Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects
Abstract
1. Introduction
1.1. Background on Plastic Waste and Its Environmental Impact
1.1.1. Marine Pollution and Biodiversity Threat
1.1.2. Plastic Waste in Terrestrial and Atmospheric Systems
1.1.3. Global Spread and Socioeconomic Implications
1.2. Agricultural Waste as a Sustainable Resource for Biopolymer Production
2. Types of Biopolymers Derived from Agricultural Waste
2.1. Cellulose-Based Biopolymers
2.1.1. Introduction to Cellulose and Its Abundance in Agricultural Waste
2.1.2. Extraction Methods of Cellulose from Agricultural Waste
- (a)
- Alkaline Treatment
- (b)
- Bleaching
- (c)
- Acid Hydrolysis
- (d)
- Enzymatic Hydrolysis
- (e)
- Ionic Liquid Treatment
2.1.3. Modification Techniques to Enhance Cellulose Properties
- (a)
- Esterification
- (b)
- Etherification
- (c)
- Oxidation
- (d)
- Graft Copolymerization
2.1.4. Applications of Cellulose-Based Biopolymers in Food Packaging
- (a)
- Biopolymer Films
- (b)
- Coatings and Laminates
- (c)
- Nanocomposites
- (d)
- Active and Intelligent Packaging
2.1.5. Challenges and Future Perspectives
2.2. Starch-Based Biopolymers
2.2.1. Sources and Structure of Starch
2.2.2. Film-Forming Ability of Starch-Based Biopolymers
2.2.3. Challenges Associated with Starch-Based Biopolymers
- (a)
- Poor Water Resistance
- (b)
- Low Mechanical Strength
- (c)
- Retrogradation
- (d)
- Limited Thermal Stability
- (e)
- Processability and Industrial Scalability
2.2.4. Strategies to Overcome Challenges
- (a)
- Use of Plasticizers
- (b)
- Cross-Linking Techniques
- (c)
- Blending with Other Biopolymers
- (d)
- Incorporation of Nanofillers
- (e)
- Enzymatic and Chemical Modification of Starch
2.3. Protein-Based Biopolymers
2.3.1. Sources and Characteristics
- (a)
- Soy Protein
- (b)
- Whey Protein
- (c)
- Casein
- (d)
- Gelatin
- (e)
- Gluten
2.3.2. Advantages of Protein-Based Biopolymers
2.3.3. Limitations of Protein-Based Biopolymers
2.3.4. Strategies for Property Enhancement
2.4. Agricultural Residue-Derived Bioplastics: PHA and PLA
2.4.1. Sources of PHA and PLA
2.4.2. Advantages of PHA and PLA in Food Packaging
2.4.3. Limitations of PHA and PLA
2.4.4. Future Directions
3. Functional Properties of Agricultural Waste-Derived Biopolymers
3.1. Mechanical and Barrier Properties
3.2. Biodegradability
3.3. Antimicrobial and Antioxidant Properties
4. Challenges and Limitations
5. Future Prospects and Sustainability Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wurm, F.R.; Spierling, S.; Endres, H.; Barner, L. Plastics and the environment—Current status and challenges in Germany and Australia. Macromol. Rapid Commun. 2020, 41, 2000351. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development. Plastics and the environment: A pressing global issue. In Plastic Pollution: The Pressing Case for Natural and Environmentally Friendly Substitutes to Plastics; United Nations: New York, NY, USA, 2023; pp. 2–8. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Plastics and the environment. Annu. Rev. Environ. Resour. 2023, 48, 55–79. [Google Scholar] [CrossRef]
- Brooks, A.; Jambeck, J.; Mozo-Reyes, E. Plastic Waste Management and Leakage in Latin America and the Caribbean; Inter-American Development Bank: Washington, DC, USA, 2020. [CrossRef]
- Shen, L.; Worrell, E. Plastic recycling. In Handbook of Recycling; Elsevier: Amsterdam, The Netherlands, 2024; pp. 497–510. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Life cycle assessment of microplastics reveals their greater environmental hazards than mismanaged polymer waste losses. Environ. Sci. Technol. 2022, 56, 11780–11797. [Google Scholar] [CrossRef] [PubMed]
- Hema, M.; Devi, M.K.; Shuba, M.; Usha, R. A mini review on recent insight into degradation of environmental plastics. Int. J. Multidiscip. Res. 2023, 5. [Google Scholar] [CrossRef]
- Hale, R.C.; King, A.E.; Ramirez, J.M. Plastic debris: An overview of composition, sources, environmental occurrence, transport, and fate. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–31. [Google Scholar] [CrossRef]
- Cordova, M.R. Marine plastic debris: Distribution, Abundance, and Impact on Our Seafood. In Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution; IGI Global Scientific Publishing: Hershey, PA, USA, 2020; pp. 94–121. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, N. Plastic pollution in oceans: A Review. Indian J. Sci. Res. 2024, 14, 81–89. [Google Scholar] [CrossRef]
- Garcês, A.; Pires, I. The detrimental impacts of plastic pollution on wildlife. Res. Ecol. 2024, 6, 42–46. [Google Scholar] [CrossRef]
- Schmidt, N.; Castro-Jiménez, J.; Fauvelle, V.; Sempéré, R. Zooplankton and plastic additives—Insights into the chemical pollution of the low-trophic level of the Mediterranean Marine Food Web. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea; Springer Water: Cham, Switzerland, 2017; pp. 121–129. [Google Scholar] [CrossRef]
- Ozturk, R.C.; Altinok, I. Interaction of plastics with Marine Species. Turk. J. Fish. Aquat. Sci. 2020, 20, 647–658. [Google Scholar] [CrossRef]
- Ali, M.M.; Reale, P.; Islam, M.S.; Asaduzzaman, M.; Alam, M.; Rahman, M.M. Plastic pollution in the aquatic ecosystem: An emerging threat and its mechanisms. Adv. Chem. Pollut. Environ. Manag. Prot. 2024, 11, 1–20. [Google Scholar] [CrossRef]
- Barceló, D.; Picó, Y.; Alfarhan, A.H. Microplastics: Detection in human samples, Cell Line Studies, and Health Impacts. Environ. Toxicol. Pharmacol. 2023, 101, 104204. [Google Scholar] [CrossRef]
- Ofoegbu, O.; Onuwa, P.O.; Kelle, H.I.; Onogwu, S.U.; Ajakaye, O.J.; Lullah-Deh, J.A.; Egwumah, J.; Unongul, T.P. The environmental and health implications of microplastics on human and Aquatic Life. Int. J. Res. Innov. Appl. Sci. 2024, IX, 367–377. [Google Scholar] [CrossRef]
- Anabathuni, V.S.V. Investigating the influence of microplastics on Marine Biodiversity and human health. Int. J. Multidiscip. Res. 2024, 6. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A.; Fatima Rizvi, Z. Impact of plastic mulching as a major source of microplastics in Agroecosystems. J. Hazard. Mater. 2023, 445, 130455. [Google Scholar] [CrossRef]
- Surendran, U.; Jayakumar, M.; Raja, P.; Gopinath, G.; Chellam, P.V. Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere 2023, 318, 137946. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, K.V.; Ramya, C.; Raja Viswanathan, M.; Varjani, S. Plastic pollutants: Effective waste management for pollution control and abatement. Curr. Opin. Environ. Sci. Health 2019, 12, 72–84. [Google Scholar] [CrossRef]
- Bangura, D.; Azizi, M.I. Assessing the environmental impact of plastic waste incineration: A case study of freetown, Sierra Leone. Eur. J. Theor. Appl. Sci. 2024, 2, 861–872. [Google Scholar] [CrossRef]
- Chu, J.; Zhou, Y.; Cai, Y.; Wang, X.; Li, C.; Liu, Q. Life-cycle greenhouse gas emissions and the associated carbon-peak strategies for PS, PVC, and ABS plastics in China. Resour. Conserv. Recycl. 2022, 182, 106295. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Walker-Franklin, I. The impacts of plastics’ life cycle. One Earth 2023, 6, 600–606. [Google Scholar] [CrossRef]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef]
- Black, J.; Holmes, D.; Carr, L. A geography of Marine Plastics. Ir. Geogr. 2020, 53, 58–91. [Google Scholar] [CrossRef]
- Arumdani, I.S.; Puspita, A.S.; Budihardjo, M.A. MSW handling of top 5 leading waste-producing countries in Southeast Asia. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012003. [Google Scholar] [CrossRef]
- Ng, C.H.; Mistoh, M.A.; Teo, S.H.; Galassi, A.; Ibrahim, A.; Sipaut, C.S.; Foo, J.; Seay, J.; Taufiq-Yap, Y.H.; Janaun, J. Plastic waste and microplastic issues in Southeast Asia. Front. Environ. Sci. 2023, 11, 1142071. [Google Scholar] [CrossRef]
- Râpă, M.; Cârstea, E.M.; Șăulean, A.A.; Popa, C.L.; Matei, E.; Predescu, A.M.; Predescu, C.; Donțu, S.I.; Dincă, A.G. An overview of the current trends in Marine Plastic Litter Management for a sustainable development. Recycling 2024, 9, 30. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Gabbott, S.; Waters, C.N. Plastic waste: How plastics have become part of the Earth’s geological cycle. In Waste; Academic Press: Cambridge, MA, USA, 2019; pp. 443–452. [Google Scholar] [CrossRef]
- Mikus, M.; Galus, S. Biopolymers from agriculture waste and by-products. In Biopolymers; Springer Series on Polymer and Composite Materials; Springer: Cham, Switzerland, 2022; pp. 111–128. [Google Scholar] [CrossRef]
