Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review
Abstract
1. Introduction
2. Polymer Degradation and Microplastic Pollution
3. Entry Points of MPs into Food Systems and the Food Chain
4. The Role of Plastic Packaging of Foods and Beverages in Microplastic Production
5. European Union’s Targets for Plastic Reduction
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Statista Researcher Department. Global Plastics Industry—Statistics & Facts; Statista: Hamburg, Germany, 2025. [Google Scholar]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- European Bioplastics. Bioplastics Market Development Update 2023; European Bioplastics e.V.: Berlin, Germany, 2023. [Google Scholar]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Sun, J. A Critical Review of Microplastics in Aquatic Ecosystems: Degradation Mechanisms and Removing Strategies. Environ. Sci. Ecotechnol. 2024, 21, 100427. [Google Scholar] [CrossRef] [PubMed]
- Castro-Castellon, A.T.; Horton, A.A.; Hughes, J.M.R.; Rampley, C.; Jeffers, E.S.; Bussi, G.; Whitehead, P. Ecotoxicity of Microplastics to Freshwater Biota: Considering Exposure and Hazard across Trophic Levels. Sci. Total Environ. 2022, 816, 151638. [Google Scholar] [CrossRef]
- Banyoi, S.-M.; Porseryd, T.; Larsson, J.; Grahn, M.; Dinnétz, P. The Effects of Exposure to Environmentally Relevant PFAS Concentrations for Aquatic Organisms at Different Consumer Trophic Levels: Systematic Review and Meta-Analyses. Environ. Pollut. 2022, 315, 120422. [Google Scholar] [CrossRef] [PubMed]
- Walkinshaw, C.; Lindeque, P.K.; Thompson, R.; Tolhurst, T.; Cole, M. Microplastics and Seafood: Lower Trophic Organisms at Highest Risk of Contamination. Ecotoxicol. Environ. Saf. 2020, 190, 110066. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Yang, T.; Xu, Y.; Liu, G.; Nowack, B. Oligomers Are a Major Fraction of the Submicrometre Particles Released during Washing of Polyester Textiles. Nat. Water 2024, 2, 151–160. [Google Scholar] [CrossRef]
- Ng, E.-L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An Overview of Microplastic and Nanoplastic Pollution in Agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef]
- Perraki, M.; Skliros, V.; Mecaj, P.; Vasileiou, E.; Salmas, C.; Papanikolaou, I.; Stamatis, G. Identification of Microplastics Using Μ-Raman Spectroscopy in Surface and Groundwater Bodies of SE Attica, Greece. Water 2024, 16, 843. [Google Scholar] [CrossRef]
- Balwada, J.; Samaiya, S.; Mishra, R.P. Packaging Plastic Waste Management for a Circular Economy and Identifying a Better Waste Collection System Using Analytical Hierarchy Process (AHP). Procedia CIRP 2021, 98, 270–275. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature and Natural Resources; Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017; ISBN 978-2-8317-1827-9. [Google Scholar]
- Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. Wastewater Treatment Plant Effluent as a Source of Microplastics: Review of the Fate, Chemical Interactions and Potential Risks to Aquatic Organisms. Water Sci. Technol. 2016, 74, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. Plastics—The Fast Facts 2023; Plastics Europe: Brussels, Belgium, 2023. [Google Scholar]
- Athanasopoulou, E.; Michailidi, A.; Ladakis, D.; Kalliampakou, K.I.; Flemetakis, E.; Koutinas, A.; Tsironi, T. Extraction of Fish Protein Concentrates from Discards and Combined Application with Gelatin for the Development of Biodegradable Food Packaging. Sustainability 2023, 15, 12062. [Google Scholar] [CrossRef]
- Athanasopoulou, E.; Bigi, F.; Maurizzi, E.; Karellou, E.I.E.; Pappas, C.S.; Quartieri, A.; Tsironi, T. Synthesis and Characterization of Polysaccharide- and Protein-Based Edible Films and Application as Packaging Materials for Fresh Fish Fillets. Sci. Rep. 2024, 14, 517. [Google Scholar] [CrossRef]
- Dumitru, A.C.; Espinosa, F.M.; Garcia, R.; Foschi, G.; Tortorella, S.; Valle, F.; Dallavalle, M.; Zerbetto, F.; Biscarini, F. In Situ Nanomechanical Characterization of the Early Stages of Swelling and Degradation of a Biodegradable Polymer. Nanoscale 2015, 7, 5403–5410. [Google Scholar] [CrossRef]
- Tsironi, T.N.; Chatzidakis, S.M.; Stoforos, N.G. The Future of Polyethylene Terephthalate Bottles: Challenges and Sustainability. Packag. Technol. Sci. 2022, 35, 317–325. [Google Scholar] [CrossRef]
- Basdeki, E.; Mpenetou, E.; Papazoglou, P.; Ladakis, D.; Flemetakis, E.; Koutinas, A.; Tsironi, T. Evaluation of a Calcium Carbonate-Based Container for Transportation and Storage of Fresh Fish as a Sustainable Alternative to Polystyrene Boxes. Sustainability 2023, 16, 130. [Google Scholar] [CrossRef]
- Vohlídal, J. Polymer Degradation: A Short Review. Chem. Teach. Int. 2021, 3, 213–220. [Google Scholar] [CrossRef]
- Kyrikou, I.; Briassoulis, D. Biodegradation of Agricultural Plastic Films: A Critical Review. J Polym Env. 2007, 15, 125–150. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Presence of Microplastics and Nanoplastics in Food, with Particular Focus on Seafood. Efsa J. 2016, 14, e04501. [Google Scholar] [CrossRef]
- Petersen, E.J.; Diamond, S.A.; Kennedy, A.J.; Goss, G.G.; Ho, K.; Lead, J.; Hanna, S.K.; Hartmann, N.B.; Hund-Rinke, K.; Mader, B.; et al. Adapting OECD Aquatic Toxicity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations. Environ. Sci. Technol. 2015, 49, 9532–9547. [Google Scholar] [CrossRef]
- Peng, M.; Félix, R.C.; Canário, A.V.M.; Power, D.M. The Physiological Effect of Polystyrene Nanoplastic Particles on Fish and Human Fibroblasts. Sci. Total Environ. 2024, 914, 169979. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P. Microplastic Contamination in Food Processing: Role of Packaging Materials. Food Sci. Eng. 2024, 5, 271–287. [Google Scholar] [CrossRef]
- Beer, S.; Garm, A.; Huwer, B.; Dierking, J.; Nielsen, T.G. No Increase in Marine Microplastic Concentration over the Last Three Decades—A Case Study from the Baltic Sea. Sci. Total Environ. 2018, 621, 1272–1279. [Google Scholar] [CrossRef]
- Mamun, A.A.; Prasetya, T.A.E.; Dewi, I.R.; Ahmad, M. Microplastics in Human Food Chains: Food Becoming a Threat to Health Safety. Sci. Total Environ. 2023, 858, 159834. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Soltani, N.; Keshavarzi, B.; Moore, F.; Turner, A.; Hassanaghaei, M. Microplastics in Different Tissues of Fish and Prawn from the Musa Estuary, Persian Gulf. Chemosphere 2018, 205, 80–87. [Google Scholar] [CrossRef]
- Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, I.M.; Van Den Eede, G. Review of Micro- and Nanoplastic Contamination in the Food Chain. Food Addit. Contam. Part A 2019, 36, 639–673. [Google Scholar] [CrossRef]
- Jadhav, E.B.; Sankhla, M.S.; Bhat, R.A.; Bhagat, D.S. Microplastics from Food Packaging: An Overview of Human Consumption, Health Threats, and Alternative Solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic Transfer of Microplastics and Mixed Contaminants in the Marine Food Web and Implications for Human Health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef]
- Mercogliano, R.; Avio, C.G.; Regoli, F.; Anastasio, A.; Colavita, G.; Santonicola, S. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. J. Agric. Food Chem. 2020, 68, 5296–5301. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Cai, H.; Zhang, Q.; Chen, Q.; Shi, H. Microplastics in Take-out Food Containers. J. Hazard. Mater. 2020, 399, 122969. [Google Scholar] [CrossRef] [PubMed]
- Kedzierski, M.; Lechat, B.; Sire, O.; Le Maguer, G.; Le Tilly, V.; Bruzaud, S. Microplastic Contamination of Packaged Meat: Occurrence and Associated Risks. Food Packag. Shelf Life 2020, 24, 100489. [Google Scholar] [CrossRef]
- Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and Other Harmful Substances Released from Disposable Paper Cups into Hot Water. J. Hazard. Mater. 2021, 404, 124118. [Google Scholar] [CrossRef]
- Winkler, A.; Santo, N.; Ortenzi, M.A.; Bolzoni, E.; Bacchetta, R.; Tremolada, P. Does Mechanical Stress Cause Microplastic Release from Plastic Water Bottles? Water Res. 2019, 166, 115082. [Google Scholar] [CrossRef]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-Sized Microplastics and Pigmented Particles in Bottled Mineral Water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Tansey, G.; Worsley, A. The Food System; Routledge: London, UK, 2014; ISBN 978-1-135-04795-5. [Google Scholar]
- Kaseke, T.; Lujic, T.; Cirkovic Velickovic, T. Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism. Foods 2023, 12, 3043. [Google Scholar] [CrossRef]
- Negrete-Bolagay, D.; Guerrero, V.H. Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance. Polymers 2024, 16, 2561. [Google Scholar] [CrossRef]
- Bach, C.; Dauchy, X.; Severin, I.; Munoz, J.-F.; Etienne, S.; Chagnon, M.-C. Effect of Temperature on the Release of Intentionally and Non-Intentionally Added Substances from Polyethylene Terephthalate (PET) Bottles into Water: Chemical Analysis and Potential Toxicity. Food Chem. 2013, 139, 672–680. [Google Scholar] [CrossRef]
- Coles, R.; Kirwan, M. (Eds.) Food and Beverage Packaging Technology, 1st ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-1-4051-8910-1. [Google Scholar]
- Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of Microplastics in Water by Micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineral Water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Microplastics in Spanish Table Salt. Sci. Rep. 2017, 7, 8620. [Google Scholar] [CrossRef] [PubMed]
- Chaïb, I.; Doyen, P.; Merveillie, P.; Dehaut, A.; Duflos, G. Microplastic contaminations in a set of beverages sold in France. J. Food Compos. Anal. 2025, 144, 10719. [Google Scholar] [CrossRef]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. First Study of Its Kind on the Microplastic Contamination of Soft Drinks, Cold Tea and Energy Drinks—Future Research and Environmental Considerations. Sci. Total Environ. 2020, 726, 138580. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Feng, Z.; Zhang, T.; Ma, C.; Shi, H. Microplastics in the Commercial Seaweed Nori. J. Hazard. Mater. 2020, 388, 122060. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for the General Population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Chen, Y.; Yang, F.; Yao, W.; Xie, Y. Microplastics Contamination in Eggs: Detection, Occurrence and Status. Food Chem. 2022, 397, 133771. [Google Scholar] [CrossRef]
- Shruti, V.C.; Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Roy, P.D.; Elizalde-Martínez, I. First Evidence of Microplastic Contamination in Ready-to-Use Packaged Food Ice Cubes. Environ. Pollut. 2023, 318, 120905. [Google Scholar] [CrossRef]
- Weisser, J.; Beer, I.; Hufnagl, B.; Hofmann, T.; Lohninger, H.; Ivleva, N.P.; Glas, K. From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water. Water 2021, 13, 841. [Google Scholar] [CrossRef]
- Sangkham, S.; Islam, M.A.; Adhikari, S.; Kumar, R.; Sharma, P.; Sakunkoo, P.; Bhattacharya, P.; Tiwari, A. Evidence of Microplastics in Groundwater: A Growing Risk for Human Health. Groundw. Sustain. Dev. 2023, 23, 100981. [Google Scholar] [CrossRef]
- European Parliament and Council. Directive 94/62/EC on 20 December 1994; European Parliament and Council: Brussels, Belgium, 1994; p. 14. [Google Scholar]
- European Parliament and Council. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives; European Parliament and Council: Brussels, Belgium, 2008; p. 28. [Google Scholar]
- European Commission, Directorate General for Research and Innovation. Innovating for Sustainable Growth: A Bioeconomy for Europe; Publications Office: Luxembourg, 2012. [Google Scholar]
- European Commission, Directorate General for Research and Innovation. Review of the 2012 European Bioeconomy Strategy; Publications Office: Luxembourg, 2018. [Google Scholar]
- European Commission, Directorate-General for Research and Innovation. Updated Bioeconomy Strategy 2018; Publications Office: Luxembourg, 2018. [Google Scholar]
- European Union. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment; European Union: Brussels, Belgium, 2019; pp. 1–19. [Google Scholar]
- European Parliament and Council. Regulation (EU) 2025/40 of the European Parliament and of the Council of 19 December 2024 on Packaging and Packaging Waste, Amending Regulation (EU) 2019/1020 and Directive (EU) 2019/904, and Repealing Directive 94/62/EC; European Parliament and Council: Brussels, Belgium, 2024. [Google Scholar]
- Tenhunen-Lunkka, A.; Rommens, T.; Vanderreydt, I.; Mortensen, L. Greenhouse Gas Emission Reduction Potential of European Union’s Circularity Related Targets for Plastics. Circ. Econ. Sust. 2023, 3, 475–510. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, P.L. Degradation of Microplastics in the Environment. In Handbook of Microplastics in the Environment; Rocha-Santos, T., Costa, M.F., Mouneyrac, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 531–542. ISBN 978-3-030-39040-2. [Google Scholar]
- Pandey, B.; Pathak, J.; Singh, P.; Kumar, R.; Kumar, A.; Kaushik, S.; Thakur, T.K. Microplastics in the Ecosystem: An Overview on Detection, Removal, Toxicity Assessment, and Control Release. Water 2022, 15, 51. [Google Scholar] [CrossRef]
- Rocha-Santos, T.A.P. Editorial Overview: Micro and Nano-Plastics. Curr. Opin. Environ. Sci. Health 2018, 1, 52–54. [Google Scholar] [CrossRef]
- Ogonowski, M.; Gerdes, Z.; Gorokhova, E. What We Know and What We Think We Know about Microplastic Effects—A Critical Perspective. Curr. Opin. Environ. Sci. Health 2018, 1, 41–46. [Google Scholar] [CrossRef]
- Alak, G.; Köktürk, M.; Atamanalp, M. Evaluation of Different Packaging Methods and Storage Temperature on MPs Abundance and Fillet Quality of Rainbow Trout. J. Hazard. Mater. 2021, 420, 126573. [Google Scholar] [CrossRef]
- Ward, C.P.; Reddy, C.M.; Edwards, B.; Perri, S.T. To Curb Plastic Pollution, Industry and Academia Must Unite. Nature 2024, 625, 658–662. [Google Scholar] [CrossRef]
- Wang, W.-X. Marine Micro(Nano)Plastics Toxicology: Knowledge Gaps and Perspectives. J. Hazard. Mater. 2025, 492, 138086. [Google Scholar] [CrossRef]
Type of Degradation | Mechanism | Primary Cause | Final Product |
---|---|---|---|
Thermal degradation | Homolytic bond cleavage due to increased intramolecular vibrations | Increased temperature (T > Tc) | Radical chain ends, depolymerization, and possible oxidation in air |
Photochemical degradation | Electronic excitation or bond dissociation induced by radiation | UV light, visible light, X-rays, and γ-rays | Radical formation, bond cleavage, crosslinking, and photooxidation in air |
Mechanochemical degradation | Mid-chain scission by mechanical stress or shearing | Shear flow, ultrasound, and physical stress | Chain fragmentation, viscosity reduction, and altered molecular weight distribution |
Oxidative degradation | Radical chain reaction initiated by oxygen | Air exposure, heat, light, and autoxidation | Chain scission (β-scission), carbonyl compounds, hydroxyl groups, and chemiluminescence |
Food/Beverage | Type of MP | Detected MP | MP Concentration | Reference |
---|---|---|---|---|
Salt | PET | Fibers | 120 ± 7 particles/kg | [47] |
Bottled water | PET | Fragments and fibers (30–500 μm) | 2.9 particles/L | [48] |
Iced tea Soft drink Energy drink Beer | Polyamide, poly(ester-amide), acrylonitrile-butadiene-styrene, and PET | Fibers and fragments (100–3000 μm) | 1 ± 0.57–6.2 particles/L <7 ± 3.21 particles/L <6 ± 1.53 particles/L <28 ± 5.29 particles/L | [49] |
Seaweed, nori | Polypropylene, polyethylene, and poly-(ethylene-propylene) | 1–5 mm | 0.9–3.0 items/g | [50] |
Tea | Nylon and PET | 1–150 μm | 2.3 million particles/cup of beverage | [51] |
Meat | Extruded polystyrene | Fibers (300–450 μm and 130–250 μm) | 4–18.7 particles/kg | [37] |
Fruit Vegetables | - | 1.51–2.52 μm | 52,600–307,750 particles/g 72,175–130,500 particles/g | [52] |
Eggs | Polyethylene | Spherical shape (50–100 μm) | 11.67 ± 3.98 particles/egg | [53] |
Ice cubes | Polypropylene, polyethylene, polyvinyl alcohol, Tygon polymer, Gardena sealing ring (2824, large), polyamide 6, and cellophane | Fibrous (87%) Non-colored (54%) | 19 ± 4–178 ± 78 particles/L | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasopoulou, E.; Power, D.M.; Flemetakis, E.; Tsironi, T. Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review. J. Mar. Sci. Eng. 2025, 13, 1245. https://doi.org/10.3390/jmse13071245
Athanasopoulou E, Power DM, Flemetakis E, Tsironi T. Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review. Journal of Marine Science and Engineering. 2025; 13(7):1245. https://doi.org/10.3390/jmse13071245
Chicago/Turabian StyleAthanasopoulou, Evmorfia, Deborah M. Power, Emmanouil Flemetakis, and Theofania Tsironi. 2025. "Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review" Journal of Marine Science and Engineering 13, no. 7: 1245. https://doi.org/10.3390/jmse13071245
APA StyleAthanasopoulou, E., Power, D. M., Flemetakis, E., & Tsironi, T. (2025). Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review. Journal of Marine Science and Engineering, 13(7), 1245. https://doi.org/10.3390/jmse13071245