Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,084)

Search Parameters:
Keywords = low-carbon city

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

32 pages, 3396 KiB  
Article
Enhancing Smart and Zero-Carbon Cities Through a Hybrid CNN-LSTM Algorithm for Sustainable AI-Driven Solar Power Forecasting (SAI-SPF)
by Haytham Elmousalami, Felix Kin Peng Hui and Aljawharah A. Alnaser
Buildings 2025, 15(15), 2785; https://doi.org/10.3390/buildings15152785 - 6 Aug 2025
Abstract
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational [...] Read more.
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational data from Benban Solar Park in Egypt and Sakaka Solar Power Plant in Saudi Arabia, two of the world’s largest solar installations, the research highlights the effectiveness of hybrid AI techniques. The hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model outperformed other models, achieving a Mean Absolute Percentage Error (MAPE) of 2.04%, Root Mean Square Error (RMSE) of 184, Mean Absolute Error (MAE) of 252, and R2 of 0.99 for Benban, and an MAPE of 2.00%, RMSE of 190, MAE of 255, and R2 of 0.98 for Sakaka. This model excels at capturing complex spatiotemporal patterns in solar data while maintaining low computational CO2 emissions, supporting sustainable AI practices. The findings demonstrate the potential of hybrid AI models to enhance the accuracy and sustainability of solar power forecasting, thereby contributing to efficient, resilient, and zero-carbon urban environments. This research provides valuable insights for policymakers and stakeholders aiming to advance smart energy infrastructure. Full article
(This article belongs to the Special Issue Intelligent Automation in Construction Management)
Show Figures

Figure 1

18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

22 pages, 1247 KiB  
Article
Evaluating and Predicting Urban Greenness for Sustainable Environmental Development
by Chun-Che Huang, Wen-Yau Liang, Tzu-Liang (Bill) Tseng and Chia-Ying Chan
Processes 2025, 13(8), 2465; https://doi.org/10.3390/pr13082465 - 4 Aug 2025
Viewed by 205
Abstract
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental [...] Read more.
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental preservation while maintaining residents’ quality of life has become a central focus of urban governance. In this context, evaluating green indicators and predicting urban greenness is both necessary and urgent. This study incorporates international frameworks such as the EU Green City Index, the European Green Capital Award, and the United Nations Sustainable Development Goals to assess urban sustainability. The Extreme Gradient Boosting (XGBoost) algorithm is employed to predict the green level of cities and to develop multiple optimized models. Comparative analysis with traditional models demonstrates that XGBoost achieves superior performance, with an accuracy of 0.84 and an F1-score of 0.81. Case study findings identify “Greenhouse Gas Emissions per Person” and “Per Capita Emissions from Transport” as the most critical indicators. These results provide practical guidance for policymakers, suggesting that targeted regulations based on these key factors can effectively support emission reduction and urban sustainability goals. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

25 pages, 1165 KiB  
Article
China’s Low-Carbon City Pilot Policy, Eco-Efficiency, and Energy Consumption: Study Based on Period-by-Period PSM-DID Model
by Xiao Na Li and Hsing Hung Chen
Energies 2025, 18(15), 4126; https://doi.org/10.3390/en18154126 - 4 Aug 2025
Viewed by 218
Abstract
The sustainable development of Chinese cities is of long-term significance. Multiple environmental regulatory instruments aim to promote the parallel advancement of environmental conservation and economic growth. This study examines three batches of low-carbon city pilot (LCCP) programs, employing eco-efficiency as the outcome variable. [...] Read more.
The sustainable development of Chinese cities is of long-term significance. Multiple environmental regulatory instruments aim to promote the parallel advancement of environmental conservation and economic growth. This study examines three batches of low-carbon city pilot (LCCP) programs, employing eco-efficiency as the outcome variable. Using conventional difference-in-differences (DID) models, time-varying DID models, and period-by-period propensity score matching DID (PSM-DID) models with city and time fixed effects, we investigate the comprehensive impact of pilot policies on both economic and environmental performance. Eco-efficiency, measured through the Data Envelopment Analysis (DEA) model, exhibits a strong correlation with energy consumption patterns, as carbon emissions and air pollutants predominantly originate from non-clean energy utilization. The analysis reveals that LCCP policies significantly enhance eco-efficiency. These findings demonstrate robustness across placebo tests, endogeneity treatments, and alternative outcome variable specifications. The first and third LCCP batches significantly improve eco-efficiency, whereas the second batch demonstrates no statistically significant effect. Significant impacts emerge in regions where cities hold pilot status while provinces do not; conversely, regions where both cities and provinces participate in pilot programs show no significant effects. Finally, from an energy consumption perspective, policy recommendations are proposed to further enhance eco-efficiency through regulatory instruments. Full article
(This article belongs to the Special Issue Sustainable Energy Futures: Economic Policies and Market Trends)
Show Figures