- Valle, C.; Voss, M.; Calcio Gaudino, E.; Forte, C.; Cravotto, G.; Tabasso, S. Harnessing Agri-food waste as a source of biopolymers for Agriculture. Appl. Sci. 2024, 14, 4089. [Google Scholar] [CrossRef]
- El-Din Al-Mofty, S.; Elghazawy, N.H.; Azzazy, H.M. A one-step facile process for extraction of cellulose from rice husk and its use for mechanical reinforcement of dental glass ionomer cement. RSC Sustain. 2023, 1, 1743–1750. [Google Scholar] [CrossRef]
- Fialho, J.; Moniz, P.; Duarte, L.C.; Carvalheiro, F. Green fractionation approaches for the integrated upgrade of Corn Cobs. ChemEngineering 2023, 7, 35. [Google Scholar] [CrossRef]
- Kaur, J.; Borah, A.; Chutia, H.; Gupta, P. Extraction, modification, and characterization of native Litchi Seed (litchi chinesis sonn.) Starch. J. Sci. Food Agric. 2023, 104, 215–224. [Google Scholar] [CrossRef]
- Mieles-Gómez, L.; Quintana, S.E.; García-Zapateiro, L.A. Ultrasound-assisted extraction of Mango (Mangifera indica) kernel starch: Chemical, techno-functional, and pasting properties. Gels 2023, 9, 136. [Google Scholar] [CrossRef]
- Razzaq, S.; Shahid, S.; Farooq, R.; Noreen, S.; Perveen, S.; Bilal, M. Sustainable bioconversion of agricultural waste substrates into poly (3-hydroxyhexanoate) (MCL-PHA) by Cupriavidus Necator DSM 428. Biomass Convers. Biorefinery 2022, 14, 9429–9439. [Google Scholar] [CrossRef]
- D’ambrosio, S.; Zaccariello, L.; Sadiq, S.; D’albore, M.; Battipaglia, G.; D’agostino, M.; Battaglia, D.; Schiraldi, C.; Cimini, D. Grape stalk valorization: An efficient re-use of lignocellulosic biomass through hydrolysis and fermentation to produce lactic acid from lactobacillus rhamnosus IMC501. Fermentation 2023, 9, 616. [Google Scholar] [CrossRef]
- Mohd Zaini, N.A.; Azizan, N.A.; Abd Rahim, M.H.; Jamaludin, A.A.; Raposo, A.; Raseetha, S.; Zandonadi, R.P.; BinMowyna, M.N.; Raheem, D.; Lho, L.H.; et al. A narrative action on the battle against hunger using mushroom, peanut, and soybean-based wastes. Front. Public Health 2023, 11, 1175509. [Google Scholar] [CrossRef]
- Araújo, D.J.C.; Vilarinho, M.C.L.G.; Machado, A.V. Agroindustrial residues as cellulose source for food packaging applications. In Wastes: Solutions, Treatments and Opportunities III; CRC Press: Boca Raton, FL, USA, 2019; pp. 217–223. [Google Scholar] [CrossRef]
- Riaz, S.; Maan, A.A.; Butt, M.S.; Khan, M.K. Valorization of agricultural residues in the development of biodegradable active packaging films. Ind. Crops Prod. 2024, 215, 118587. [Google Scholar] [CrossRef]
- Marchetti, A.; Salvatori, G.; Nguemna, L.T.; Grumi, M.; Basar, A.O.; Pardo-Figuerez, M.; Lagaron, J.M.; Prieto, C.; Marcoaldi, C.; Villano, M.; et al. Developing bioplastics from agro-industrial wastes for applications in food packaging. In Burleigh Dodds Series in Agricultural Science; Burleigh Dodds Science Publishing: Cambridge, UK, 2024; pp. 273–316. [Google Scholar] [CrossRef]
- Cristofoli, N.L.; Lima, A.R.; Tchonkouang, R.D.; Quintino, A.C.; Vieira, M.C. Advances in the food packaging production from Agri-Food Waste and by-products: Market trends for a sustainable development. Sustainability 2023, 15, 6153. [Google Scholar] [CrossRef]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.K.P.G.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A.; et al. Utilisation of agro-industrial waste for Sustainable Green Production: A Review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Wan-Mohtar, W.A.; Khalid, N.I.; Rahim, M.H.; Luthfi, A.A.; Zaini, N.S.; Din, N.A.; Mohd Zaini, N.A. Underutilized Malaysian agro-industrial wastes as Sustainable Carbon Sources for lactic acid production. Fermentation 2023, 9, 905. [Google Scholar] [CrossRef]
- Dutta, D.; Sit, N. A comprehensive review on types and properties of biopolymers as Sustainable Bio-based alternatives for Packaging. Food Biomacromol. 2024, 1, 58–87. [Google Scholar] [CrossRef]
- Donkor, L.; Kontoh, G.; Yaya, A.; Bediako, J.K.; Apalangya, V. Bio-based and sustainable food packaging systems: Relevance, challenges, and prospects. Appl. Food Res. 2023, 3, 100356. [Google Scholar] [CrossRef]
- Vincent, S.; Kandasubramanian, B. Cellulose nanocrystals from agricultural resources: Extraction and functionalisation. Eur. Polym. J. 2021, 160, 110789. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A Review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHA), Green Alternatives to petroleum-based plastics: A Review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Sabita, A.; Putri, N.A.; Azliza, N.; Illiyanasafa, N.; Darmokoesoemo, H.; Amenaghawon, A.N.; Kurniawan, T.A. Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm. Food Chem. Mol. Sci. 2024, 9, 100225. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer Composites: A Review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
- Wohlert, M.; Benselfelt, T.; Wågberg, L.; Furó, I.; Berglund, L.A.; Wohlert, J. Cellulose and the role of hydrogen bonds: Not in charge of everything. Cellulose 2021, 29, 1–23. [Google Scholar] [CrossRef]
- Selvam, T.; Zainal Abidin, S.Z.; Abd Rahman, N.M. Transforming biomass into batteries: Harnessing cellulose and nanocellulose for a Sustainable Energy Storage Future. Int. J. Mater. Res. 2025. [Google Scholar] [CrossRef]
- Nahak, B.K.; Preetam, S.; Sharma, D.; Shukla, S.K.; Syväjärvi, M.; Toncu, D.-C.; Tiwari, A. Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production. Renew. Sustain. Energy Rev. 2022, 161, 112393. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic materials for the production of biofuels, biochemicals and biomaterials and applications of lignocellulose-based polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef]
- Pei, W.; Yu, Y.; Wang, P.; Zheng, L.; Lan, K.; Jin, Y.; Yong, Q.; Huang, C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the Bibliometric Analysis: A Review. Int. J. Biol. Macromol. 2024, 267, 131505. [Google Scholar] [CrossRef]
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle—Developing a circular economy in agriculture. Energy Procedia 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Neh, A. Agricultural Waste Management System [AWMS] in Malaysian. Open Access J. Waste Manag. Xenobiotics 2020, 3, 1–2. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kamalesh, T.; Kumar, P.S.; Hemavathy, R.V.; Rangasamy, G. A critical review on sustainable cellulose materials and its multifaceted applications. Ind. Crops Prod. 2023, 203, 117221. [Google Scholar] [CrossRef]
- Das, P.P.; Kalyani, P.; Kumar, R.; Khandelwal, M. Cellulose-based natural nanofibers for fresh produce packaging: Current status, sustainability and future outlook. Sustain. Food Technol. 2023, 1, 528–544. [Google Scholar] [CrossRef]
- Magalhães, S.; Fernandes, C.; Pedrosa, J.F.S.; Alves, L.; Medronho, B.; Ferreira, P.J.T.; Rasteiro, M.d.G. Eco-friendly methods for extraction and modification of cellulose: An overview. Polymers 2023, 15, 3138. [Google Scholar] [CrossRef] [PubMed]
- Sharif, F.; Muhammad, N.; Zafar, T. Cellulose based biomaterials: Benefits and challenges. In Biofibers and Biopolymers for Biocomposites; Springer: Cham, Switzerland, 2020; pp. 229–246. [Google Scholar] [CrossRef]
- Ahmad Khorairi, A.N.; Sofian-Seng, N.-S.; Othaman, R.; Mohd Razali, N.S.; Kasim, K.F. Assessment of natural cellulosic powder from pepper pericarp waste (Piper nigrum L.) after alkalization and bleaching treatment: Effect of alkali concentration and treatment cycle. Sains Malays. 2022, 51, 1061–1074. [Google Scholar] [CrossRef]
- Permata, D.A.; Kasim, A.; Asben, A.; Yusniwati. Delignification of lignocellulosic biomass. World J. Adv. Res. Rev. 2021, 12, 462–469. [Google Scholar] [CrossRef]
- Al-Rajabi, M. Impact of alkali concentration in delignification treatment for cellulose extraction from Rice Straw. Jordanian J. Eng. Chem. Ind. 2024, 7, 94–102. [Google Scholar] [CrossRef]
- Mohan, P.; Yusof, N.S.; Thomas, S.; Abd Rahman, N.M. Ultrasound-alkali-assisted isolation of cellulose from coconut shells. BioResources 2024, 19, 7870–7885. [Google Scholar] [CrossRef]
- Modenbach, A.A.; Nokes, S. Effects of sodium hydroxide pretreatment on structural components of biomass. Trans. ASABE 2014, 57, 1187–1198. [Google Scholar] [CrossRef]
- Lu, Y.; He, Q.; Fan, G.; Cheng, Q.; Song, G. Extraction and modification of hemicellulose from lignocellulosic biomass: A Review. Green Process. Synth. 2021, 10, 779–804. [Google Scholar] [CrossRef]
- Chik, J.Y.; Wan-Ibrahim, W.S.; Mohamed Tamat, N.S. Extraction of cellulose from Corn Tassel using alkaline pretreatment and Bleaching process. BIO Web Conf. 2024, 131, 01004. [Google Scholar] [CrossRef]
