Research on the Vibration Characteristics of Non-Axisymmetric Exhaust Duct Under Thermal Environment
Abstract
1. Introduction
2. Research Methodology
2.1. Analysis Method for Structural Random Vibration Characteristics in Thermal Environments
2.1.1. Thermal Stiffness Matrix
2.1.2. Thermal Modal Analysis
2.1.3. Structural Random Vibration Analysis
2.2. Finite Element Method
3. Results and Discussion
3.1. Influence of Temperature on the Modes of the Exhaust Duct
3.2. Influence of Temperature on the Random Vibration Response of the Exhaust Duct
3.2.1. Random Vibration Response of the Exhaust Duct Under X-Axial Loading
3.2.2. Random Vibration Response of the Exhaust Duct Under Y-Axial Loading
3.2.3. Random Vibration Response of the Exhaust Duct Under Z-Axial Loading
3.3. Vibration Experiment of Scale Model Under Thermal Environment
3.3.1. Design of Scale Model Design
3.3.2. Experiment Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PSD | Power Spectral Density. |
FFT | Fast Fourier Transform |
Nomenclature | |
E | elastic modulus (GPa) |
f | Frequency (Hz) |
K | stiffness matrix (N/m) |
l | geometric dimensions |
m | distortion similarity factor |
T | temperature (°C) |
X , Y , Z | coordinates (m) |
Greek letters | |
linear expansion coefficient (10−6/°C−1) | |
μ | poisson’s ratio |
similarity ratio |
References
- Crandall, S.H. Random vibration of one- and two-dimensional structures. Dev. Stat. 1979, 2, 1–82. [Google Scholar]
- Itao, K.; Crandall, S.H. Wide-band random vibration of circular plates. J. Mech. Des. 1978, 100, 690–695. [Google Scholar] [CrossRef]
- Crandall, S.H.; Zhu, W.Q. Wide band random vibration of an equilateral triangular plate. Probabilistic Eng. Mech. 1986, 1, 5–12. [Google Scholar] [CrossRef]
- White, R.G. The acoustic excitation and fatigue of composite plates. AIAA J. 2013, 253–260. [Google Scholar] [CrossRef]
- Dhainaut, J.M.; Mei, C. Nonlinear response and fatigue life of isotropic panels subjected to nonwhite noise. J. Aircr. 2015, 43, 975–979. [Google Scholar] [CrossRef]
- Vaicaitis, R.; Jan, C.; Shinozuka, M. Nonlinear panel response and noise transmission from a turbulent boundary layer by a monte carlo approach. In Proceedings of the Aerospace Sciences Meeting, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Whitney, J.M.; Ashton, J.E. Effect of environment on the elastic response of layered composite plates. AIAA J. 1971, 9, 1708–1713. [Google Scholar] [CrossRef]
- Przekop, A.; Rizzi, S.A. Dynamic snap-through of thin-walled structures by a reduced-order method. AIAA J. 2007, 45, 2510–2519. [Google Scholar] [CrossRef]
- Zhang, C.P.; Zang, D.J. Model validation for structural dynamics in the aero-engine design process. Energy Power Eng. 2009, 3, 480–488. [Google Scholar]
- Brown, A.M. Temperature-dependent modal test/analysis correlation of X-34 FASTRAC composite rocket nozzle. J. Propuls. Power 2002, 18, 284–288. [Google Scholar] [CrossRef]
- Moreno, B.J. Multiple Boundary Conditions for analysis and validation of the FE models of critical structural aero engine components. In Proceedings of the International Conference on Structural Dynamics Modelling, Test, Analysis, Correlation and Validation, Denver, CO, USA, 22–25 April 2002. [Google Scholar]
- Spivey, N.D. High Temperature Modal Survey of a Hot Structure Control Surface; TM-2011-215965; NASA: Washington, DC, USA, 2011. [Google Scholar]
- Sha, Y.D.; Ai, S.Z.; Zhang, J.M.; Jiang, Z.Q.; Zhao, Q.T. Random vibration response caclution and fatigue analysis of thin-walled structures under heat flux environment. J. Aerosp. Power 2020, 35, 1402–1412. [Google Scholar]