Figure 1

11 pages, 3192 KiB  
Data Descriptor
Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level
by Jailene Marlen Jaramillo-Perez, Bárbara A. Macías-Hernández, Edgar Tello-Leal and René Ventura-Houle
Data 2025, 10(8), 125; https://doi.org/10.3390/data10080125 - 1 Aug 2025
Viewed by 205
Abstract
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research [...] Read more.
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research contains records with measurements of the air pollutants ozone (O3) and carbon monoxide (CO), as well as meteorological parameters such as temperature (T), relative humidity (RH), and barometric pressure (BP). This dataset was collected using a set of low-cost sensors over a four-month study period (March to June) in 2024. The monitoring of air pollutants and meteorological parameters was conducted in a city with high industrial activity, heavy traffic, and close proximity to a petrochemical refinery plant. The data were subjected to a series of statistical analyses for visualization using plots that allow for the identification of their behavior. Finally, the dataset can be utilized for air quality studies, public health research, and the development of prediction models based on mathematical approaches or artificial intelligence algorithms. Full article
Show Figures

Figure 1

26 pages, 1263 KiB  
Article
Identifying Key Digital Enablers for Urban Carbon Reduction: A Strategy-Focused Study of AI, Big Data, and Blockchain Technologies
by Rongyu Pei, Meiqi Chen and Ziyang Liu
Systems 2025, 13(8), 646; https://doi.org/10.3390/systems13080646 - 1 Aug 2025
Viewed by 242
Abstract
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this [...] Read more.
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this gap by proposing two research questions (RQs): (1) What are the key success factors for artificial intelligence, big data, and blockchain in urban carbon emission reduction? (2) How do these technologies interact and support the transition to low-carbon cities? To answer these questions, the study employs a hybrid methodological framework combining the decision-making trial and evaluation laboratory (DEMATEL) and interpretive structural modeling (ISM) techniques. The data were collected through structured expert questionnaires, enabling the identification and hierarchical analysis of twelve critical success factors (CSFs). Grounded in sustainability transitions theory and institutional theory, the CSFs are categorized into three dimensions: (1) digital infrastructure and technological applications; (2) digital transformation of industry and economy; (3) sustainable urban governance. The results reveal that e-commerce and sustainable logistics, the adoption of the circular economy, and cross-sector collaboration are the most influential drivers of digital-enabled decarbonization, while foundational elements such as smart energy systems and digital infrastructure act as key enablers. The DEMATEL-ISM approach facilitates a system-level understanding of the causal relationships and strategic priorities among the CSFs, offering actionable insights for urban planners, policymakers, and stakeholders committed to sustainable digital transformation and carbon neutrality. Full article
Show Figures