- Klunklin, W.; Hinmo, S.; Thipchai, P.; Rachtanapun, P. Effect of bleaching processes on physicochemical and functional properties of cellulose and carboxymethyl cellulose from young and mature coconut coir. Polymers 2023, 15, 3376. [Google Scholar] [CrossRef]
- Li, J.; Zha, Y.-N.; Wang, H.-M.; Tian, J.-N.; Hou, Q.-X. Advances in lignin chemistry during pulping and bleaching. Ind. Crops Prod. 2025, 229, 121004. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y. Optimization of bleaching process for cellulose extraction from Apple and Kale Pomace and evaluation of their potentials as film forming materials. Carbohydr. Polym. 2021, 253, 117225. [Google Scholar] [CrossRef] [PubMed]
- Tursi, A.; Olivito, F. Biomass Conversion: General Information, Chemistry, and Processes. In Advances in Bioenergy and Microfluidic Applications; Rahimpour, M.R., Kamali, R., Makarem, M.A., Dehghan Manshadi, M.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–39. [Google Scholar] [CrossRef]
- Woldie, W.A.; Shibeshi, N.T.; Kuffi, K.D. Optimization of cellulose nanocrystals extraction from teff straw using acid hydrolysis followed by ultrasound sonication. Carbohydr. Polym. Technol. Appl. 2025, 9, 100707. [Google Scholar] [CrossRef]
- Saupi, F.A.; Yusof, N.S.; Rajagopal, V.; Rahman, N.M. Comparative analysis of nanocellulose extraction from Cocos nucifera shell by ultrasonication versus acid hydrolysis for methylene blue dye removal. Iran. Polym. J. 2025. [Google Scholar] [CrossRef]
- Serrano-Martínez, V.M.; Pérez-Aguilar, H.; Carbonell-Blasco, M.P.; García-García, A.; Arán-Ais, F.; Orgilés-Calpena, E. Effect of acid hydrolysis conditions on the extraction of cellulose nanocrystals. Polymers 2025, 17, 1313. [Google Scholar] [CrossRef] [PubMed]
- Chaka, K.T. Extraction of cellulose nanocrystals from agricultural by-products: A Review. Green Chem. Lett. Rev. 2022, 15, 582–597. [Google Scholar] [CrossRef]
- Hu, M.; Lv, X.; Wang, Y.; Zhang, Y.; Dai, H. Guideline for the extraction of nanocellulose from lignocellulosic feedstocks. Food Biomacromol. 2024, 1, 9–17. [Google Scholar] [CrossRef]
- Dong, S.; Bortner, M.J.; Roman, M. Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study. Ind. Crops Prod. 2016, 93, 76–87. [Google Scholar] [CrossRef]
- Olivito, F.; Jagdale, P.; Oza, G. Direct Production of Furfural from Fructose Catalyzed by Iron(III) Sulfate Using a Simple Distillation Apparatus. ACS Sustain. Chem. Eng. 2025, 11, 17595–17599. [Google Scholar] [CrossRef]
- Alhaji Mohammed, M.; Basirun, W.J.; Abd Rahman, N.M.; Shalauddin, M.d.; Salleh, N.M. The effect of acid hydrolysis parameters on the properties of nanocellulose extracted from Almond shells. J. Nat. Fibers 2022, 19, 14102–14114. [Google Scholar] [CrossRef]
- Almashhadani, A.Q.; Leh, C.P.; Chan, S.-Y.; Lee, C.Y.; Goh, C.F. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters. Carbohydr. Polym. 2022, 286, 119285. [Google Scholar] [CrossRef]
- de Farias, D.T.; Labidi, J.; Pedrazzi, C.; Gatto, D.A.; de Cademartori, P.H.G.; Welter, C.A.; da Silva, G.T.; de Almeida, T.M. Acid-hydrolysis-assisted cellulose nanocrystal isolation from acacia mearnsii de wild. wood kraft pulp. Polymers 2024, 16, 3371. [Google Scholar] [CrossRef]
- Rasheed, M.; Jawaid, M.; Parveez, B.; Zuriyati, A.; Khan, A. Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. Int. J. Biol. Macromol. 2020, 160, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Wang, S.; Ma, L.; Yu, Y.; Dai, H.; Zhang, Y. Extraction and comparison of cellulose nanocrystals from lemon (citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydr. Polym. 2020, 238, 116180. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, T.; Wondu, K.; Dilebo, J. Valorization of khat (Catha edulis) waste for the production of cellulose fibers and nanocrystals. PLoS ONE 2021, 16, e0246794. [Google Scholar] [CrossRef]
- Lu, S.; Ma, T.; Hu, X.; Zhao, J.; Liao, X.; Song, Y.; Hu, X. Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw. J. Sci. Food Agric. 2021, 102, 312–321. [Google Scholar] [CrossRef]
- Rovera, C.; Carullo, D.; Bellesia, T.; Büyüktaş, D.; Ghaani, M.; Caneva, E.; Farris, S. Extraction of high-quality grade cellulose and cellulose nanocrystals from different lignocellulosic agri-food wastes. Front. Sustain. Food Syst. 2023, 6, 1087867. [Google Scholar] [CrossRef]
- Banvillet, G.; Depres, G.; Belgacem, N.; Bras, J. Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production. Carbohydr. Polym. 2021, 255, 117383. [Google Scholar] [CrossRef]
- Waghmare, P.; Xu, N.; Waghmare, P.; Liu, G.; Qu, Y.; Li, X.; Zhao, J. Production and characterization of cellulose nanocrystals from eucalyptus dissolving pulp using endoglucanases from Myceliophthora Thermophila. Int. J. Mol. Sci. 2023, 24, 10676. [Google Scholar] [CrossRef]
- Akram, F.; Haq, I.U.; Shah, F.I.; Aqeel, A.; Ahmed, Z.; Mir, A.S.; Qureshi, S.S.; Raja, S.I. Genus thermotoga: A valuable home of multifunctional glycoside hydrolases (GHS) for Industrial Sustainability. Bioorg. Chem. 2022, 127, 105942. [Google Scholar] [CrossRef]
- Amândio, M.S.; Rocha, J.M.; Xavier, A.M. Enzymatic hydrolysis strategies for cellulosic sugars production to obtain bioethanol from eucalyptus globulus bark. Fermentation 2023, 9, 241. [Google Scholar] [CrossRef]
- Mukherjee, P.; Pal, S.; Sivaprakasam, S. Process parameter controls for efficient enzymatic hydrolysis of cellulosic biomass. In Handbook of Biorefinery Research and Technology: Biomass Logistics to Saccharification; Springer: Dordrecht, The Netherlands, 2024; pp. 1023–1051. [Google Scholar] [CrossRef]
- Wada, M.; Yoshimura, A.; Amano, Y. Cellulose Nanofibers, Method for Producing Same, Aqueous Dispersion Using Cellulose Nanofibers, and Fiber-Reinforced Composite Material. 2014. Available online: https://patents.google.com/patent/WO2015037658A1/en (accessed on 8 May 2025).
- Afrin, S.; Karim, Z. Isolation and surface modification of nanocellulose: Necessity of enzymes over chemicals. ChemBioEng Rev. 2017, 4, 289–303. [Google Scholar] [CrossRef]
- Shokri, Z.; Seidi, F.; Saeb, M.R.; Jin, Y.; Li, C.; Xiao, H. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: A Review. Mater. Today Chem. 2022, 24, 100780. [Google Scholar] [CrossRef]
- Ibrahim, F.; Moniruzzaman, M.; Yusup, S.; Uemura, Y. Dissolution of cellulose with Ionic liquid in pressurized cell. J. Mol. Liq. 2015, 211, 370–372. [Google Scholar] [CrossRef]
- Amini, E.; Valls, C.; Roncero, M.B. Ionic liquid-assisted bioconversion of lignocellulosic biomass for the development of value-added products. J. Clean. Prod. 2021, 326, 129275. [Google Scholar] [CrossRef]
- Azimi, B.; Maleki, H.; Gigante, V.; Bagherzadeh, R.; Mezzetta, A.; Milazzo, M.; Guazzelli, L.; Cinelli, P.; Lazzeri, A.; Danti, S. Cellulose-based fiber spinning processes using ionic liquids. Cellulose 2022, 29, 3079–3129. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jahan, M.S.; Islam, M.M.; Susan, M.A.B.H. Dissolution of cellulose in imidazolium-based double salt ionic liquids. Int. J. Biol. Macromol. 2024, 267, 131331. [Google Scholar] [CrossRef]
- Inman, G.; Nlebedim, I.C.; Prodius, D. Application of ionic liquids for the recycling and recovery of technologically critical and valuable metals. Energies 2022, 15, 628. [Google Scholar] [CrossRef]
- Ci, Y.; Chen, T.; Li, F.; Zou, X.; Tang, Y. Cellulose dissolution and regeneration behavior via DBU-Levulinic acid solvents. Int. J. Biol. Macromol. 2023, 252, 126548. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Ionic liquids and deep-eutectic solvents in extractive metallurgy: Mismatch between academic research and industrial applicability. J. Sustain. Metall. 2023, 9, 423–438. [Google Scholar] [CrossRef]
- Szabó, L.; Milotskyi, R.; Sharma, G.; Takahashi, K. Cellulose processing in ionic liquids from a materials science perspective: Turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chem. 2023, 25, 5338–5389. [Google Scholar] [CrossRef]
- Asim, N.; Badiei, M.; Mohammad, M. Recent advances in cellulose-based hydrophobic food packaging. Emergent Mater. 2021, 5, 703–718. [Google Scholar] [CrossRef]
- Alkassfarity, A.N.; Yassin, M.A.; Abdel Rehim, M.H.; Liu, L.; Jiao, Z.; Wang, B.; Wei, Z. Modified cellulose nanocrystals enhanced polycaprolactone multifunctional films with barrier, UV-blocking and antimicrobial properties for food packaging. Int. J. Biol. Macromol. 2024, 261, 129871. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Xie, Y.; Zhang, K. Functional nanomaterials through esterification of cellulose: A review of Chemistry and Application. Cellulose 2018, 25, 3703–3731. [Google Scholar] [CrossRef]
