Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Iron-Oxidizing Bacteria
2.3. Bioleaching Process
2.4. Development of Biomass of the Acidithiobacillus ferrooxidans Culture
2.5. Enrichment Cultures of Acidophilic Microorganisms from Process Solutions of a Uranium Mine
2.6. Purification of Isolates from Extraneous Microflora
2.7. Optimization of Bacteria Growth Culturing in Nutrient Salts
2.8. Conducting Pilot Studies
3. Results and Discussion
3.1. Characterization of Samples
3.2. Cultivation of Bacteria for Use in Industrial Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Available online: https://world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production (accessed on 22 April 2025).
- Li, G.; Yao, J. A Review of in situ leaching (ISL) for uranium mining. Mining 2024, 4, 120–148. [Google Scholar] [CrossRef]
- Mudd, G.M. Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environ. Geol. 2001, 41, 390–403. [Google Scholar] [CrossRef]
- Chandra, A.P.; Gerson, A.R. Redox potential (Eh) and anion effects of pyrite (FeS2) leaching at pH 1. Geochim. Cosmochim. Acta 2011, 75, 6893–6911. [Google Scholar] [CrossRef]
- Tian, Z.; Li, H.; Wei, Q.; Qin, W.; Yang, C. Effects of redox potential on chalcopyrite leaching: An overview. Miner. Eng. 2021, 172, 107135. [Google Scholar] [CrossRef]
- Yue, G.; Zhao, L.; Olvera, O.G.; Asselin, E. Speciation of the H2SO4–Fe2 (SO4)3–FeSO4–H2O system and development of an expression to predict the redox potential of the Fe3+/Fe2+ couple up to 150 °C. Hydrometallurgy 2014, 147, 196–209. [Google Scholar] [CrossRef]
- Gorski, C.A.; Edwards, R.; Sander, M.; Hofstetter, T.B.; Stewart, S.M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 2016, 50, 8538–8547. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Lakaniemi, A.M.; Tuovinen, O.H. Acid and ferric sulfate bioleaching of uranium ores: A review. J. Clean. Prod. 2020, 264, 121586. [Google Scholar] [CrossRef]
- Du, X.; Boonchayaanant, B.; Wu, W.M.; Fendorf, S.; Bargar, J.; Criddle, C.S. Reduction of uranium (VI) by soluble iron (II) conforms with thermodynamic predictions. Environ. Sci. Technol. 2011, 45, 4718–4725. [Google Scholar] [CrossRef]
- Chen, A.; Shang, C.; Shao, J.; Zhang, J.; Huang, H. The application of iron-based technologies in uranium remediation: A review. Sci. Total Environ. 2017, 575, 1291–1306. [Google Scholar] [CrossRef]
- Zammit, C.M.; Brugger, J.; Southam, G.; Reith, F. In situ recovery of uranium—The microbial influence. Hydrometallurgy 2014, 150, 236–244. [Google Scholar] [CrossRef]
- Emerson, D. The role of iron-oxidizing bacteria in biocorrosion: A review. Biofouling 2018, 34, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Singh, A.L.; Singh, R.; Kumar, A. Iron oxidizing bacteria: Insights on diversity, mechanism of iron oxidation and role in management of metal pollution. Environ. Sustain. 2018, 1, 221–231. [Google Scholar] [CrossRef]
- Shiderin, B.; Bektay, Y.; Turysbekova, G.; Altynbek, A.; Bektayev, M. Development of Technology for the Bioleaching of Uranium in a Solution of Bacterial Immobilization. Appl. Sci. 2024, 14, 4640. [Google Scholar] [CrossRef]
- Klein, R.; Tischler, J.S.; Mühling, M.; Schlömann, M. Bioremediation of mine water. In Geobiotechnology I: Metal-Related Issues; Springer: Berlin/Heidelberg, Germany, 2014; pp. 109–172. [Google Scholar] [CrossRef]
- Ulrich, K.U.; Veeramani, H.; Bernier-Latmani, R.; Giammar, D.E. Speciation-dependent kinetics of uranium (VI) bioreduction. Geomicrobiol. J. 2011, 28, 396–409. [Google Scholar] [CrossRef]
- Munoz, J.A.; Gonzalez, F.; Blazquez, M.L.; Ballester, A. A study of the bioleaching of a Spanish uranium ore. Part I: A review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy 1995, 38, 39–57. [Google Scholar] [CrossRef]
- Abhilash; Pandey, B.D. Microbially assisted leaching of uranium—A review. Miner. Process. Extr. Metall. Rev. 2013, 34, 81–113. [Google Scholar] [CrossRef]
- Ruiz, O.; Thomson, B.; Cerrato, J.M.; Rodriguez-Freire, L. Groundwater restoration following in-situ recovery (ISR) mining of uranium. Appl. Geochem. 2019, 109, 104418. [Google Scholar] [CrossRef]
- Campbell, K.M.; Gallegos, T.J.; Landa, E.R. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Appl. Geochem. 2015, 57, 206–235. [Google Scholar] [CrossRef]
- Jones, R.M.; Johnson, D.B. Iron kinetics and evolution of microbial populations in low-pH, ferrous iron-oxidizing bioreactors. Environ. Sci. Technol. 2016, 50, 8239–8245. [Google Scholar] [CrossRef]
- Blayda, I.A.; Vasyleva, T.V.; Baranov, V.I.; Semenov, K.I.; Slysarenko, L.I.; Barba, I.M. Properties of chemolithotrophic bacteria new strains isolated from industrial substrates. Biotechnol. Acta 2015, 8, 56–62. [Google Scholar] [CrossRef]
- Liu, H.; Yin, H.; Dai, Y.; Dai, Z.; Liu, Y.; Li, Q.; Jiang, H.; Liu, X. The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation. Arch. Microbiol. 2011, 193, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Potuzak, M. Potassium dichromate Potentiometric Titration of Iron in natural magmas. In LMU Intrainstitute Manual; Ludwig-Maximilians University: Munich, Germany, 2001. [Google Scholar]
- Ostadrahimi, M.; Farrokhpay, S.; Karimnejad, K.; Rahimian, A.; Molavi, M.; Shahkarami, G. A comparison of Fe (III) to Fe (II) reduction methods in iron analysis via titration. Chem. Pap. 2024, 78, 5407–5414. [Google Scholar] [CrossRef]
- Silverman, M.P.; Lundgren, D.G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 1959, 77, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef]
- Berillo, D.A.; Caplin, J.L.; Cundy, A.B.; Savina, I.N. A cryogel-based bioreactor for water treatment applications. Water Res. 2019, 153, 324–334. [Google Scholar] [CrossRef]
- Hassanin, M.A.; El-Gendy, H.S.; Cheira, M.F.; Atia, B.M. Uranium ions extraction from the waste solution by thiosemicarbazide anchored cellulose acetate. Int. J. Environ. Anal. Chem. 2021, 101, 351–369. [Google Scholar] [CrossRef]
- Kang, M.; Kang, Y.; Wu, H.; Qin, D.; Dai, C.; Wang, J. The redox reactions of U (VI)/UO2 on Tamusu claystone: Effects of Fe2+/Fe3+ and organic matters. Chemosphere 2024, 348, 140754. [Google Scholar] [CrossRef]
Sample No. | Sample Name | Matrix (Sample Type) | Quantity | PH | Temperature (°C) | Moisture |
---|---|---|---|---|---|---|
531/10 | UPPR-7-6-1 Pumped well | water | 1 | 2.0 ± 0.5 | 6.0 | Moist |
532/10 | Water after well development | Water | 1 | 5.0 ± 0.25 | 10.0 | Moist |
533/10 | Ore horizon water | Water | 1 | 5.0 ± 0.25 | 10.0 | Moist |
534/10 | Mechanical impurity removal cascade | Water | 2 | 2.0 ± 0.5 | 15.0 | Moist |
535/10 | Leaching solution—pump station | Water | 1 | 2.0 ± 0.5 | 8.0 | Moist |
536/10 | Productive solution—pump station | Water | 2 | 2.0 ± 0.5 | 12.0 | Moist |
537/10 | 5-11-1 (repair-restoration works) | Water | 2 | 2.0 ± 0.5 | 12.0 | Moist |
538/10 | 5-7-4 borehole | Water | 1 | 2.0 ± 0.5 | 10.0 | Moist |
Sample No. | Culture No. | Cultivation Duration | Microscopy | Fe3+ Content (g/L) | Contaminating Microflora |
---|---|---|---|---|---|
531/10 | 531 | 26 days | 10–15 motile small rod-shaped cells in field of view | 3.15 | Absent |
532/10 | 532 | - | No growth | - | - |
533/10 | 533 | - | No growth | - | - |
534/10 | 534 | 9 days | Motile small rod-shaped cells, single and paired | 6.6 | Microscopic fungus |
535/10 | 535 | 12 days | Motile small rod-shaped cells, single and paired | 6.72 | Microscopic fungus |
536/10 | 536 | 23 days | Motile small rod-shaped cells, up to 10 per field | 2.84 | Microscopic fungus |
537/10 | 537 | 16 days | Motile small rod-shaped cells, single and paired | 7.36 | Microscopic fungus |
538/10 | 538 | 29 days | Up to 15 motile small rod-shaped cells in field of view | 3.1 | Absent |
Day | Microscopy | pH | Fe3+ Content (g/L) | Comments |
---|---|---|---|---|
0 | No growth | 1.5 | 0.1 | Inoculated with sample No. 535 |
2 | Single motile small rod-shaped cells | 1.4 | 0.36 | - |
4 | Motile small rod-shaped cells | 1.4 | 0.85 | - |
6 | Motile small rod-shaped cells | 1.4 | 2.4 | - |
9 | Motile small rod-shaped cells | 1.4 | 5.3 | Microscopic fungi appear |
12 | Motile small rod-shaped cells, fungi | 1.3 | 6.72 | - |
Culture | Temperature | |||
---|---|---|---|---|
8 °C | 18 °C | |||
Microscopy Moving Cells in the Field of View | Content Fe3+, g/L | Microscopy Moving Cells in the Field of View | Content Fe3+, g/L | |
Isolate 531 | until 12 | 2.8 | 3–4 | 2.9 |
Isolate 534 | 2–3 | 2.6 | until 10 | 2.9 |
Isolate 535 | 5–6 | 3.1 | 5–6 | 3.1 |
Isolate 536 | until 10 | 2.8 | until 10 | 3.1 |
Isolate 537 | 5–6 | 2.9 | 5–7 | 2.97 |
Isolate 538 | 10–12 | 3.1 | 10–12 | 3.31 |
K 1— working solution | absence of growth | - | absence of growth | - |
K 2—working solution + 9K | until 5 | 2.9 | 3–4 | 3.1 |
K 3—medium 9K | absence of growth | - | absence of growth | - |
Models | Microscopy Moving Cells in the Field of View | Parameters During Fermentation | ||
---|---|---|---|---|
pH | Fe2+, g/L | Fe3+, g/L | ||
working solution + (NH4)2SO4 | 2–3 | 2.14 | 0 | 3.72 |
working solution + K2HPO4 | until 10 | 2.48 | 0 | 3.92 |
working solution + MgSO4 | 4–3 | 2.07 | 0 | 3.86 |
working solution + KCl | 10–12 | 2.04 | 0 | 3.98 |
working solution + Ca(NO3)2 | 5–8 | 2.04 | 0 | 3.78 |
working solution + II solution of medium 9K * without seeding | 10–12; Brown solution | 1.98 | 0 | 5.6 |
working solution without seeding | absence of growth | 1.94 | 0 | non |
Sample | Fe3+ Content (g/L) | pH | Comments |
---|---|---|---|
Initial solution (before inoculation) | 0.2 | 2.1 | - |
After 3 days | 2.9 | 2.1 | Slight fungal presence |
After 7 days | 5.3 | 2.0 | Fungi developed |
After 10 days | 6.7 | 2.0 | Mycelium and spores observed |
Sample | Fe3+ Content (g/L) | pH | Comments |
---|---|---|---|
Initial solution | 0.2 | 2.1 | Before immobilization |
After 3 days | 3.6 | 2.0 | - |
After 5 days | 5.1 | 2.0 | - |
After 7 days | 6.2 | 2.0 | Slight fungal presence |
After 9 days | 7.1 | 2.0 | Mycelium detected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turysbekova, G.; Bektay, Y.; Altynbek, A.; Berillo, D.; Shiderin, B.; Bektayev, M. Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment. Minerals 2025, 15, 727. https://doi.org/10.3390/min15070727
Turysbekova G, Bektay Y, Altynbek A, Berillo D, Shiderin B, Bektayev M. Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment. Minerals. 2025; 15(7):727. https://doi.org/10.3390/min15070727
Chicago/Turabian StyleTurysbekova, Gaukhar, Yerkin Bektay, Akmurat Altynbek, Dmitriy Berillo, Bauyrzhan Shiderin, and Maxat Bektayev. 2025. "Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment" Minerals 15, no. 7: 727. https://doi.org/10.3390/min15070727
APA StyleTurysbekova, G., Bektay, Y., Altynbek, A., Berillo, D., Shiderin, B., & Bektayev, M. (2025). Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment. Minerals, 15(7), 727. https://doi.org/10.3390/min15070727