.3. Shock Parameters
2.3.4. Low-Pressure Parameters
2.3.5. Summary
3. Methods
3.1. Development of Experimental Equipment
3.2. Temperature Testing
3.3. Vibration and Shock Testing
3.4. Pressure Testing
4. Results
4.1. Temperature Data
4.2. Vibration and Shock Data
4.3. Pressure Data
5. Discussion
5.1. Temperature Analysis
5.2. Vibration Analysis
5.3. Shock Analysis
5.4. Pressure Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FMEA | failure modes and effects analysis |
UN38.3 | UN Manual of Tests and Criteria, Section 38.3 |
PCM | phase change materials |
PSD | power spectral density |
SEI | solid electrolyte interphase |
ICAO | International Civil Aviation Organization |
IATA | International Air Transportation Association |
FFT | fast Fourier transform |
NCM | nickel–cobalt–manganese |
NCA | nickel–cobalt–aluminum |
References
- Ministry of Transport of the People’s Republic of China (MOT). Statistical Bulletin on the Development of the Transport Industry in 2023; MOT: Beijing, China, 2024. Available online: https://xxgk.mot.gov.cn/2020/jigou/zhghs/202406/t20240614_4142419.html (accessed on 12 March 2025).
- OFweek Lithium Battery Network. Thermal Runaway and Fire Risks of Lithium Batteries During Transport: New Study Released. Available online: https://libattery.ofweek.com/2024-08/ART-36000-8130-30642053.html (accessed on 1 August 2024).
- Powder & Bulk Solids. Large Fire, Explosion at Lithium–Ion Battery Plant Results in Evacuations. Available online: https://www.powderbulksolids.com/industrial-fires-explosions/large-fire-explosion-at-lithium-ion-battery-plant-results-in-evacuations (accessed on 15 July 2024).
- Held, M.; Bronnimann, R. Safe cell, safe battery? Battery fire investigation using FMEA, FTA and practical experiments. Microelectron. Reliab. 2016, 64, 705–710. [Google Scholar] [CrossRef]
- Ullah, E.; Baig, M.M.; Hosseini, H.G.; Lu, J. Failure mode and effect analysis(FMEA) to identify and mitigate failures in a hospital rapid response system (RRS). Heliyon 2022, 8, e08944. [Google Scholar] [CrossRef] [PubMed]
- United Nations. UN Manual of Tests and Criteria, Rev. 22 (U38.3: Lithium Battery Testing); United Nations Publications: Geneva, Switzerland, 2022. [Google Scholar]
- International Safe Transit Association (ISTA). ISTA 3E Standard: Packaged–Products for Parcel Delivery System Shipment; ISTA: East Lansing, MI, USA, 2020. [Google Scholar]
- GB 38031-2020; Standardization Administration of China (SAC). Safety Requirements for Power Battery of Electric Vehicles. China Standards Press: Beijing, China, 2020.
- Texas Instruments. Best Practices for Board Layout of DC/DC Converters (Application Report SNAA390). Available online: https://www.ti.com/lit/an/snaa390/snaa390.pdf (accessed on 25 March 2025).
- Kwasiborska, A.; Ścigaj, S. Assessment of the risks associated with the handling and transportation of air shipments containing lithium–ion batteries. Energies 2025, 18, 1538. [Google Scholar] [CrossRef]
- Meng, D.; Weng, J.; Wang, J. Experimental investigation on thermal runaway of lithium–ion batteries under low pressure and low temperature. Batteries 2024, 10, 243. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Jin, J.; Wu, M.; Yuan, H.; Zhang, S.; Davey, K.; Guo, Z.; Wen, Z. Electrolyte design for lithium–ion batteries for extreme temperature applications. Adv. Mater. 2024, 36, 2308484. [Google Scholar] [CrossRef]
- Feng, X.; Zheng, S.; Ren, D.; He, X.; Wang, L.; Cui, H.; Liu, X.; Jin, C.; Zhang, F.; Xu, C.; et al. Investigating the thermal runaway mechanisms of lithium–ion batteries based on thermal analysis database. Appl. Energy 2019, 246, 53–64. [Google Scholar] [CrossRef]
- Hammami, A.; Raymond, N.; Armand, M. Runaway risk of forming toxic compounds. Nat. Int. Wkly. J. Sci. 2003, 424, 635–636. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.J.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 43, 210–224. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 10246–10267. [Google Scholar] [CrossRef]
- James, M.L.; Vincent, R. On the parameters that influence road vehicles vibration levels. Packag. Technol. Sci. 2021, 34, 525–540. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Q.; Yu, X.; An, W.; Shi, B. Impacts of vibration and cycling on electrochemical characteristics of batteries. J. Power Sources 2024, 601, 234274. [Google Scholar] [CrossRef]
- Du, W.; Chen, S. Effect of mechanical vibration on phase change material based thermal management module of a lithium–ion battery at high ambient temperature. J. Energy Storage 2023, 59, 106465. [Google Scholar] [CrossRef]
- GB/T 4857.23–2012; Standardization Administration of China (SAC). Packaging—Basic Tests for Transport Packages—Part 23: Random Vibration Test Method. China Standards Press: Beijing, China, 2012.
- IEC 61373:2010; Railway Applications—Rolling Stock Equipment—Shock and Vibration Tests. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2010.
- Zhang, Y.; Li, Z.; Huang, Y.; Cui, B.; Zhou, J.; Guo, Y. Modelling and simulation of high–and low–speed impact damage of lithium batteries for light and small UAVs. Int. J. Impact Eng. 2023, 180, 104703. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Wang, H.; Li, H.; Bao, H.; Zhao, Z.; Liu, B. Mechanical issues of lithium–ion batteries in road traffic conditions: A review. Thin–Walled Struct. 2024, 201, 111985. [Google Scholar] [CrossRef]
- Li, R.; Li, W.; Singh, A.; Ren, D.; Hou, Z.; Ouyang, M. Effect of external pressure and internal stress on battery performance and lifespan. Energy Storage Mater. 2022, 52, 395–429. [Google Scholar] [CrossRef]
- Spielbauer, M.; Berg, P.; Soellner, J.; Peters, J.; Schaeufl, F.; Rosenmüller, C.; Bohlen, O.; Jossen, A. Experimental investigation of the failure mechanism of 18650 lithium–ion batteries due to shock and drop. J. Energy Storage 2021, 43, 103213. [Google Scholar] [CrossRef]
- Wang, G.; Guo, X.; Chen, J.; Han, P.; Su, Q.; Guo, M.; Wang, B.; Song, H. Safety performance and failure criteria of lithium–ion batteries under mechanical abuse. Energies 2023, 16, 6346. [Google Scholar] [CrossRef]
- Xie, S.; Yang, X.; Sun, Q.; Wang, Z.; He, Y. Research progress and prospects on thermal safety of lithium–ion batteries in aviation low–temperature and low–pressure environments. J. Energy Storage 2024, 83, 110734. [Google Scholar] [CrossRef]
- Xie, S.; Ping, X.; Yang, X.; Lv, P.; Li, G.; He, Y. Influence of atmospheric pressure on the aging mechanism of LiCoO2/graphite cells. Electrochim. Acta 2024, 474, 143541. [Google Scholar] [CrossRef]
- Chen, M.; Ouyang, D.; Weng, J.; Liu, J.; Wang, J. Environmental pressure effects on thermal runaway and fire behaviors of lithium–ion battery with different cathodes and state of charge. Process Saf. Environ. Prot. 2019, 130, 250–256. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, L.; Huang, Z.; Jia, Z.; Qin, P.; Wang, Q. Pressure Effect on the Thermal Runaway Behaviors of Lithium–Ion Battery in Confined Space. Fire Technol. 2022, 59, 1137–1155. [Google Scholar] [CrossRef]
- IEC 60068–2–6:2020; Environmental Testing—Part 2–6: Test Fc: Vibration (Sinusoidal). International Electrotechnical Commission (IEC): Geneva, Switzerland, 2020.
- IEC 60068–2–64:2019; Environmental Testing—Part 2–64: Test Fh: Vibration, Broadband Random and Guidance. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2019.