- Jiang, Z.; Cheung, K.M.; Ngai, T. Development of strong and high-barrier food packaging films from cyclic-anhydride modified bacterial cellulose. RSC Sustain. 2024, 2, 139–152. [Google Scholar] [CrossRef]
- Bangar, S.P.; Ashogbon, A.O.; Dhull, S.B.; Thirumdas, R.; Kumar, M.; Hasan, M.; Chaudhary, V.; Pathem, S. Proso-millet starch: Properties, functionality, and applications. Int. J. Biol. Macromol. 2021, 190, 960–968. [Google Scholar] [CrossRef]
- Mukherjee, S.; Jana, S.; Khawas, S.; Kicuntod, J.; Marschall, M.; Ray, B.; Ray, S. Synthesis, molecular features and biological activities of Modified Plant Polysaccharides. Carbohydr. Polym. 2022, 289, 119299. [Google Scholar] [CrossRef]
- Ávila Ramírez, J.A.; Gómez Hoyos, C.; Arroyo, S.; Cerrutti, P.; Foresti, M.L. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent. Carbohydr. Polym. 2016, 153, 686–695. [Google Scholar] [CrossRef]
- Fei, P.; Liao, L.; Cheng, B.; Song, J. Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal. Methods 2017, 9, 6194–6201. [Google Scholar] [CrossRef]
- Wolfs, J.; Scheelje, F.C.; Matveyeva, O.; Meier, M.A. Determination of the degree of substitution of cellulose esters via atr-ftir spectroscopy. J. Polym. Sci. 2023, 61, 2697–2707. [Google Scholar] [CrossRef]
- Romão, S.; Bettencourt, A.; Ribeiro, I.A. Novel features of cellulose-based films as sustainable alternatives for Food Packaging. Polymers 2022, 14, 4968. [Google Scholar] [CrossRef]
- Mustafa, A.; Talha, M.; Maan, A.A.; Khan, M.K.I.; Tanveer, M.; Arif, S.; Butt, M.S.; Nazir, A. Extending bio-based and biodegradable thermoplastics in food packaging: A focus on Multiphase Systems. Food Front. 2025, 6, 1129–1172. [Google Scholar] [CrossRef]
- He, M.; Lin, Y.; Huang, Y.; Fang, Y.; Xiong, X. Research progress of the preparation of cellulose ethers and their applications: A short review. Molecules 2025, 30, 1610. [Google Scholar] [CrossRef]
- You, J.; Zhang, X.; Mi, Q.; Zhang, J.; Wu, J.; Zhang, J. Mild, rapid and efficient etherification of cellulose. Cellulose 2022, 29, 9583–9596. [Google Scholar] [CrossRef]
- Negi, A. Cationized cellulose materials: Enhancing surface adsorption properties towards synthetic and natural dyes. Polymers 2024, 17, 36. [Google Scholar] [CrossRef]
- Kamthai, S.; Magaraphan, R. Mechanical and barrier properties of spray dried carboxymethyl cellulose (CMC) film from bleached Bagasse Pulp. Ind. Crops Prod. 2017, 109, 753–761. [Google Scholar] [CrossRef]
- Acharya, S.; Liyanage, S.; Parajuli, P.; Rumi, S.S.; Shamshina, J.L.; Abidi, N. Utilization of cellulose to its full potential: A review on cellulose dissolution, regeneration, and applications. Polymers 2021, 13, 4344. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Demirkesen, I.; Colussi, R.; Roy, S.; Tabassum, N.; Filho, J.G.d.O.; Bist, Y.; Kumar, Y.; Nowacka, M.; Galus, S.; et al. Recent trends in the application of films and coatings based on starch, cellulose, chitin, chitosan, xanthan, Gellan, Pullulan, Arabic gum, alginate, pectin, and carrageenan in food packaging. Food Front. 2024, 5, 350–391. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Vilarinho, F.; Fernando, A.L.; Silva, A.S. Active edible packaging. Encyclopedia 2021, 1, 360–370. [Google Scholar] [CrossRef]
- Lin, D.; Zheng, Y.; Wang, X.; Huang, Y.; Ni, L.; Chen, X.; Wu, Z.; Huang, C.; Yi, Q.; Li, J.; et al. Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. Int. J. Biol. Macromol. 2020, 165, 1241–1249. [Google Scholar] [CrossRef]
- Ceren Kaya, E.; Yucel, U. Advances in cellulose-based packaging films for Food Products. In Cellulose—Fundamentals and Conversion Into Biofuel and Useful Chemicals; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Anjali, P.N.; Bosco, S.J.; Zainab, S.; Sunooj, K.V. Cellulose and cellulose derivative-based films. In Polysaccharide Based Films for Food Packaging: Fundamentals, Properties and Applications; Springer: Singapore, 2024; pp. 65–94. [Google Scholar] [CrossRef]
- Akhlaq, M.; Maqsood, H.; Uroos, M.; Iqbal, A. A comparative study of different methods for cellulose extraction from lignocellulosic wastes and conversion into carboxymethyl cellulose. ChemistrySelect 2022, 7, e202201533. [Google Scholar] [CrossRef]
- Jaušovec, D.; Vogrinčič, R.; Kokol, V. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/tempo mediated oxidation. Carbohydr. Polym. 2015, 116, 74–85. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, Structural Design, and applications. Carbohydr. Polym. 2024, 341, 122305. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, S.; Yin, Y.; Jiang, S.; Mo, W. Fabrication of C-6 position carboxyl regenerated cotton cellulose by H 2 o 2 and its promotion in flame retardency of epoxy resin. Polym. Degrad. Stab. 2017, 142, 150–159. [Google Scholar] [CrossRef]
- Ouhammou, M.; Mourak, A.; Ait-Karra, A.; Abderrahim, J.; Elhadiri, N.; Mahrouz, M. Extraction, isolation, and tempo-NABR-naclo oxidation modification of cellulose from coffee grounds. Biomass 2025, 5, 22. [Google Scholar] [CrossRef]
- Pitcher, M.L.; Koshani, R.; Sheikhi, A. Chemical structure–property relationships in nanocelluloses. J. Polym. Sci. 2023, 62, 9–31. [Google Scholar] [CrossRef]
- Fernández-Santos, J.; Valls, C.; Cusola, O.; Roncero, M.B. Periodate oxidation of nanofibrillated cellulose films for active packaging applications. Int. J. Biol. Macromol. 2024, 267, 131553. [Google Scholar] [CrossRef]
- Li, D.; Li, E.-J.; Li, L.; Li, B.; Jia, S.; Xie, Y.; Zhong, C. Effect of tempo-oxidized bacterial cellulose nanofibers stabilized pickering emulsion of cinnamon essential oil on structure and properties of gelatin composite films. Int. J. Biol. Macromol. 2024, 264, 130344. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, X.; Yu, M.; Mondal, A.K.; Wu, H. Recent advances in tempo-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. Int. J. Biol. Macromol. 2024, 259, 129081. [Google Scholar] [CrossRef]
- Gupta, P.; Neelam Baghel, K.; Sharma, V.; Azam, Z. Applications of cellulose in Biobased Food Packaging Systems. In Biobased Packaging Materials; Springer: Singapore, 2023; pp. 101–124. [Google Scholar] [CrossRef]
- Chen, J.; Chen, F.; Meng, Y.; Wang, S.; Long, Z. Oxidized microcrystalline cellulose improve thermoplastic starch-based composite films: Thermal, mechanical and water-solubility properties. Polymer 2019, 168, 228–235. [Google Scholar] [CrossRef]
- El Miri, N.; Heggset, E.B.; Wallsten, S.; Svedberg, A.; Syverud, K.; Norgren, M. A comprehensive investigation on modified cellulose nanocrystals and their films properties. Int. J. Biol. Macromol. 2022, 219, 998–1008. [Google Scholar] [CrossRef]
- Kang, H.; Liu, R.; Huang, Y. Graft modification of cellulose: Methods, properties and applications. Polymer 2015, 70, A1–A16. [Google Scholar] [CrossRef]
- Purohit, P.; Bhatt, A.; Mittal, R.K.; Abdellattif, M.H.; Farghaly, T.A. Polymer grafting and its chemical reactions. Front. Bioeng. Biotechnol. 2023, 10, 1044927. [Google Scholar] [CrossRef]
- Vega-Hernández, M.Á.; Cano-Díaz, G.S.; Vivaldo-Lima, E.; Rosas-Aburto, A.; Hernández-Luna, M.G.; Martinez, A.; Palacios-Alquisira, J.; Mohammadi, Y.; Penlidis, A. A review on the synthesis, characterization, and modeling of polymer grafting. Processes 2021, 9, 375. [Google Scholar] [CrossRef]
- Ko, R.V.; Soon, K.H.; Siddique, B.M.; Jayamani, E.; Lee, X.Y.; Palanisamy, S. A comparative study on graft copolymerization of MMA onto wood fiber under microwave and conventional heating. J. Phys. Conf. Ser. 2023, 2484, 012010. [Google Scholar] [CrossRef]
- Fortunatti, C.; Sarmoria, C.; Brandolin, A.; Asteasuain, M. Prediction of the full molecular weight distribution in raft polymerization using probability generating functions. Comput. Aided Chem. Eng. 2013, 32, 859–864. [Google Scholar] [CrossRef]
- Lee, D.; Wang, H.; Verduzco, R. Progress in photocontrolled radical polymerization for the synthesis of nonlinear polymer architectures. J. Polym. Sci. 2024, 62, 3879–3896. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.; Abdel-Naby, A. Biodegradable Cellulose-Based Materials for the Use in Food Packaging. Int. J. Chem. Mater. Eng. 2018, 12, 195–200. [Google Scholar] [CrossRef]
- Jiang, Z.; Ngai, T. Recent advances in chemically modified cellulose and its derivatives for food packaging applications: A Review. Polymers 2022, 14, 1533. [Google Scholar] [CrossRef]