Figure 1

14 pages, 996 KiB  
Article
CO2 Emissions and Scenario Analysis of Transportation Sector Based on STIRPAT Model: A Case Study of Xuzhou in Northern Jiangsu
by Jinxian He, Meng Wu, Wenjie Cao, Wenqiang Wang, Peilin Sun, Bin Luo, Xuejuan Song, Zhiwei Peng and Xiaoli Zhang
Eng 2025, 6(8), 175; https://doi.org/10.3390/eng6080175 - 1 Aug 2025
Viewed by 152
Abstract
To support carbon peaking and neutrality goals in the city transportation sector, this paper accounts for CO2 emissions from the transport sector in Xuzhou City, North Jiangsu Province, from 1995 to 2023. This study explores the relationship between transport-related carbon emissions and [...] Read more.
To support carbon peaking and neutrality goals in the city transportation sector, this paper accounts for CO2 emissions from the transport sector in Xuzhou City, North Jiangsu Province, from 1995 to 2023. This study explores the relationship between transport-related carbon emissions and economic growth, using the TAPIO decoupling index. Meanwhile, a carbon emission prediction model based on the STIRPAT framework is constructed, with scenario analysis applied to forecast future emissions. Results show three decoupling stages: the first, dominated by weak and expansive negative decoupling, reflects extensive economic growth; the second features weak decoupling with expansive coupling, indicating a more environmentally coordinated phase; the third transitions from expansive negative decoupling and weak decoupling to strong decoupling and expansive coupling, suggesting a shift in development patterns. Under the baseline, low-carbon, and enhanced low-carbon scenarios, by 2030, the CO2 emissions of the transportation industry in Xuzhou will be 10,154,700 tons, 9,072,500 tons, and 8,835,000 tons, respectively, and the CO2 emissions under the low-carbon scenario and the enhanced low-carbon scenario will be reduced by 10.66% and 13.00%, respectively. Based on these findings, the study proposes carbon reduction strategies for Xuzhou’s transport sector, focusing on policy regulation, energy use, and structural adjustments. Full article
(This article belongs to the Special Issue Advances in Decarbonisation Technologies for Industrial Processes)
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Tree Species as Metabolic Indicators: A Comparative Simulation in Amman, Jordan
by Anas Tuffaha and Ágnes Sallay
Land 2025, 14(8), 1566; https://doi.org/10.3390/land14081566 - 31 Jul 2025
Viewed by 345
Abstract
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices [...] Read more.
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices forecast long-term urban metabolic performance. Using ENVI-met 5.61 simulations, we compare Melia azedarach, Olea europaea, and Ceratonia siliqua, mainly assessing urban flow related elements like air temperature reduction, CO2 sequestration, and evapotranspiration alongside rooting depth, isoprene emissions, and biodiversity support. Melia delivers rapid cooling but shows other negatives like a low biodiversity value; Olea offers average cooling and sequestration but has allergenic pollen issues in people as a flow; Ceratonia provides scalable cooling, increased carbon uptake, and has a high ecological value. We propose a metabolic reframing of green infrastructure planning to choose urban species, guided by system feedback rather than aesthetics, to ensure long-term resilience in arid urban climates. Full article
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 179
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

28 pages, 3635 KiB  
Article
Optimizing Energy Performance of Phase-Change Material-Enhanced Building Envelopes Through Novel Performance Indicators
by Abrar Ahmad and Shazim Ali Memon
Buildings 2025, 15(15), 2678; https://doi.org/10.3390/buildings15152678 - 29 Jul 2025
Viewed by 797
Abstract
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation [...] Read more.
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation study introduces a methodology that simultaneously optimizes PCM integration for storage efficiency, indoor thermal comfort, and energy savings. Two new indicators are proposed: overall storage efficiency (ECn), which consolidates heating and cooling-efficiency ratios into a single value, and the performance factor (PF), which quantifies the PCM’s effectiveness in maintaining thermal comfort. Using EnergyPlus v8.9 coupled with DesignBuilder, a residential ASHRAE 90.1 mid-rise apartment was modeled in six warm-temperate (Cfb) European cities for the summer period from June 1 to August 31. Four paraffin PCMs (RT-22/25/28/31 HC, 20 mm thickness) were tested under natural and controlled ventilation strategies, with windows opening 50% when outdoor air was at least 2 °C cooler than indoors. Simulation outputs were validated against experimental cubicle data, yielding a mean absolute indoor temperature error ≤ 4.5%, well within the ±5% tolerance commonly accepted for building thermal simulations. The optimum configuration—RT-25 HC with temperature-controlled ventilation—achieved PF = 1.0 (100% comfort compliance) in all six cities and delivered summer cooling-energy savings of up to 3376 kWh in Paris, the highest among the locations studied. Carbon-emission reductions reached 2254 kg CO2-e year−1, and static payback periods remained below the assumed 50-year building life at a per kg PCM cost of USD 1. The ECn–PF framework, therefore, provides a transparent basis for selecting cost-effective, energy-efficient, and low-carbon PCM solutions in warm-temperate buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 1352 KiB  
Article
Complement or Crowd Out? The Impact of Cross-Tool Carbon Control Policy Combination on Green Innovation in Chinese Cities
by Jun Shen, Jiana He, Xiuli Liu and Qinqin Shi
Sustainability 2025, 17(15), 6881; https://doi.org/10.3390/su17156881 - 29 Jul 2025
Viewed by 314
Abstract
In order to fulfill the commitment to the “dual carbon goal” at an early date, China has implemented a series of carbon control policies. However, the actual impact of these policy combinations on green innovation in Chinese cities remains unknown. Taking the implementation [...] Read more.
In order to fulfill the commitment to the “dual carbon goal” at an early date, China has implemented a series of carbon control policies. However, the actual impact of these policy combinations on green innovation in Chinese cities remains unknown. Taking the implementation of the low-carbon pilot policy (LCP) and the carbon emission trading pilot policy (CET) as the research opportunity, this paper uses panel data from 276 prefecture-level cities and a multiple-period difference-in-differences (DID) model to explore the impact of carbon control policy combination on green innovation in China and their mechanisms. The results indicate the following: A single LCP or CET can significantly boost green innovation. However, the impact of cross-tool carbon control policy combination on green innovation is notably greater than that of a single policy, with a trend of increasing effectiveness over time. Even after a series of robustness tests, this conclusion remains valid. Heterogeneity analysis shows that the promotion effect is more significant in the eastern region and high-level administrative cities. The policy combination incentivizes green innovation through fiscal technology expenditure and public environmental awareness, focusing more on fostering strategic green innovation. Consequently, the Chinese government should tailor policy combinations to specific contexts, expand their implementation judiciously, and consistently drive forward green innovation. Full article
Show Figures

Figure 1

17 pages, 1398 KiB  
Article
Spatio-Temporal Dynamics, Driving Mechanisms, and Decoupling Evaluation of Farmland Carbon Emissions: A Case Study of Shandong Province, China
by Tao Sun, Ran Li, Zichao Zhao, Bing Guo, Meng Ma, Li Yao and Xinhao Gao
Sustainability 2025, 17(15), 6876; https://doi.org/10.3390/su17156876 - 29 Jul 2025
Viewed by 210
Abstract
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index [...] Read more.
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index (LMDI) and Tapio decoupling model, this study conducted a comprehensive analysis of panel data from 16 cities in Shandong Province spanning 2004–2023. This research reveals that the total farmland carbon emissions in Shandong Province followed a trajectory of “initial fluctuating increase and subsequent steady decline” during the study period. The emissions peaked at 29.4 million tons in 2007 and then declined to 20.2 million tons in 2023, representing a 26.0% reduction compared to the 2004 level. Farmland carbon emission intensity in Shandong Province showed an overall downward trend over the period 2004–2023, with the 2023 intensity registering a 68.9% decline compared to 2004. The carbon emission intensity, agricultural structure, and labor effects acted as inhibiting factors on farmland carbon emissions in Shandong Province, while the economic development effect exerted a positive driving impact on the growth of such emissions. Over the 20-year period, these four factors cumulatively contributed to a reduction of 2.1 × 105 tons in farmland carbon emissions. During 2004–2013, the farmland carbon emissions in Zaozhuang, Yantai, Jining, Linyi, Dezhou, Liaocheng, and Heze showed a weak decoupling state, while in 2014–2023, the farmland carbon emissions and economic development in all cities of Shandong Province showed a strong decoupling state. In the future, it is feasible to reduce farmland carbon emissions in Shandong Province by improving agricultural resource utilization efficiency through technological progress, adopting advanced low-carbon technologies, and promoting the transformation of agricultural industrial structures towards “high-value and low-carbon” designs. Full article
Show Figures

Figure 1

30 pages, 78202 KiB  
Article
Climate-Adaptive Architecture: Analysis of the Wei Family Compound’s Thermal–Ventilation Environment in Ganzhou, China
by Xiaolong Tao, Xin Liang and Wenjia Liu
Buildings 2025, 15(15), 2673; https://doi.org/10.3390/buildings15152673 - 29 Jul 2025
Viewed by 484
Abstract
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature [...] Read more.
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature environment. The Ganzhou Wei family compound from China’s wind–heat environmental regulation systems are examined in this study. We statistically evaluate the synergy between spatial morphology, material qualities, and microclimate using field data with Thsware and Ecotect software in a multiscale simulation framework. The findings indicate that the compound’s special design greatly controls the thermal and wind conditions. Cold alleyways and courtyards work together to maximize thermal environment regulation and encourage natural ventilation. According to quantitative studies, courtyards with particular depths (1–4 m) and height-to-width ratios (e.g., 1:1) reduce wind speed loss. A cool alley (5:1 height–width ratio) creates a dynamic wind–speed–temperature–humidity balance by lowering summer daytime temperatures by 2.5 °C. It also serves as a “cold source area” that moderates temperatures in the surrounding area by up to 2.1 °C. This study suggests a quantitative correlation model based on “spatial morphology–material performance–microclimate response,” which offers a technical route for historic building conservation renovation and green renewal, as well as a scientific foundation for traditional buildings to maintain thermal comfort under low energy consumption. Although based on a specific geographical case, the innovative analytical methods and strategies of this study are of great theoretical and practical significance for promoting the modernization and transformation of traditional architecture, low-carbon city construction, and sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 26388 KiB  
Article
City-Level Road Traffic CO2 Emission Modeling with a Spatial Random Forest Method
by Hansheng Jin, Dongyu Wu and Yingheng Zhang
Systems 2025, 13(8), 632; https://doi.org/10.3390/systems13080632 - 28 Jul 2025
Viewed by 284
Abstract
In the era of “carbon dioxide peaking and carbon neutrality”, low-carbon development of road traffic and transportation has now become a rigid demand in China. Considering the fact that socioeconomic and demographic characteristics vary significantly across Chinese cities, proper city-level transportation development strategies [...] Read more.
In the era of “carbon dioxide peaking and carbon neutrality”, low-carbon development of road traffic and transportation has now become a rigid demand in China. Considering the fact that socioeconomic and demographic characteristics vary significantly across Chinese cities, proper city-level transportation development strategies should be established. Using detailed data from cities at prefecture level and above in China, this study investigates the spatially heterogeneous effects of various factors on road traffic CO2 emissions. Another theoretical issue is concerned with the analytic method for zonal CO2 emission modeling. We combine the concepts of geographically weighted regression (GWR) and machine learning for nonparametric regression, proposing a modified random forest (RF) algorithm, named “geographically weighted random forest” (GWRF). Our empirical analysis indicates that, when an appropriate weight parameter is applied, GWRF is able to achieve significantly superior performance compared to both the traditional RF and GWR methods. Moreover, the influences of various explanatory variables on CO2 emissions differ across cities. These findings suggest that low-carbon transportation strategies should be customized to reflect regional heterogeneity, rather than relying on a unified national policy. Full article
Show Figures

Figure 1

Back to TopTop