Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (990)

Search Parameters:
Keywords = low supply temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

21 pages, 3327 KiB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 - 31 Jul 2025
Viewed by 230
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 - 31 Jul 2025
Viewed by 334
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

15 pages, 4537 KiB  
Article
A 0.049 mm2 0.5-to-5.8 GHz LNA Achieving a Flat High Gain Based on an Active Inductor and Low Capacitive ESD Protection
by Dawei Dong, Zhenrong Li, You Quan, Xuanzhang He, Junyi Zhang, Chengzhi Li and Liyan Yu
Micromachines 2025, 16(8), 852; https://doi.org/10.3390/mi16080852 - 24 Jul 2025
Viewed by 231
Abstract
This paper introduces a 0.5–5.8 GHz low-noise amplifier (LNA) incorporating a gyrator-C-based active inductor (AI) and an enhanced deep trench isolation (DTI) electrostatic discharge (ESD) diode. Results suggest that AIs exhibit excellent consistency under various process voltage temperatures (PVTs) as well as input [...] Read more.
This paper introduces a 0.5–5.8 GHz low-noise amplifier (LNA) incorporating a gyrator-C-based active inductor (AI) and an enhanced deep trench isolation (DTI) electrostatic discharge (ESD) diode. Results suggest that AIs exhibit excellent consistency under various process voltage temperatures (PVTs) as well as input powers and the improved DTI diodes reduce parasitic capacitance by an average of 8.5% compared to conventional ones. In terms of circuit design, comprehensive analyses of gain flatness and noise are conducted. Fabricated using a 0.18 μm SiGe BiCMOS technology, the LNA delivers a high S21 of 18.3 ± 0.3 dB, a minimum noise figure of 2.6 dB, and an S11 and S22 of less than −10 dB over the entire frequency band. Operating from a 3.3 V supply voltage with a core area of 0.049 mm2, it consumes 10 mA of current. Full article
Show Figures

Figure 1

19 pages, 3051 KiB  
Article
Design of a Current-Mode OTA-Based Memristor Emulator for Neuromorphic Medical Application
by Amel Neifar, Imen Barraj, Hassen Mestiri and Mohamed Masmoudi
Micromachines 2025, 16(8), 848; https://doi.org/10.3390/mi16080848 - 24 Jul 2025
Viewed by 288
Abstract
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using [...] Read more.
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using 0.18 μm TSMC technology confirm the circuit’s functionality, demonstrating a power consumption of 0.1 mW at a 1.2 V supply. The memristor model’s reliability is verified through corner simulations, along with Monte Carlo and temperature variation tests. Furthermore, the emulator is applied in a Memristive Integrate-and-Fire neuron circuit, a CMOS-based system that replicates biological neuron behavior for spike generation, enabling ultra-low-power computing and advanced processing in retinal prosthesis applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

24 pages, 1483 KiB  
Review
Towards AZO Thin Films for Electronic and Optoelectronic Large-Scale Applications
by Elena Isabela Bancu, Valentin Ion, Stefan Antohe and Nicu Doinel Scarisoreanu
Crystals 2025, 15(8), 670; https://doi.org/10.3390/cryst15080670 - 23 Jul 2025
Viewed by 335
Abstract
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to [...] Read more.
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to the limited supply of indium (In), making the development of alternative materials for TCOs indispensable. Therefore, this study highlights the latest advances in creating new, affordable materials, with a focus on aluminum-doped zinc oxide (AZO). Over the last few decades, this material has been widely studied to improve its physical properties, particularly its low electrical resistivity, which can affect the performance of various devices. Now, it is close to replacing ITO due to several advantages including cost-effectiveness, stability under hydrogen plasma, low processing temperatures, and lack of toxicity. Besides that, in comparison to other TCOs such as IZO, IGZO, or IZrO, AZO achieved a low electrical resistivity (10−5 ohm cm) while maintaining a high transparency across the visible spectrum (over 85%). Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. This review emphasizes the potential of AZO as a cost-effective and scalable alternative to ITO, highlighting key advancements in deposition techniques such as pulsed laser deposition (PLD). Full article
Show Figures

Figure 1

16 pages, 1006 KiB  
Article
Spray Drying of Jackfruit (Artocarpus heterophyllus Lam.) Seeds Protein Concentrate: Physicochemical, Structural, and Thermal Characterization
by Dulce María de Jesús Miss-Zacarías, Montserrat Calderón-Santoyo, Victor Manuel Zamora-Gasga, Gabriel Ascanio and Juan Arturo Ragazzo-Sánchez
Processes 2025, 13(7), 2319; https://doi.org/10.3390/pr13072319 - 21 Jul 2025
Viewed by 372
Abstract
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet [...] Read more.
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet temperature (110, 115, and 120 °C) and the solids of the JSPC solution (5, 7.5, and 10%). With the desirability function, the optimal drying parameters to maximize the process yield and achieve a low moisture content were 7.5% solids in the JSPC solution and an inlet temperature of 115 °C, resulting in a process yield of 71.51 ± 1.21%. Moisture (5.33 ± 0.11%), water activity (0.15 ± 0.02), bulk density (0.40 ± 0.01 g/mL), and color (L*: 70.56 ± 0.38, a*: 7.80 ± 0.11 and b*: 15.18 ± 0.15) were measured; these parameters are within the allowed ranges for stable food powders. Hydrosolubility (82.46 ± 1.68%), foaming capacity (48.33 ± 1.66%), and emulsifying activity (105.74 ± 10.20 m2/g) were evaluated. Glass transition temperature (129.49 °C) of the JSPC powder enables the establishment of optimal storage and processing conditions for the protein. JSPC powder could be applied to the elaboration of food products with nutritional and functional value. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 444
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

20 pages, 2768 KiB  
Article
Flexible Operation of High-Temperature Heat Pumps Through Sizing and Control of Energy Stored in Integrated Steam Accumulators
by Andrea Vecchi, Jose Hector Bastida Hernandez and Adriano Sciacovelli
Energies 2025, 18(14), 3806; https://doi.org/10.3390/en18143806 - 17 Jul 2025
Viewed by 254
Abstract
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply [...] Read more.
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply via HTHPs and aims to assess how variations in power input that result from flexible HTHP operation may affect steam flow and temperature, both with and without a downstream steam accumulator (SA). First, steady-state modelling is used for system design. Then, dynamic component models are developed and used to simulate the system response to HTHP power input variations. The performance of different SA integration layouts and sizes is evaluated. Results demonstrate that steam supply fluctuations closely follow changes in HTHP operation. A downstream SA is shown to mitigate these variations to an extent that depends on its capacity. Practical SA sizing recommendations are derived, which allow for the containment of steam supply fluctuations within acceptability. By providing a basis for evaluating the financial viability of flexible HTHP operation for steam provision, the results support clean technology’s development and uptake in industrial steam and district heating networks. Full article
(This article belongs to the Special Issue Trends and Developments in District Heating and Cooling Technologies)
Show Figures

Figure 1

26 pages, 1676 KiB  
Article
Water and Nitrogen Dynamics of Mungbean as a Summer Crop in Temperate Environments
by Sachesh Silwal, Audrey J. Delahunty, Ashley J. Wallace, Sally Norton, Alexis Pang and James G. Nuttall
Agronomy 2025, 15(7), 1711; https://doi.org/10.3390/agronomy15071711 - 16 Jul 2025
Viewed by 261
Abstract
Mungbean is grown as a summer crop in subtropical climates globally. The global demand for mungbean is increasing, and opportunities exist to expand production regions to more marginal environments, such as southern Australia, as an opportunistic summer crop to help meet the growing [...] Read more.
Mungbean is grown as a summer crop in subtropical climates globally. The global demand for mungbean is increasing, and opportunities exist to expand production regions to more marginal environments, such as southern Australia, as an opportunistic summer crop to help meet the growing global demand. Mungbean has the potential to be an opportunistic summer crop when an appropriate sowing window coincides with sufficient soil water. This expansion from subtropical to temperate climates will pose challenges, including low temperatures, a longer day length and a low and variable water supply. To assess mungbean suitability to temperate, southern Australian summer rainfall patterns and soil water availability, we conducted field experiments applying a range of water treatments across four locations with contrasting rainfall patterns within the state of Victoria (in southern Australia) in 2020–2021 and 2021–2022. The water treatments were applied prior to sowing (60 mm), the vegetative stage (40 mm) and the reproductive stage (40 mm) in a factorial combination at each location. Two commercial cultivars, Celera II-AU and Jade-AU, were used. Water scarcity during flowering and the pod-filling stages were important factors constraining yield. Analysis of yield components showed that increasing water availability at critical growth stages, viz. the vegetative and reproductive stages, of mungbean was associated with increases in total biomass, HI and grain number in addition to increased water use and water use efficiency (WUE). Average WUEs ranged from 1.3 to 7.6 kg·ha−1·mm−1. The maximum potential WUE values were 6.4 and 5.1 kg·ha−1·mm−1 for Celera II-AU and Jade-AU across the sites, with the estimated soil evaporation values (x-intercept) of 83 and 74 mm, respectively. Nitrogen fixation was variable, with %Ndfa values ranging from 9.6 to 76.8%, and was significantly affected by soil water availability. This study emphasises the importance of water availability during the reproductive phase for mungbean yield. The high rainfall zones within Victoria have the potential to grow mungbean as an opportunistic summer crop. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Viewed by 348
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

18 pages, 3047 KiB  
Article
A Rotary Piezoelectric Electromagnetic Hybrid Energy Harvester
by Zhiyang Yao and Chong Li
Micromachines 2025, 16(7), 807; https://doi.org/10.3390/mi16070807 - 11 Jul 2025
Viewed by 294
Abstract
To collect the energy generated by rotational motion in the natural environment, a piezoelectric electromagnetic hybrid energy harvester (HEH) based on a planetary gear system is proposed. The harvester combines piezoelectric and electromagnetic effects and is mainly used for collecting low-frequency rotational energy. [...] Read more.
To collect the energy generated by rotational motion in the natural environment, a piezoelectric electromagnetic hybrid energy harvester (HEH) based on a planetary gear system is proposed. The harvester combines piezoelectric and electromagnetic effects and is mainly used for collecting low-frequency rotational energy. The HEH has a compact structure and contains four sets of piezoelectric energy harvesters (PEHs) and electromagnetic energy harvesters (EMHs) inside. The working principle of the energy harvester is analyzed, its theoretical model is established, and a simulation analysis is conducted. To verify the effectiveness of the design, an experimental device is constructed. The results indicate that the HEH can generate an average output power of 250 mW under eight magnets and an external excitation frequency of 7 Hz. In actual power supply testing, the HEH can light up 60 LEDs and provide stable power supply for the temperature–humidity meter. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

15 pages, 771 KiB  
Article
Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment
by Gaukhar Turysbekova, Yerkin Bektay, Akmurat Altynbek, Dmitriy Berillo, Bauyrzhan Shiderin and Maxat Bektayev
Minerals 2025, 15(7), 727; https://doi.org/10.3390/min15070727 - 11 Jul 2025
Viewed by 302
Abstract
Systematic studies were conducted at one of the uranium deposits in Kazakhstan. Native strains of Acidithiobacillus ferrooxidans bacteria were found in leaching solutions at the deposit. The modeling of iron species in the culturing medium was analyzed using Medusa software v.2.0.5. To intensify [...] Read more.
Systematic studies were conducted at one of the uranium deposits in Kazakhstan. Native strains of Acidithiobacillus ferrooxidans bacteria were found in leaching solutions at the deposit. The modeling of iron species in the culturing medium was analyzed using Medusa software v.2.0.5. To intensify the process, the bacterial strains were propagated in laboratory conditions, and strains available in the laboratory were added. The ability of bacteria to oxidize divalent iron to trivalent iron at 8 °C in laboratory conditions was established, but the oxidation rate was low. It was found that the limiting stage of bioleaching use in deposit conditions is the temperature mode, the content of divalent iron, and oxygen. A biomass volume of 15 L was initially cultivated under laboratory conditions, and subsequently scaled up to 3 m3 in production using three 1 m3 pachucas with air aeration. In addition, pilot tests were carried out directly in production conditions and biomass in the volume of over 30 m3 was produced. The kinetics of the oxidation process of divalent iron to trivalent iron in 1 g/h under production conditions was established. The features of the bioleaching process at the field are shown as follows: since production, the solution contains the main microelements for the nutrition and reproduction of bacteria, and recommendations for the use of bioleaching are proposed. Research has established that under conditions of a shortage of divalent iron in the solution, sulfuric acid is formed due to sulfur-containing substances. It was observed that for the effective conversion of divalent iron to trivalent iron, bacteria of the provided strain and air (oxygen) supply are sufficient. The corresponding recommendations were issued during the work. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

17 pages, 3490 KiB  
Article
Flexible Visible Spectral Sensing for Chilling Injuries in Mango Storage
by Longgang Ma, Zhengzhong Wan, Zhencan Yang, Xunjun Chen, Ruihua Zhang, Maoyuan Yin and Xinqing Xiao
Eng 2025, 6(7), 158; https://doi.org/10.3390/eng6070158 - 10 Jul 2025
Viewed by 342
Abstract
Mango, as an important economic crop in tropical and subtropical regions, suffers from chilling injuries caused by postharvest low-temperature storage, which seriously affect its quality and economic benefits. Traditional detection methods have limitations such as low efficiency and strong destructiveness. This study designs [...] Read more.
Mango, as an important economic crop in tropical and subtropical regions, suffers from chilling injuries caused by postharvest low-temperature storage, which seriously affect its quality and economic benefits. Traditional detection methods have limitations such as low efficiency and strong destructiveness. This study designs and implements a flexible visible light spectral sensing system based on visible light spectral sensing technology and low-cost environmentally friendly flexible circuit technology. The system is structured based on a perception-analysis-warning-processing framework, utilizing laser-induced graphene electroplated copper integrated with laser etching technology for hardware fabrication, and developing corresponding data acquisition and processing functionalities. Taking Yunnan Yumang as the research object, a three-level chilling injury label dataset was established. After Z-Score standardization processing, the prediction accuracy of the SVM (Support Vector Machine) model reached 95.5%. The system has a power consumption of 230 mW at 4.5 V power supply, a battery life of more than 130 days, stable signal transmission, and a monitoring interface integrating multiple functions, which can provide real-time warning and intervention, thus offering an efficient and intelligent solution for chilling injury monitoring in mango cold chain storage. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

Back to TopTop