- Huang, K.; Maltais, A.; Wang, Y. Enhancing water resistance of regenerated cellulose films with organosilanes and cellulose nanocrystals for food packaging. Carbohydr. Polym. Technol. Appl. 2023, 6, 100391. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, R.K.r.; Singh, A.P. Grafted cellulose: A bio-based polymer for durable applications. Polym. Bull. 2017, 75, 2213–2242. [Google Scholar] [CrossRef]
- Liu, X.; Qin, Z.; Ma, Y.; Liu, H.; Wang, X. Cellulose-based films for Food Packaging Applications: Review of preparation, properties, and prospects. J. Renew. Mater. 2023, 11, 3203–3225. [Google Scholar] [CrossRef]
- Nath, P.C.; Sharma, R.; Mahapatra, U.; Mohanta, Y.K.; Rustagi, S.; Sharma, M.; Mahajan, S.; Nayak, P.K.; Sridhar, K. Sustainable production of cellulosic biopolymers for Enhanced Smart Food Packaging: An up-to-date review. Int. J. Biol. Macromol. 2024, 273, 133090. [Google Scholar] [CrossRef]
- Liu, Y.; Ahmed, S.; Sameen, D.E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A review of cellulose and its derivatives in biopolymer-based for Food Packaging Application. Trends Food Sci. Technol. 2021, 112, 532–546. [Google Scholar] [CrossRef]
- Saedi, S.; Garcia, C.V.; Kim, J.T.; Shin, G.H. Physical and chemical modifications of cellulose fibers for food packaging applications. Cellulose 2021, 28, 8877–8897. [Google Scholar] [CrossRef]
- Salgado, P.R.; Di Giorgio, L.; Musso, Y.S.; Mauri, A.N. Recent developments in smart food packaging focused on biobased and biodegradable polymers. Front. Sustain. Food Syst. 2021, 5, 630393. [Google Scholar] [CrossRef]
- Mkhari, T.; Adeyemi, J.O.; Fawole, O.A. Recent advances in the fabrication of intelligent packaging for Food Preservation: A Review. Processes 2025, 13, 539. [Google Scholar] [CrossRef]
- Hussain, S.A.; Yadav, M.P.; Sharma, B.K.; Qi, P.X.; Jin, T.Z. Biodegradable food packaging films using a combination of hemicellulose and cellulose derivatives. Polymers 2024, 16, 3171. [Google Scholar] [CrossRef]
- Oza, G.; Olivito, F.; Rohokale, A.; Nardi, M.; Procopio, A.; Wan-Mohtar, W.A.A.Q.I.; Jagdale, P. Advancements in Catalytic Depolymerization Technologies. Polymers 2025, 17, 1614. [Google Scholar] [CrossRef]
- Dhalsamant, K.; Dalai, A.; Pattnaik, F.; Acharya, B. Biodegradable carbohydrate-based films for packaging agricultural products—A review. Polymers 2025, 17, 1325. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Z.-H.; Yang, B.; Ji, X.; Huang, H.-D.; Zhong, G.-J.; Xu, L.; Li, Z.-M. Robust cellulose nanocomposite films based on covalently cross-linked network with effective resistance to water permeability. Carbohydr. Polym. 2019, 211, 237–248. [Google Scholar] [CrossRef]
- Paudel, S.; Regmi, S.; Janaswamy, S. Effect of glycerol and sorbitol on cellulose-based biodegradable films. Food Packag. Shelf Life 2023, 37, 101090. [Google Scholar] [CrossRef]
- Metha, C.; Pawar, S.; Suvarna, V. Recent advancements in alginate-based films for active food packaging applications. Sustain. Food Technol. 2024, 2, 1246–1265. [Google Scholar] [CrossRef]
- Nechita, P.; Roman, M. Review on Polysaccharides used in coatings for food packaging papers. Coatings 2020, 10, 566. [Google Scholar] [CrossRef]
- Fotie, G.; Limbo, S.; Piergiovanni, L. Manufacturing of food packaging based on nanocellulose: Current advances and challenges. Nanomaterials 2020, 10, 1726. [Google Scholar] [CrossRef]
- Kaushani, K.G.; Priyadarshana, G.; Katuwavila, N.P.; Jayasinghe, R.A.; Nilmini, A.H.L.R. Recent advances of edible packaging as an alternative in food packaging applications. Asian J. Chem. 2022, 34, 2523–2537. [Google Scholar] [CrossRef]
- Gupta, D.; Lall, A.; Kumar, S.; Patil, T.D.; Gaikwad, K.K. Plant-based edible films and coatings for food-packaging applications: Recent advances, applications, and Trends. Sustain. Food Technol. 2024, 2, 1428–1455. [Google Scholar] [CrossRef]
- Akhrib, S.; Djellali, S.; Haddaoui, N.; Karimian, D.; Carraro, M. Biocomposites and poly(lactic acid) in active packaging: A review of current research and Future Directions. Polymers 2024, 17, 3. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, F.; Mohanty, A.K.; Misra, M. Sustainable biodegradable coatings for food packaging: Challenges and opportunities. Green Chem. 2024, 26, 4934–4974. [Google Scholar] [CrossRef]
- Oliveira, I.; Pinto, T.; Afonso, S.; Karaś, M.; Szymanowska, U.; Gonçalves, B.; Vilela, A. Sustainability in bio-based edible films, coatings, and packaging for small fruits. Appl. Sci. 2025, 15, 1462. [Google Scholar] [CrossRef]
- Ribeiro, T.S.M.; Martins, C.C.N.; Scatolino, M.V.; Dias, M.C.; Mascarenhas, A.R.P.; Ferreira, C.B.; Bianchi, M.L.; Tonoli, G.H.D. Using cellulose Nanofibril from sugarcane bagasse as an eco-friendly ductile reinforcement in starch films for packaging. Sustainability 2025, 17, 4128. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Guo, M.; Jin, T.Z.; Arabi, S.A.; He, Q.; Ismail, B.B.; Hu, Y.; Liu, D. Antimicrobial and UV blocking properties of composite chitosan films with curcumin grafted cellulose nanofiber. Food Hydrocoll. 2021, 112, 106337. [Google Scholar] [CrossRef]
- Babaei-Ghazvini, A.; Vafakish, B.; Patel, R.; Falua, K.J.; Dunlop, M.J.; Acharya, B. Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization. Int. J. Biol. Macromol. 2024, 258, 128834. [Google Scholar] [CrossRef]
- Oun, A.A.; Sorour, M.A.; El-Mahrouky, A.S. Cellulose-based nanomaterials in food packaging. In Smart Nanomaterials Technology; Springer: Singapore, 2025; pp. 129–149. [Google Scholar] [CrossRef]
- Ahankari, S.S.; Subhedar, A.R.; Bhadauria, S.S.; Dufresne, A. Nanocellulose in Food Packaging: A Review. Carbohydr. Polym. 2021, 255, 117479. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Harussani, M.M.; Ilyas, R.A.; Ashogbon, A.O.; Singh, A.; Trif, M.; Jafari, S.M. Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocoll. 2022, 130, 107689. [Google Scholar] [CrossRef]
- Gan, P.G.; Sam, S.T.; Abdullah, M.F.; Omar, M.F. Thermal properties of nanocellulose-reinforced composites: A Review. J. Appl. Polym. Sci. 2019, 137, 48544. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Kadirvel, V.; Palanisamy, Y.; Ganesan, N.D. Active packaging system—An overview of recent advances for enhanced food quality and safety. Packag. Technol. Sci. 2024, 38, 145–162. [Google Scholar] [CrossRef]
- Ghosh, T.; Roy, S.; Khan, A.; Mondal, K.; Ezati, P.; Rhim, J.-W. Agricultural waste-derived cellulose nanocrystals for sustainable active food packaging applications. Food Hydrocoll. 2024, 154, 110141. [Google Scholar] [CrossRef]
- Casalini, S.; Giacinti Baschetti, M. The use of essential oils in chitosan or cellulose-based materials for the production of Active Food Packaging Solutions: A Review. J. Sci. Food Agric. 2022, 103, 1021–1041. [Google Scholar] [CrossRef]
- D’Almeida, A.P.; de Albuquerque, T.L. Innovations in food packaging: From bio-based materials to Smart Packaging Systems. Processes 2024, 12, 2085. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Khan, S.; Mehdizadeh, M.; Bahmid, N.A.; Adli, D.N.; Walker, T.R.; Perestrelo, R.; Câmara, J.S. Phytochemicals and bioactive constituents in food packaging—A systematic review. Heliyon 2023, 9, e21196. [Google Scholar] [CrossRef]
- Luo, Q.; Hossen, A.; ESameen, D.; Ahmed, S.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Recent advances in the fabrication of ph-sensitive indicators films and their application for Food Quality Evaluation. Crit. Rev. Food Sci. Nutr. 2021, 63, 1102–1118. [Google Scholar] [CrossRef] [PubMed]
- Kaewprachu, P.; Jaisan, C.; Rawdkuen, S.; Osako, K. Colorimetric indicator films based on carboxymethyl cellulose and anthocyanins as a visual indicator for shrimp freshness tracking. Heliyon 2024, 10, e31527. [Google Scholar] [CrossRef]
- Chiu, I.; Ye, H.; Aayush, K.; Yang, T. Intelligent Food Packaging for smart sensing of Food Safety. Adv. Food Nutr. Res. 2024, 111, 215–259. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Agbesi, P.; Arafat, K.M.Y.; Urdaneta, F.; Dey, M.; Basak, M.; Hong, S.; Umeileka, C.; Argyropoulos, D. Bio-based Smart Packaging: Fundamentals and functions in Sustainable Food Systems. Trends Food Sci. Technol. 2024, 145, 104369. [Google Scholar] [CrossRef]
- Soundara Rajan, S.; Wani, K.M. A review of Smart Food and packaging technologies: Revolutionizing Nutrition and Sustainability. Food Humanit. 2025, 4, 100593. [Google Scholar] [CrossRef]
- Madhushree, M.; Vairavel, P.; Mahesha, G.; Bhat, K.S. A comprehensive review of cellulose and cellulose-based materials: Extraction, modification, and sustainable applications. J. Nat. Fibers 2024, 21, 2418357. [Google Scholar] [CrossRef]
- Verma, J.; Petru, M.; Goel, S. Cellulose based materials to accelerate the transition towards Sustainability. Ind. Crops Prod. 2024, 210, 118078. [Google Scholar] [CrossRef]
- Yaradoddi, J.S.; Banapurmath, N.R.; Ganachari, S.V.; Soudagar, M.E.M.; Mubarak, N.M.; Hallad, S.; Hugar, S.; Fayaz, H. Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci. Rep. 2020, 10, 21960. [Google Scholar] [CrossRef]
- Mori, R. Replacing all petroleum-based chemical products with natural biomass-based chemical products: A tutorial review. RSC Sustain. 2023, 1, 179–212. [Google Scholar] [CrossRef]
- Teixeira, S.C.; de Oliveira, T.V.; de Fátima Ferreira Soares, N.; Raymundo-Pereira, P.A. Sustainable and biodegradable polymer packaging: Perspectives, challenges, and opportunities. Food Chem. 2025, 470, 142652. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ren, Y.; Hou, Y.; Zhan, Q.; Jin, P.; Zheng, Y.; Wu, Z. Polysaccharide-based composite films: Promising Biodegradable Food Packaging Materials. Foods 2024, 13, 3674. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, T.; Asrafali, S.P.; Lee, J. Recent advances in functional biopolymer films with antimicrobial and antioxidant properties for enhanced food packaging. Polymers 2025, 17, 1257. [Google Scholar] [CrossRef]
- Jing, L.; Shi, T.; Chang, Y.; Meng, X.; He, S.; Xu, H.; Yang, S.; Liu, J. Cellulose-based materials in environmental protection: A scientometric and Visual Analysis Review. Sci. Total Environ. 2024, 929, 172576. [Google Scholar] [CrossRef] [PubMed]
- Amenorfe, L.P.; Agorku, E.S.; Sarpong, F.; Voegborlo, R.B. Innovative exploration of additive incorporated biopolymer-based composites. Sci. Afr. 2022, 17, e01359. [Google Scholar] [CrossRef]
- Antony Jose, S.; Cowan, N.; Davidson, M.; Godina, G.; Smith, I.; Xin, J.; Menezes, P.L. A comprehensive review on cellulose nanofibers, nanomaterials, and composites: Manufacturing, properties, and applications. Nanomaterials 2025, 15, 356. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Tagliapietra, B.L.; Felisberto, M.H.; Sanches, E.A.; Campelo, P.H.; Clerici, M.T. Non-conventional Starch Sources. Curr. Opin. Food Sci. 2021, 39, 93–102. [Google Scholar] [CrossRef]
- Arruda, T.R.; Machado Gde Marques, C.S.; Souza, A.L.; Pelissari, F.M.; Oliveira, T.V.; Silva, R.R. An overview of starch-based materials for sustainable food packaging: Recent advances, limitations, and perspectives. Macromol 2025, 5, 19. [Google Scholar] [CrossRef]
- Zhu, F. Underutilized and unconventional starches: Why should we care? Trends Food Sci. Technol. 2020, 100, 363–373. [Google Scholar] [CrossRef]
- Maqsood, S.; Khalid, W.; Kumar, P.; Benmebarek, I.E.; Rasool, I.F.U.; Trif, M.; Moreno, A.; Esatbeyoglu, T. Valorization of plant-based agro-industrial waste and by-products for the production of polysaccharides: Towards a more circular economy. Appl. Food Res. 2025, 5, 100954. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, V.K.; Singh, R.; Singh, K.; Dash, K.K.; Malik, S. Unveiling the potential of starch-blended biodegradable polymers for substantializing the eco-friendly innovations. J. Agric. Food Res. 2024, 15, 101065. [Google Scholar] [CrossRef]
- Gonçalves, E.M.; Silva, M.; Andrade, L.; Pinheiro, J. From fields to films: Exploring starch from agriculture raw materials for biopolymers in Sustainable Food Packaging. Agriculture 2024, 14, 453. [Google Scholar] [CrossRef]
- Onyeaka, H.; Obileke, K.; Makaka, G.; Nwokolo, N. Current research and applications of starch-based biodegradable films for food packaging. Polymers 2022, 14, 1126. [Google Scholar] [CrossRef]
- Zhu, J.; Gilbert, R.G. Starch molecular structure and diabetes. Carbohydr. Polym. 2024, 344, 122525. [Google Scholar] [CrossRef]
- Varghese, S.; Awana, M.; Mondal, D.; Rubiya, M.H.; Melethil, K.; Singh, A.; Krishnan, V.; Thomas, B. Amylose–amylopectin ratio. In Handbook of Biopolymers; Springer: Singapore, 2022; pp. 1–30. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Improved thermal processing for food texture modification. In Modifying Food Texture; Woodhead Publishing: Cambridge, UK, 2015; pp. 115–131. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, X.; Du, B.; Xu, B. Morphological, structural, thermal, pasting, and digestive properties of starches isolated from different varieties of rice: A systematic comparative study. Foods 2023, 12, 4492. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, R.; Ahmed, J.; Thakur, R.; Sarkar, P. Starch-based edible packaging: Rheological, thermal, mechanical, microstructural, and barrier properties—A Review. Sustain. Food Technol. 2024, 2, 307–330. [Google Scholar] [CrossRef]
- Gong, Y.; Xiao, S.; Yao, Z.; Deng, H.; Chen, X.; Yang, T. Factors and modification techniques enhancing starch gel structure and their applications in foods:A Review. Food Chem. X 2024, 24, 102045. [Google Scholar] [CrossRef]
- Tan, S.X.; Ong, H.C.; Andriyana, A.; Lim, S.; Pang, Y.L.; Kusumo, F.; Ngoh, G.C. Characterization and parametric study on mechanical properties enhancement in biodegradable chitosan-reinforced starch-based bioplastic film. Polymers 2022, 14, 278. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, J.; Duan, Q.; Xie, H.; Dong, X.; Yu, L. Strategies and methodologies for improving toughness of starch films. Foods 2024, 13, 4036. [Google Scholar] [CrossRef]
- Xie, F. Natural polymer starch-based materials for Flexible Electronic Sensor Development: A Review of Recent Progress. Carbohydr. Polym. 2024, 337, 122116. [Google Scholar] [CrossRef] [PubMed]
- Sarak, S.; Pisitaro, W.; Rammak, T.; Kaewtatip, K. Characterization of starch film incorporating hom nil rice extract for food packaging purposes. Int. J. Biol. Macromol. 2024, 254, 127820. [Google Scholar] [CrossRef]
- Samsudin, H.; Hani, N.M. Use of starch in food packaging. In Starch-Based Materials in Food Packaging; Academic Press: Cambridge, MA, USA, 2017; pp. 229–256. [Google Scholar] [CrossRef]
- Singh, G.; Bangar, S.; Yang, T.; Trif, M.; Kumar, V.; Kumar, D. Effect on the properties of edible starch-based films by the incorporation of Additives: A Review. Polymers 2022, 14, 1987. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Zheng, B.; Zhang, Y.; Zeng, H. A comprehensive review of the factors influencing the formation of retrograded starch. Int. J. Biol. Macromol. 2021, 186, 163–173. [Google Scholar] [CrossRef]
- Garavito, J.; Peña-Venegas, C.P.; Castellanos, D.A. Production of starch-based flexible food packaging in developing countries: Analysis of the processes, challenges, and requirements. Foods 2024, 13, 4096. [Google Scholar] [CrossRef] [PubMed]
- Yudhistira, B.; Husnayain, N.; Punthi, F.; Gavahian, M.; Chang, C.-K.; Hsieh, C.-W. Progress in the application of emerging technology for the improvement of starch-based active packaging properties: A Review. ACS Food Sci. Technol. 2024, 4, 1997–2012. [Google Scholar] [CrossRef]
- Compart, J.; Singh, A.; Fettke, J.; Apriyanto, A. Customizing starch properties: A review of starch modifications and their applications. Polymers 2023, 15, 3491. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef]
- Yermagambetova, A.D.; Tazhibayeva, S.M.; Tyussyupova, B.B.; Musabekov, K.B.; Pastorino, L. Effect of plasticizers on the rheological properties of xanthan gum—Starch biodegradable films. Heliyon 2024, 10, e34550. [Google Scholar] [CrossRef]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by Crosslinking Approach: A Review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Sunooj, K.V.; Navaf, M.; Phimolsiripol, Y.; Whiteside, W.S. Recent advancements in cross-linked starches for food applications- A Review. Int. J. Food Prop. 2024, 27, 411–430. [Google Scholar] [CrossRef]
- Khadsai, S.; Janmanee, R.; Sam-Ang, P.; Nuanchawee, Y.; Rakitikul, W.; Mankhong, W.; Likittrakulwong, W.; Ninjiaranai, P. Influence of crosslinking concentration on the properties of biodegradable modified cassava starch-based films for packaging applications. Polymers 2024, 16, 1647. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, N.; Abarca, R.L.; Linares-Flores, C. Two fascinating polysaccharides: Chitosan and starch. some prominent characterizations for applying as eco-friendly food packaging and pollutant remover in aqueous medium. progress in recent years: A Review. Polymers 2021, 13, 1737. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Chabook, N.; Rostami, O.; Heydari, M.; Kolahdouz-Nasiri, A.; Javanmardi, F.; Abdolmaleki, K.; Khaneghah, A.M. PVA/Starch Films: An updated review of their preparation, characterization, and diverse applications in the food industry. Polym. Test. 2023, 118, 107903. [Google Scholar] [CrossRef]