- Sha, Y.D.; Gao, Z.J.; Xu, F.; Li, J.Y. Influence of thermal loading on the dynamic response of thin-walled structure under thermo-acoustic loading. Adv. Eng. Forum 2011, 2, 876–881. [Google Scholar] [CrossRef]
- Jie, X.L.; Li, L.Y.; Hu, Y.H.; Xie, X.; Wu, Y. Fatigue life of titanium alloy thin-walled structure under thermal vibration environment. J. Aerosp. Power 2023, 38, 55–60. [Google Scholar]
- Manav, B.; Eli, L. Design-oriented thermo-structural analysis with external and internal radiation, part 2: Transient response. AIAA J. 2009, 47, 1228–1240. [Google Scholar]
- Jurij, A.; Maks, O. Thermal vibrational analysis for simply supported beam and clamped beam. J. Sound Vib. 2007, 308, 514–525. [Google Scholar] [CrossRef]
- Wang, Y.G. Random Vibrations: Theory and Applications; Taylor & Francis Group: Philadelphia, PA, USA, 2025. [Google Scholar]
- Ding, J.T.; Zhang, J.Z.; Shan, Y. Parametric design and aerodynamic performance of non-axisymmetric exhaust nozzles. Therm. Sci. Eng. Prog. 2025, 61, 103529. [Google Scholar] [CrossRef]
- China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook, Volume 2: Cast High-Temperature Alloys and Deformed High-Temperature Alloys; Standards Press of China: Beijing, China, 2002. [Google Scholar]
- Luo, Z.; Zhu, Y.P.; Han, Q.K.; Wang, D.Y.; Liu, Y.Q. Review and prospect for dynamic similitude theory and its applications in the structure vibration. J. Mech. Eng. 2016, 52, 114–134. [Google Scholar] [CrossRef]
- Ge, M. Research on Vibration Similarity of Hoop Truss Antenna Based on Similarity Theory. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2015. [Google Scholar]
T (°C) | E (GPa) | (10−6/°C−1) | |
---|---|---|---|
20 | 206 | 0.29 | — |
100 | 203 | 0.29 | 12.1 |
200 | 199 | 0.29 | 12.5 |
300 | 193 | 0.29 | 13.4 |
400 | 187 | 0.29 | 14 |
500 | 180 | 0.29 | 14.3 |
600 | 174 | 0.29 | 14.8 |
700 | 166 | 0.3 | 15.5 |
800 | 158 | 0.3 | 15.8 |
900 | 149 | 0.3 | 16.1 |
Order | Prototype Frequency (Hz) | Similar Model Frequency (Hz) | Similarity Ratio |
---|---|---|---|
2 | 16.93 | 154.6 | 0.1095 |
6 | 30.92 | 289.32 | 0.1069 |
7 | 43.76 | 403.15 | 0.1085 |
9 | 64.02 | 595.72 | 0.1074 |
12 | 81.69 | 701.25 | 0.1164 |
13 | 82.79 | 720.65 | 0.1149 |
Order | Experimental Frequency (Hz) | Predicted Frequency (Hz) | Prototype Frequency (Hz) | |
---|---|---|---|---|
2 | 154.6 | 16.29 | 16.93 | 3.78 |
6 | 289.32 | 30.08 | 30.92 | 2.72 |
7 | 403.15 | 42.38 | 43.76 | 3.15 |
9 | 595.72 | 62.83 | 64.02 | 1.86 |
12 | 701.25 | 78.01 | 81.69 | 4.52 |
13 | 720.65 | 79.32 | 82.79 | 4.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Zhang, L. Research on the Vibration Characteristics of Non-Axisymmetric Exhaust Duct Under Thermal Environment. Aerospace 2025, 12, 739. https://doi.org/10.3390/aerospace12080739
Ding J, Zhang L. Research on the Vibration Characteristics of Non-Axisymmetric Exhaust Duct Under Thermal Environment. Aerospace. 2025; 12(8):739. https://doi.org/10.3390/aerospace12080739
Chicago/Turabian StyleDing, Jintao, and Lina Zhang. 2025. "Research on the Vibration Characteristics of Non-Axisymmetric Exhaust Duct Under Thermal Environment" Aerospace 12, no. 8: 739. https://doi.org/10.3390/aerospace12080739
APA StyleDing, J., & Zhang, L. (2025). Research on the Vibration Characteristics of Non-Axisymmetric Exhaust Duct Under Thermal Environment. Aerospace, 12(8), 739. https://doi.org/10.3390/aerospace12080739