- International Civil Aviation Organization (ICAO). Technical Instructions for the Safe Transport of Dangerous Goods by Air (Doc 9284); International Civil Aviation Organization: Montreal, QC, Canada, 2023. [Google Scholar]
- International Air Transport Association (IATA). Dangerous Goods Regulations Manual, 64th ed.; International Air Transport Association: Montreal, QC, Canada, 2023. [Google Scholar]
- Shi, D.; Cui, Y.; Shen, X.; Gao, Z.; Ma, X.; Li, X.; Fang, Y.; Wang, S.; Fang, S. A review of the combined effects of environmental and operational factors on lithium-ion battery performance: Temperature, vibration, and charging/discharging cycles. RSC Adv. 2025, 15, 13272–13283. [Google Scholar] [CrossRef] [PubMed]
- Jongmin, P.; Sangil, C.; Mo, H.J. Measurement and Analysis of Vibration Levels for Truck Transport Environment in Korea. Appl. Sci. 2020, 10, 6754. [Google Scholar] [CrossRef]
- Chen, M.; Liu, J.; Ouyang, D.; Wang, J. Experimental investigation on the effect of ambient pressure on thermal runaway and fire behaviors of lithium-ion batteries. Int. J. Energy Res. 2019, 43, 4898–4911. [Google Scholar] [CrossRef]
Transport Mode | Involved Environmental Conditions |
---|---|
Road transport | Temperature, humidity, vibration, shock, pressure, and collision |
Rail transport | Vibration, shock, temperature, humidity, pressure, and electromagnetic interference |
Maritime transport | Temperature, humidity, salt spray corrosion, vibration, shock, pressure, and long-period environmental loading |
Air transport | Temperature, low pressure, humidity, shock, vibration, and electromagnetic interference |
Standard | High Temperature (°C) | Low Temperature (°C) | Frequency (Hz) | Acceleration (g) | Low Pressure (KPa) |
---|---|---|---|---|---|
UN38.3 [6] | 72 ± 2 | −40 ± 2 | 7–200 | 50 (large-sized batteries) 150 (small-sized batteries) | ≤11.6 (aviation) |
ISTA 3E [7] | 60 ± 2 | −29 ± 2 | 1–200 | N/A | N/A |
GB 38031-2020 [8] | 85 | −40 | 5–200 | 7 | 61.2 (roadway) |
IEC 60068 [31,32] | Not Fixed | ||||
IEC 61373 [21] | N/A | N/A | 5–150 | N/A | N/A |
GB/T 4857.23-2012 [20] | N/A | N/A | 1–200 | N/A | N/A |
Collection Points | Environmental Temperature Range (°C) | Monitored Temperature Range (°C) | ||
---|---|---|---|---|
Turpan City | Mohe City | Turpan City | Mohe City | |
Point 1—internal point | 34–44 | −35–−14 | 30.48–59.74 | −34.33–−12.1 |
Point 2—internal point | 30.58–49.54 | −34.46–−22.97 | ||
Point 3—internal point | 30.67–59.72 | −34.56–−15.53 | ||
Point 4—internal point | 30.8–47.26 | −34.66–−22.54 | ||
Point 5—internal point | 30.92–58.73 | −33.14–−13.22 | ||
Point 6—internal point | 31.11–48.89 | −33.18–−22.09 | ||
Point 7—internal point | 30.89–47.35 | −24.88–−11.84 | ||
Point 8—internal point | 31.05–46.75 | −33.68–−22.01 | ||
Point 9—external surface of cargo box | 30.73–58.81 | −33.47–−22.44 | ||
Point 10—internal surface of cargo box | 31.46–71.86 | −35.44–−16.87 | ||
Point 11—approximately 10 cm from box ceiling | 31.33–68.56 | −37.36–−18.93 | ||
Point 12—centere point inside the box | 31.21–52.57 | −36.65–−18.12 | ||
Point 13—approximately 10 cm from box floor | 30.59–47.3 | −34.5–−26.75 | ||
Point 14—outdoor unshaded area | 30.45–59.28 | −35.95–−23.43 | ||
Point 15—simulated cargo transport | 31.08–58.39 | −35.01–−26.28 | ||
Point 16—surface of railway tracks | 31.05–58.55 | −32.43–−23.88 |
Standard | Test Frequency Range (Hz) | Core Requirements |
---|---|---|
UN38.3 | 7–200 | Total Grms ≤ 0.54 g, mid–frequency limit 0.015 g2/Hz, high–frequency PSD gradually attenuates |
ISTA 3E | 1–200 | Total Grms ≤ 6.06 g, single–axis PSD ≤ 0.04 g2/Hz |
GB 38031-2020 | 5–200 | Sine sweep vibration (5–55 Hz, amplitude ± 8 mm; 55–200 Hz, acceleration ± 1 g), no local resonance |
IEC 61373 | 5–150 | Vertical PSD ≤ 0.1 g2/Hz, lateral/longitudinal PSD ≤ 0.05 g2/Hz |
GB/T 4857.23-2012 | 1–200 | Total Grms ≤ 0.6 g, road transport PSD ≤ 0.01 g2/Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Liu, X.; Wu, J.; Zhou, H.; Zhu, L. Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters. Energies 2025, 18, 4144. https://doi.org/10.3390/en18154144
Pan Y, Liu X, Wu J, Zhou H, Zhu L. Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters. Energies. 2025; 18(15):4144. https://doi.org/10.3390/en18154144
Chicago/Turabian StylePan, Yihan, Xingliang Liu, Jinzhong Wu, Haocheng Zhou, and Lina Zhu. 2025. "Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters" Energies 18, no. 15: 4144. https://doi.org/10.3390/en18154144
APA StylePan, Y., Liu, X., Wu, J., Zhou, H., & Zhu, L. (2025). Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters. Energies, 18(15), 4144. https://doi.org/10.3390/en18154144