- Ren, L.; Yan, X.; Zhou, J.; Tong, J.; Su, X. Influence of chitosan concentration on mechanical and barrier properties of corn starch/Chitosan films. Int. J. Biol. Macromol. 2017, 105, 1636–1643. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Fasihi, H.; Almasi, H. Starch–PVA nanocomposite film incorporated with cellulose nanocrystals and MMT: A comparative study. Int. J. Food Eng. 2016, 12, 37–48. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Whiteside, W.S.; Chaudhary, V.; Parambil Akhila, P.; Sunooj, K.V. Recent functionality developments in Montmorillonite as a nanofiller in food packaging. Trends Food Sci. Technol. 2023, 140, 104148. [Google Scholar] [CrossRef]
- Żołek-Tryznowska, Z.; Jeznach, A.; Bednarczyk, E.; Murawski, T.; Piłczyńska, K.; Sikora, S.; Tryznowski, M. Effect of hydrophobic nano-silica content on the surface properties of corn-starch films. Ind. Crops Prod. 2024, 214, 118582. [Google Scholar] [CrossRef]
- Fan, Y.; Picchioni, F. Modification of starch: A review on the application of “green” solvents and controlled functionalization. Carbohydr. Polym. 2020, 241, 116350. [Google Scholar] [CrossRef]
- Zarski, A.; Kapusniak, K.; Ptak, S.; Rudlicka, M.; Coseri, S.; Kapusniak, J. Functionalization methods of starch and its derivatives: From old limitations to new possibilities. Polymers 2024, 16, 597. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, Q.; Wang, R.; Wang, L.; Li, J.; Chen, B.; Liu, F.; Zeng, X.-A. Development of starch-based films with enhanced hydrophobicity and antimicrobial activity by incorporating alkyl ketene dimers and chitosan for Mango Preservation. Food Chem. 2025, 467, 142314. [Google Scholar] [CrossRef] [PubMed]
- Abedini, A.; Alizadeh, A.M.; Mahdavi, A.; Golzan, S.A.; Salimi, M.; Tajdar-Oranj, B.; Hosseini, H. Oilseed cakes in the food industry; a review on applications, challenges, and future perspectives. Curr. Nutr. Food Sci. 2022, 18, 345–362. [Google Scholar] [CrossRef]
- Hadidi, M.; Jafarzadeh, S.; Forough, M.; Garavand, F.; Alizadeh, S.; Salehabadi, A.; Khaneghah, A.M.; Jafari, S.M. Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci. Technol. 2022, 120, 154–173. [Google Scholar] [CrossRef]
- Bhaskar, R.; Zo, S.M.; Narayanan, K.B.; Purohit, S.D.; Gupta, M.K.; Han, S.S. Recent development of protein-based biopolymers in Food Packaging Applications: A Review. Polym. Test. 2023, 124, 108097. [Google Scholar] [CrossRef]
- Nill, K. Soy beans: Properties and analysis. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 54–55. [Google Scholar] [CrossRef]
- Abreu, A.S.L.M.; de Moura, I.G.; de Sá, A.V.; Machado, A.V.A. Biodegradable polymernanocomposites for packaging applications. In Food Packaging; Academic Press: Cambridge, MA, USA, 2017; pp. 329–363. [Google Scholar] [CrossRef]
- Kang, S.; Bai, Q.; Qin, Y.; Liang, Q.; Hu, Y.; Li, S.; Luan, G. Film-forming properties and mechanisms of soy protein: Insights from β-conglycinin and glycinin. Int. J. Biol. Macromol. 2023, 253, 127611. [Google Scholar] [CrossRef]
- Smith, E.; Condict, L.; Ashton, J.; Kasapis, S. Molecular interactions between soybean glycinin (11s) and Genistein using spectroscopic and in silico analyses. Food Hydrocoll. 2023, 139, 108523. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Hettiarachchy, N.; Luthra, K.; Chen, J.; Seo, H.-S.; Atungulu, G.G.; Ubeyitogullari, A. Effects of polyphenol-rich grape seed and green tea extracts on the physicochemical properties of 3D-printed edible soy protein films. Food Packag. Shelf Life 2023, 40, 101184. [Google Scholar] [CrossRef]
- Ramos, O.L.; Pereira, R.N.; Rodrigues, R.M.; Teixeira, J.A.; Vicente, A.A.; Malcata, F.X. Whey and whey powders: Production and uses. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 498–505. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of whey protein-based Edible Films and coatings in Food Industries: An updated overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Purewal, S.S.; Kaur, A.; Bangar, S.P.; Singh, P.; Singh, H. Protein-based films and coatings: An innovative approach. Coatings 2023, 14, 32. [Google Scholar] [CrossRef]
- Xie, A.; Zhao, S.; Liu, Z.; Yue, X.; Shao, J.; Li, M.; Li, Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int. J. Biol. Macromol. 2023, 242, 124784. [Google Scholar] [CrossRef]
- Çağrı Mehmetoğlu, A.; Sezer, E.; Erol, S. Development of antimicrobial whey protein-based film containing silver nanoparticles biosynthesised by aspergillus niger. Int. J. Food Sci. Technol. 2020, 56, 965–973. [Google Scholar] [CrossRef]
- Villa, C.; Costa, J.; Oliveira, M.B.; Mafra, I. Bovine milk allergens: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2017, 17, 137–164. [Google Scholar] [CrossRef] [PubMed]
- Bonnaillie, L.; Zhang, H.; Akkurt, S.; Yam, K.; Tomasula, P. Casein films: The effects of formulation, environmental conditions and the addition of citric pectin on the structure and mechanical properties. Polymers 2014, 6, 2018–2036. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kajla, P.; Kumari, P.; Bangar, S.P.; Rusu, A.; Trif, M.; Lorenzo, J.M. Milk protein-based active edible packaging for food applications: An eco-friendly approach. Front. Nutr. 2022, 9, 942524. [Google Scholar] [CrossRef]
- Khan, M.R.; Volpe, S.; Salucci, E.; Sadiq, M.B.; Torrieri, E. Active caseinate/guar gum films incorporated with gallic acid: Physicochemical properties and release kinetics. J. Food Eng. 2022, 335, 111190. [Google Scholar] [CrossRef]
- Devi, N.; Sarmah, M.; Khatun, B.; Maji, T.K. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. [Google Scholar] [CrossRef]
- Alipal, J.; Pu’AD, N.M.; Lee, T.; Nayan, N.; Sahari, N.; Basri, H.; Idris, M.; Abdullah, H. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater. Today Proc. 2021, 42, 240–250. [Google Scholar] [CrossRef]
- Rather, J.A.; Akhter, N.; Ashraf, Q.S.; Mir, S.A.; Makroo, H.A.; Majid, D.; Barba, F.J.; Khaneghah, A.M.; Dar, B. A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag. Shelf Life 2022, 34, 100945. [Google Scholar] [CrossRef]
- Riahi, Z.; Priyadarshi, R.; Rhim, J.-W.; Bagheri, R. Gelatin-based functional films integrated with grapefruit seed extract and Tio2 for active food packaging applications. Food Hydrocoll. 2021, 112, 106314. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; Kaplan, D.L.; Wang, Q. High-moisture extruded protein fiber formation toward plant-based meat substitutes applications: Science, technology, and Prospect. Trends Food Sci. Technol. 2022, 128, 202–216. [Google Scholar] [CrossRef]
- Alibekov, R.S.; Urazbayeva, K.U.; Azimov, A.M.; Rozman, A.S.; Hashim, N.; Maringgal, B. Advances in biodegradable food packaging using wheat-based materials: Fabrications and innovations, applications, potentials, and challenges. Foods 2024, 13, 2964. [Google Scholar] [CrossRef] [PubMed]
- Kamal, G.M.; Noreen, A.; Tahir, M.S.; Zahra, S.M.; Uddin, J.; Liaquat, A.; Khalid, M.; Goksen, G.; Sabir, A.; Ramniwas, S.; et al. Isolation of gluten from wheat flour and its structural analysis. In Handbook of Natural Polymers; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 275–292. [Google Scholar] [CrossRef]
- Chavoshizadeh, S.; Pirsa, S.; Mohtarami, F. Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packag. Shelf Life 2020, 24, 100501. [Google Scholar] [CrossRef]
- Khin, M.N.; Ahammed, S.; Kamal, M.M.; Saqib, M.N.; Liu, F.; Zhong, F. Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds. Food Hydrocoll. Health 2024, 6, 100182. [Google Scholar] [CrossRef]
- Qazanfarzadeh, Z.; Kumaravel, V. Hydrophobisation approaches of protein-based bioplastics. Trends Food Sci. Technol. 2023, 138, 27–43. [Google Scholar] [CrossRef]
- Coltelli, M.-B.; Wild, F.; Bugnicourt, E.; Cinelli, P.; Lindner, M.; Schmid, M.; Weckel, V.; Müller, K.; Rodriguez, P.; Staebler, A.; et al. State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: An extensive review. Coatings 2015, 6, 1. [Google Scholar] [CrossRef]
- Zhao, M.; Han, P.; Mu, H.; Sun, S.; Dong, J.; Sun, J.; Lu, S.; Wang, Q.; Ji, H. Food packaging films from natural polysaccharides and protein hydrogels: A comprehensive review. Food Chem. X 2025, 25, 102174. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Waldron, K.W. Crosslinking in polysaccharide and protein films and coatings for Food Contact—A Review. Trends Food Sci. Technol. 2016, 52, 109–122. [Google Scholar] [CrossRef]
- Zhang, W.; Hedayati, S.; Tarahi, M.; Can Karaca, A.; Hadidi, M.; Assadpour, E.; Jafari, S.M. Advances in transglutaminase cross-linked protein-based food packaging films; a review. Int. J. Biol. Macromol. 2023, 253, 127399. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Afzaal, M.; Saeed, F.; Anwer, K.; Khan, M.R.; Jawad, M.; Akram, N.; Faisal, Z. Mechanical properties of protein-based food packaging materials. Polymers 2023, 15, 1724. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, R.; Han, J.; Ren, L.; Jiang, L. Protein-based packaging films in food: Developments, applications, and challenges. Gels 2024, 10, 418. [Google Scholar] [CrossRef]
- Montoille, L.; Vicencio, C.M.; Fontalba, D.; Ortiz, J.A.; Moreno-Serna, V.; Peponi, L.; Matiacevich, S.; Zapata, P.A. Study of the effect of the addition of plasticizers on the physical properties of biodegradable films based on Kefiran for potential application as food packaging. Food Chem. 2021, 360, 129966. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, R.K.; Hakim, L.; Akhila, K.; Ramakanth, D.; Gaikwad, K.K. Nano clays and its composites for food packaging applications. Int. Nano Lett. 2022, 13, 131–153. [Google Scholar] [CrossRef]
- Mihalca, V.; Kerezsi, A.D.; Weber, A.; Gruber-Traub, C.; Schmucker, J.; Vodnar, D.C.; Dulf, F.V.; Socaci, S.A.; Fărcaș, A.; Mureșan, C.I.; et al. Protein-based films and coatings for Food Industry Applications. Polymers 2021, 13, 769. [Google Scholar] [CrossRef] [PubMed]
- Apicella, A.; Barbato, A.; Garofalo, E.; Incarnato, L.; Scarfato, P. Effect of PVOH/PLA + wax coatings on physical and functional properties of biodegradable food packaging films. Polymers 2022, 14, 935. [Google Scholar] [CrossRef]
- Han Lyn, F.; Ismail-Fitry, M.R.; Noranizan, M.A.; Tan, T.B.; Nur Hanani, Z.A. Recent advances in extruded polylactic acid-based composites for Food Packaging: A Review. Int. J. Biol. Macromol. 2024, 266, 131340. [Google Scholar] [CrossRef]
- Kumar, R.; Lalnundiki, V.; Shelare, S.D.; Abhishek, G.J.; Sharma, S.; Sharma, D.; Kumar, A.; Abbas, M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of Environmentally Friendly Bioplastics Solutions. Environ. Res. 2024, 244, 117707. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M. Lactic acid production—Producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, A.; Tiwari, A. Production of polyhydroxyalkanoate (PHA) biopolymer from crop residue using bacteria as an alternative to plastics: A Review. RSC Adv. 2025, 15, 11845–11862. [Google Scholar] [CrossRef]
- Montalbo-Lomboy, M. Fermentation of polyesters (PHA and PLA). Bioplast. Biocompos. 2023, 79, 122–166. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef]
- Mai, J.; Kockler, K.; Parisi, E.; Chan, C.M.; Pratt, S.; Laycock, B. Synthesis and physical properties of polyhydroxyalkanoate (pha)-based block copolymers: A Review. Int. J. Biol. Macromol. 2024, 263, 130204. [Google Scholar] [CrossRef]
- De Luca, S.; Milanese, D.; Gallichi-Nottiani, D.; Cavazza, A.; Sciancalepore, C. Poly(lactic acid) and its blends for Packaging Application: A Review. Clean Technol. 2023, 5, 66. [Google Scholar] [CrossRef]
- Vayshbeyn, L.I.; Mastalygina, E.E.; Olkhov, A.A.; Podzorova, M.V. Poly(lactic acid)-based blends: A comprehensive review. Appl. Sci. 2023, 13, 5148. [Google Scholar] [CrossRef]
- Guzmán-Lagunes, F.; Wongsirichot, P.; Winterburn, J.; Guerrero Sanchez, C.; Montiel, C. Polyhydroxyalkanoates production: A challenge for the plastic industry. Ind. Eng. Chem. Res. 2023, 62, 18133–18158. [Google Scholar] [CrossRef]
- González-Rojo, S.; Paniagua-García, A.I.; Díez-Antolínez, R. Advances in Microbial Biotechnology for sustainable alternatives to petroleum-based plastics: A comprehensive review of polyhydroxyalkanoate production. Microorganisms 2024, 12, 1668. [Google Scholar] [CrossRef] [PubMed]
- Hammami, K.; Souissi, Y.; Cherif, A.; Neifar, M. Challenges for polyhydroxyalkanoates production: Extremophilic bacteria, waste streams, and Optimization Strategies. MOJ Appl. Bionics Biomech. 2023, 7, 101–107. [Google Scholar] [CrossRef]
- Azizi, N.; Eslami, R.; Goudarzi, S.; Younesi, H.; Zarrin, H. A review of current achievements and recent challenges in bacterial medium-chain-length polyhydroxyalkanoates: Production and potential applications. Biomacromolecules 2024, 25, 2679–2700. [Google Scholar] [CrossRef] [PubMed]
- Favaro, L.; Basaglia, M.; Casella, S. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: A Review. Biofuels Bioprod. Biorefining 2018, 13, 208–227. [Google Scholar] [CrossRef]
- Saharan, B.S.; Kamal, N.; Badoni, P.; Kumar, R.; Saini, M.; Kumar, D.; Sharma, D.; Tyagi, S.; Ranga, P.; Parshad, J.; et al. Biopolymer and polymer precursor production by microorganisms: Applications and future prospects. J. Chem. Technol. Biotechnol. 2023, 99, 17–30. [Google Scholar] [CrossRef]
- Lhamo, P.; Behera, S.K.; Mahanty, B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production—A state-of-the art review. Biotechnol. J. 2021, 16, 2100136. [Google Scholar] [CrossRef]
- Ludwicka, K.; Kaczmarek, M.; Białkowska, A. Bacterial nanocellulose—A biobased polymer for active and intelligent food packaging applications: Recent advances and developments. Polymers 2020, 12, 2209. [Google Scholar] [CrossRef] [PubMed]
- Ciannamea, E.M.; Castillo, L.A.; Barbosa, S.E.; De Angelis, M.G. Barrier properties and mechanical strength of bio-renewable, heat-sealable films based on gelatin, glycerol and soybean oil for sustainable food packaging. React. Funct. Polym. 2018, 125, 29–36. [Google Scholar] [CrossRef]
- Culqui-Arce, C.; Mori-Mestanza, D.; Fernández-Jeri, A.B.; Cruzalegui, R.J.; Zabarburú, R.C.M.; Vergara, A.J.; Cayo-Colca, I.S.; da Silva, J.G.; Araujo, N.M.P.; Castro-Alayo, E.M.; et al. Polymers derived from agro-industrial waste in the development of bioactive films in food. Polymers 2025, 17, 408. [Google Scholar] [CrossRef]
- Rashid, A.B.; Haque, M.; Islam, S.M.; Uddin Labib, K.M.R. Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon 2024, 10, e24692. [Google Scholar] [CrossRef]
- Sinha, S. An overview of biopolymer-derived packaging material. Polym. Renew. Resour. 2024, 15, 193–209. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Azmin, S.N.; Hayat, N.A.; Nor, M.S. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 2020, 5, 248–255. [Google Scholar] [CrossRef]
- Olivito, F.; Jagdale, P.; Oza, G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF). Toxics 2023, 11, 698. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A review of water interactions, applications in composites, and water treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef]
- Lamp, A.; Kaltschmitt, M.; Dethloff, J. Options to improve the mechanical properties of protein-based materials. Molecules 2022, 27, 446. [Google Scholar] [CrossRef]
- Bidari, R.; Abdillah, A.A.; Ponce, R.A.; Charles, A.L. Characterization of biodegradable films made from Taro Peel (Colocasia esculenta) Starch. Polymers 2023, 15, 338. [Google Scholar] [CrossRef]
- Negrete-Bolagay, D.; Guerrero, V.H. Opportunities and challenges in the application of bioplastics: Perspectives from formulation, processing, and performance. Polymers 2024, 16, 2561. [Google Scholar] [CrossRef] [PubMed]
- Nizamuddin, S.; Baloch, A.J.; Chen, C.; Arif, M.; Mubarak, N.M. Bio-based plastics, biodegradable plastics, and compostable plastics: Biodegradation Mechanism, biodegradability standards and environmental stratagem. Int. Biodeterior. Biodegrad. 2024, 195, 105887. [Google Scholar] [CrossRef]
- Das, A.; Toki, G.F.; Mia, R. Antimicrobial biopolymers for Food Preservation: Recent developments and applications based on essential oils and nanomaterials. In Green Materials for Active Food Packaging. Engineering Materials; Springer: Singapore, 2025; pp. 93–130. [Google Scholar] [CrossRef]
- Fadiji, T.; Rashvand, M.; Daramola, M.O.; Iwarere, S.A. A review on antimicrobial packaging for extending the shelf life of food. Processes 2023, 11, 590. [Google Scholar] [CrossRef]
- Marinas, I.C.; Oprea, E.; Gaboreanu, D.-M.; Matei, E.; Nedelcu, L.; Zgura, I.; Angheloiu, M.; Chifiriuc, M.C. Antimicrobial and antioxidant properties of polyvinyl alcohol biocomposite films containing ferulic acid and cellulose extracted from robinia pseudoacacia pods. J. Nat. Fibers 2024, 21, 2355297. [Google Scholar] [CrossRef]
- Nunes, C.; Silva, M.; Farinha, D.; Sales, H.; Pontes, R.; Nunes, J. Edible coatings and future trends in active food packaging–fruits’ and traditional sausages’ shelf life increasing. Foods 2023, 12, 3308. [Google Scholar] [CrossRef]
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef]
- Possidónio, C.; Farias, A.R.; