Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = long-term package

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4901 KiB  
Article
Study on the Adaptability of FBG Sensors Encapsulated in CNT-Modified Gel Material for Asphalt Pavement
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Jiahua Kong, Haijun Chen, Chaohui Wang, Qian Chen and Jiachen Wang
Gels 2025, 11(8), 590; https://doi.org/10.3390/gels11080590 - 31 Jul 2025
Viewed by 147
Abstract
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects [...] Read more.
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials. The results show that the incorporation of CNTs-COOH increased the tensile strength, elongation at break, and tensile modulus of the gel material by 36.2%, 47%, and 17.2%, respectively, and increased the flexural strength, flexural modulus, and flexural strain by 89.7%, 7.5%, and 63.8%, respectively. Through infrared spectrum analysis, it was determined that carboxyl (COOH) and hydroxyl (OH) were successfully introduced on the surface of carbon nanotubes. By analyzing the microstructure, it can be seen that the carboxyl functionalization of CNTs improved the agglomeration of carbon nanotubes. The tensile section of the modified gel material is rougher than that of the pure epoxy resin, showing obvious plastic deformation, and the toughness is improved. According to the data from the calibration experiment, the strain and temperature sensitivity coefficients of the packaged sensor are 1.9864 pm/μm and 0.0383 nm/°C, respectively, which are 1.63 times and 3.61 times higher than those of the bare fiber grating. The results of an applicability study show that the internal structure strain of asphalt rutting specimen changed linearly with the external static load, and the fitting sensitivity is 0.0286 με/N. Combined with ANSYS finite element analysis, it is verified that the simulation analysis results are close to the measured data, which verifies the effectiveness and monitoring accuracy of the sensor. The dynamic load test results reflect the internal strain change trend of asphalt mixture under external rutting load, confirming that the encapsulated FBG sensor is suitable for the long-term monitoring of asphalt pavement strain. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

29 pages, 14647 KiB  
Article
Precipitation Processes in Sanicro 25 Steel at 700–900 °C: Experimental Study and Digital Twin Simulation
by Grzegorz Cempura and Adam Kruk
Materials 2025, 18(15), 3594; https://doi.org/10.3390/ma18153594 - 31 Jul 2025
Viewed by 250
Abstract
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures [...] Read more.
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures of 653 °C for fresh steam and 672 °C for reheated steam. While last-generation supercritical power plants still rely on fossil fuels, they represent a significant step forward in more sustainable energy production. The most sophisticated facilities of this kind can achieve thermodynamic efficiencies exceeding 47%. This study aimed to conduct a detailed analysis of the initial precipitation processes occurring in Sanicro 25 steel within the temperature range of 700–900 °C. The temperature of 700 °C corresponds to the operational conditions of this material, particularly in secondary steam superheaters in thermal power plants that operate under ultra-supercritical parameters. Understanding precipitation processes is crucial for optimizing mechanical performance, particularly in terms of long-term strength and creep resistance. To accurately assess the microstructural changes that occur during the early stages of service, a digital twin approach was employed, which included CALPHAD simulations and experimental heat treatments. Experimental annealing tests were conducted in air within the temperature range of 700–900 °C. Precipitation behavior was simulated using the Thermo-Calc 2025a with Dictra software package. The results from Prisma simulations correlated well with the experimental data related to the kinetics of phase transformations; however, it was noted that the predicted sizes of the precipitates were generally smaller than those observed in experiments. Additionally, computational limitations were encountered during some simulations due to the complexity arising from the numerous alloying elements present in Sanicro 25 steel. The microstructural evolution was investigated using various methods, including light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Full article
Show Figures

Figure 1

14 pages, 1512 KiB  
Article
Postharvest NMR Metabolomic Profiling of Pomegranates Stored Under Low-Pressure Conditions: A Pilot Study
by Keeton H. Montgomery, Aya Elhabashy, Brendon M. Anthony, Yong-Ki Kim and Viswanathan V. Krishnan
Metabolites 2025, 15(8), 507; https://doi.org/10.3390/metabo15080507 - 30 Jul 2025
Viewed by 303
Abstract
Background: There is a high demand for long-term postharvest storage of valuable perishables with high-quality preservation and minimal product loss due to decay and physiological disorders. Postharvest low-pressure storage (LPS) provides a viable option for many fruits. While recent studies have presented the [...] Read more.
Background: There is a high demand for long-term postharvest storage of valuable perishables with high-quality preservation and minimal product loss due to decay and physiological disorders. Postharvest low-pressure storage (LPS) provides a viable option for many fruits. While recent studies have presented the details of technology, this pilot study presents the metabolomics changes due to the hypobaric storage of pomegranates as a model system. Methods: Nuclear magnetic resonance (NMR)-based metabolomics studies were performed on pomegranate fruit tissues, comparing fruit stored under LPS conditions versus the traditional storage system, with modified atmosphere packaging (MAP) as the control. The metabolomic changes in the exocarp, mesocarp, and arils were measured using 1H NMR spectroscopy, and the results were analyzed using multivariate statistics. Results: Distinguishable differences were noted between the MAP and LPS conditions in fruit quality attributes and metabolite profiles. Sucrose levels in the aril, mesocarp, and exocarp samples were higher under LPS, while sucrose levels were reduced in MAP. In addition, alanine levels were more abundant in the mesocarp and exocarp samples, and ethanol concentration decreased in the exocarp samples, albeit less significantly. Conclusions: This pilot investigation shows the potential for using NMR as a valuable assessment tool for monitoring the performance of viable long-term storage conditions in horticultural commodities. Full article
Show Figures

Figure 1

23 pages, 7773 KiB  
Article
Strengthening-Effect Assessment of Smart CFRP-Reinforced Steel Beams Based on Optical Fiber Sensing Technology
by Bao-Rui Peng, Fu-Kang Shen, Zi-Yi Luo, Chao Zhang, Yung William Sasy Chan, Hua-Ping Wang and Ping Xiang
Photonics 2025, 12(7), 735; https://doi.org/10.3390/photonics12070735 - 18 Jul 2025
Viewed by 300
Abstract
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety [...] Read more.
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety and residual service life. However, the current problem is the lack of an efficient, long-term, and stable monitoring technique to characterize the structural behavior of coated composite structures in the whole life cycle. For this reason, bare and packaged fiber Bragg grating (FBG) sensors have been specially developed and designed in sensing networks to monitor the structural performance of CFRP-coated composite beams under different loads. Some optical fibers have also been inserted in the CFRP laminates to configure the smart CFRP component. Detailed data interpretation has been conducted to declare the strengthening process and effect. Finite element simulation and simplified theoretical analysis have been conducted to validate the experimental testing results and the deformation profiles of steel beams before and after the CFRP coating has been carefully checked. Results indicate that the proposed FBG sensors and sensing layout can accurately reflect the structural performance of the composite beam structure, and the CFRP coating can share partial loads, which finally leads to the downward shift in the centroidal axis, with a value of about 10 mm. The externally bonded sensors generally show good stability and high sensitivity to the applied load and temperature-induced inner stress variation. The study provides a straightforward instruction for the establishment of a structural health monitoring system for CFRP-coated composite structures in the whole life cycle. Full article
Show Figures

Figure 1

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 717
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

28 pages, 1364 KiB  
Systematic Review
Age Sustainability in Smart City: Seniors as Urban Stakeholders in the Light of Literature Studies
by Izabela Jonek-Kowalska and Maciej Wolny
Sustainability 2025, 17(14), 6333; https://doi.org/10.3390/su17146333 - 10 Jul 2025
Viewed by 319
Abstract
Objectives: An aging population and declining birth rates are among the challenges that smart cities currently face and will continue to face in the near future. In light of the above, this article seeks to answer the following question: Are older people (seniors) [...] Read more.
Objectives: An aging population and declining birth rates are among the challenges that smart cities currently face and will continue to face in the near future. In light of the above, this article seeks to answer the following question: Are older people (seniors) taken into account and described in the literature on smart cities, and if so, how? Methods: To answer this research question, a systematic literature review was conducted using the Bibliometrix package in R. In the process of systematizing the publications, the authors additionally used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method and qualitative text analysis. Findings: The research shows that relatively little attention is paid to seniors in smart cities in the literature on the subject. Among the few publications on smart aging, the technological trend dominates, in which researchers present the possibilities of using IT and ICT to improve medical and social care for seniors, and to improve their quality of life (Smart Living, Smart Mobility). In the non-technological trend, most analyses focus on the determinants of quality of life and the distinguishing features of senior-friendly cities. Implications: There is a clear lack of a “human” perspective on aging in smart cities and publications on Smart Governance and Smart People that would provide guidelines for making elderly people full and equal stakeholders in smart cities. It is also necessary to develop practical documents and procedures that define a comprehensive and long-term urban policy for elderly adults. The analyses contribute to diagnosing current and determining further directions of research on smart aging in smart cities. The results clearly imply the need to intensify social, humanistic, and governance research on the role of seniors in smart cities. Full article
(This article belongs to the Special Issue Smart Cities, Smart Governance and Sustainable Development)
Show Figures

Figure 1

52 pages, 3535 KiB  
Review
Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects
by Thivya Selvam, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad and Wan Abd Al Qadr Imad Wan-Mohtar
Polymers 2025, 17(14), 1897; https://doi.org/10.3390/polym17141897 - 9 Jul 2025
Cited by 1 | Viewed by 1149
Abstract
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. [...] Read more.
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. Agricultural waste, often discarded in large quantities, offers a valuable resource for producing biodegradable polymers. This review discusses the environmental burden caused by traditional plastics and explores how agricultural residues such as rice husks, corn cobs, and fruit peels can be converted into eco-friendly packaging materials. Various types of biopolymers sourced from agricultural waste, including cellulose, starch, plant and animal-based proteins, polyhydroxyalkanoates (PHA), and polylactic acid (PLA), are examined for their properties, benefits, and limitations in food packaging applications. Each material presents unique characteristics in terms of biodegradability, mechanical strength, and barrier performance. While significant progress has been made, several challenges remain, including cost-effective production, material performance, and compliance with food safety regulations. Looking ahead, innovations in material processing, waste management integration, and biopolymer formulation could pave the way for widespread adoption. This review aims to provide a comprehensive overview of current developments and future directions in the use of agricultural waste for sustainable packaging solutions, comparing their biodegradability and performance to conventional plastics. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 1242 KiB  
Article
Differential HIV-1 Proviral Defects in Children vs. Adults on Antiretroviral Therapy
by Jenna M. Hasson, Mary Grace Katusiime, Adam A. Capoferri, Michael J. Bale, Brian T. Luke, Wei Shao, Mark F. Cotton, Gert van Zyl, Sean C. Patro and Mary F. Kearney
Viruses 2025, 17(7), 961; https://doi.org/10.3390/v17070961 - 9 Jul 2025
Viewed by 533
Abstract
HIV-1 proviral landscapes were investigated using near-full-length HIV single-genome sequencing on blood samples from five children with vertically acquired infection and on ART for ~7–9 years. Proviral structures were compared to published datasets in children prior to ART, children on short-term ART, and [...] Read more.
HIV-1 proviral landscapes were investigated using near-full-length HIV single-genome sequencing on blood samples from five children with vertically acquired infection and on ART for ~7–9 years. Proviral structures were compared to published datasets in children prior to ART, children on short-term ART, and adults on ART. We found a strong selection for large internal proviral deletions in children, especially deletions of the env gene. Only 2.5% of the proviruses were sequence-intact, lower than in the comparative datasets from adults. Of the proviruses that retained the env gene, >80% contained two or more defects, most commonly stop codons and/or gag start mutations. Significantly fewer defects in the major splice donor site (MSD) and packaging signal were found in the children on short or long-term ART compared to the adults, and tat was more frequently defective in children. These results suggest that different selection pressures may shape the proviral landscape in children compared to adults and reveal potentially different genetic regions to target for measuring the intact HIV reservoir and for achieving HIV remission in children. Full article
(This article belongs to the Special Issue Intra-patient Viral Evolution and Diversity)
Show Figures

Figure 1

28 pages, 2110 KiB  
Review
Adeno-Associated Virus Vectors in Retinal Gene Therapy: Challenges, Innovations, and Future Directions
by Jiayu Huang, Jiajun Li, Xiangzhong Xu and Keran Li
Biomolecules 2025, 15(7), 940; https://doi.org/10.3390/biom15070940 - 28 Jun 2025
Viewed by 898
Abstract
Adeno-associated virus (AAV) vectors have emerged as the leading platform for retinal gene therapy due to their favorable safety profile, low immunogenicity, and ability to mediate long-term transgene expression within the immune-privileged ocular environment. By integrating diverse strategies such as gene augmentation and [...] Read more.
Adeno-associated virus (AAV) vectors have emerged as the leading platform for retinal gene therapy due to their favorable safety profile, low immunogenicity, and ability to mediate long-term transgene expression within the immune-privileged ocular environment. By integrating diverse strategies such as gene augmentation and gene editing, AAV-based therapies have demonstrated considerable promise in treating both inherited and acquired retinal disorders. However, their clinical translation remains limited by several key challenges, including restricted packaging capacity, suboptimal transduction efficiency, the risk of gene therapy-associated uveitis, and broader societal concerns such as disease burden and ethical oversight. This review summarizes recent advances aimed at overcoming these barriers, with a particular focus on delivery route-specific disease applicability, multi-vector systems, and capsid engineering approaches to enhance payload capacity, targeting specificity, and biosafety. By synthesizing these developments, we propose a conceptual and technical framework for a more efficient, safer, and broadly applicable AAV platform to accelerate clinical adoption in retinal gene therapy. Full article
(This article belongs to the Special Issue Retinal Diseases: Molecular Mechanisms and Therapies)
Show Figures

Figure 1

14 pages, 1187 KiB  
Review
Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review
by Evmorfia Athanasopoulou, Deborah M. Power, Emmanouil Flemetakis and Theofania Tsironi
J. Mar. Sci. Eng. 2025, 13(7), 1245; https://doi.org/10.3390/jmse13071245 - 28 Jun 2025
Viewed by 621
Abstract
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when [...] Read more.
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when synthetic polymers are fragmented and micronized to a size ≤ 5 mm. MPs are a global environmental problem, particularly within aquatic ecosystems, due to their persistence, accumulation, and uncertain long-term effects. This review examines the degradation pathways of polymers that result in MP formulation, their rate and distribution across ecosystems, and their potential entry into food systems. Key challenges include a lack of standardized detection methods, specifically for nanoparticles; limited evidence of long-term toxicity; and the inefficiency of current waste management frameworks. Emphasis is placed on the cradle-to-grave lifecycle of plastic materials, highlighting how poor design, excessive packaging, and inadequate post-consumer treatment contribute to MP release. The transition from Directive 94/62/EC to the new Regulation (EU) 2025/40 marks a significant policy shift towards stronger preventive measures. In line with the waste hierarchy and reduction in unnecessary packaging and plastic use, effective recycling must be supported by appropriate collection systems, improved separation processes, and citizen education to prevent waste and improve recycling rates to minimize the accumulation of MPs in the environment and reduce health impacts. This review identifies critical gaps in current knowledge and suggests crucial approaches in order to mitigate MP pollution and protect marine biodiversity and public health. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

21 pages, 720 KiB  
Article
Does Covert Retrieval Benefit Adolescents’ Learning in 8th Grade Science Classes?
by Amber E. Witherby, Paige E. Northern and Sarah K. Tauber
Behav. Sci. 2025, 15(7), 843; https://doi.org/10.3390/bs15070843 - 23 Jun 2025
Viewed by 338
Abstract
Retrieval practice can benefit students’ long-term learning. However, no prior investigations have explored the degree to which response mode—overt versus covert retrieval—moderates the impact of retrieval practice on adolescents’ learning in a classroom context. To explore this issue, 8th grade students learned science [...] Read more.
Retrieval practice can benefit students’ long-term learning. However, no prior investigations have explored the degree to which response mode—overt versus covert retrieval—moderates the impact of retrieval practice on adolescents’ learning in a classroom context. To explore this issue, 8th grade students learned science concepts that were required for their class. They learned terms in their middle school classrooms by recalling and writing them down (overt retrieval), mentally recalling (covert retrieval), or restudying definitions. They practiced each strategy in 5 sessions and took final tests 2 days later. The impact of covert retrieval on students’ learning was similar to that of restudy, and both covert retrieval and restudy were less beneficial relative to overt retrieval. Treatment package effectiveness differed somewhat between students and terms. These outcomes are generally consistent with the retrieval dynamics hypothesis and reveal that response mode can impact the effectiveness of retrieval practice in middle school classrooms. Full article
(This article belongs to the Special Issue Educational Applications of Cognitive Psychology)
Show Figures

Figure 1

15 pages, 6013 KiB  
Article
Urban Air Mobility Vertiport’s Capacity Simulation and Analysis
by Antoni Kopyt and Sebastian Dylicki
Aerospace 2025, 12(6), 560; https://doi.org/10.3390/aerospace12060560 - 19 Jun 2025
Viewed by 651
Abstract
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational [...] Read more.
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational protocols to address the infrastructural and logistical demands of high-density UAS operations. It was focused on two use cases—high-frequency food delivery utilizing small UASs and extended-range package logistics with larger UASs—and the model incorporates adaptive vertiport zoning strategies, segregating operations into dedicated sectors for battery charging, swapping, and cargo handling to enable parallel processing and mitigate congestion. The simulation evaluates critical variables such as vertiport dimensions, UAS fleet composition, and mission duration ranges while emphasizing scalability, safety, and compliance with evolving regulatory standards. By examining the interplay between infrastructure design, operational workflows, and resource allocation, the research provides a versatile tool for urban planners and policymakers to optimize vertiport layouts and traffic management protocols. Its modular architecture supports future extensions. This work underscores the necessity of adaptive, data-driven planning to harmonize vertiport functionality with the dynamic demands of urban air mobility, ensuring interoperability, safety, and long-term scalability. Full article
(This article belongs to the Special Issue Operational Requirements for Urban Air Traffic Management)
Show Figures

Figure 1

20 pages, 3536 KiB  
Article
Printability Optimization of LDPE-Based Composites for Tool Production in Crewed Space Missions: From Numerical Simulation to Additive Manufacturing
by Federica De Rosa and Susanna Laurenzi
Aerospace 2025, 12(6), 530; https://doi.org/10.3390/aerospace12060530 - 11 Jun 2025
Viewed by 397
Abstract
Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, [...] Read more.
Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, made of LDPE and a PET-Aluminum-LDPE (PAL) trilaminate. To minimize material waste and optimize the experimental process, we first conducted numerical simulations of additive manufacturing. Using Digimat-AM 2021.1 software, we analyzed residual stresses and warpage in an LDPE/PAL composite with a 10 wt% filler content, processed through the FFF technique. Three key printing parameters, including printing speed and infill pattern, were varied across different levels to assess their impact. Once the optimal combination of parameters for minimizing residual stresses and warpage was identified, we proceeded with the experimental phase, printing objects of increasing complexity to validate the correlation between numerical predictions and the 3D-printed models. The successful fabrication of all geometries under optimized conditions confirmed the numerical predictions, particularly the reduction in warpage and residual stress, validating the material’s viability for additive manufacturing. These findings support the potential application of the LDPE/PAL composite for in situ resource utilization strategies in long-term space missions. Full article
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Enhancing Mechanical Properties of Hemp and Sisal Fiber-Reinforced Composites Through Alkali and Fungal Treatments for Sustainable Applications
by Rahul Kovuru and Jens Schuster
J. Manuf. Mater. Process. 2025, 9(6), 191; https://doi.org/10.3390/jmmp9060191 - 10 Jun 2025
Viewed by 728
Abstract
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and [...] Read more.
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and fungal treatments. Experimental results show that fungal treatment significantly improves tensile and flexural strength, while hardness slightly decreases. Water absorption tests revealed moderate reductions in hydrophilicity compared to untreated samples, although absolute water uptake remains higher than conventional glass/epoxy composites. Microscopy analysis further confirmed enhanced fiber adhesion and structural integrity in treated specimens. These findings suggest that hybrid composites reinforced with hemp and sisal, particularly with fungal treatment, hold promise for low-to-medium load sustainable applications in the automotive interiors, packaging, and construction industries, where moderate mechanical performance and partial biodegradability are acceptable. This research contributes to the advancement of bio-based composite materials while acknowledging current limitations in long-term durability and complete biodegradability. Full article
Show Figures

Figure 1

29 pages, 9493 KiB  
Article
Development and Optimization of Edible Antimicrobial Films Based on Dry Heat–Modified Starches from Kazakhstan
by Marat Muratkhan, Kakimova Zhainagul, Kamanova Svetlana, Dana Toimbayeva, Indira Temirova, Sayagul Tazhina, Dina Khamitova, Saduakhasova Saule, Tamara Tultabayeva, Berdibek Bulashev and Gulnazym Ospankulova
Foods 2025, 14(11), 2001; https://doi.org/10.3390/foods14112001 - 5 Jun 2025
Viewed by 3073
Abstract
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in [...] Read more.
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in vitro digestibility. Corn and cassava starches were selected as optimal components based on their physicochemical performance. A series of single-factor experiments and a Box–Behnken design were employed to assess the influence of starch concentration, gelatinization time, glycerol, and chitosan content on film properties including tensile strength, elongation at break, water vapor permeability (WVP), and transparency. The optimized formulation (5.0% starch, 28.2 min gelatinization, 2.6% glycerol, 1.4% chitosan) yielded a transparent (77.64%), mechanically stable (10.92 MPa tensile strength; 50.0% elongation), and moisture-resistant film. Structural and thermal analyses (SEM, AFM, DSC, TGA) confirmed the film’s homogeneity and stability. Furthermore, the film exhibited moderate antioxidant activity and antibacterial efficacy against Escherichia coli and Staphylococcus aureus. These findings demonstrate the feasibility of using dry heat–modified Kazakhstani starches to develop sustainable antimicrobial packaging materials. However, further studies are needed to explore sensory attributes, long-term storage performance, and compatibility with different food matrices. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

Back to TopTop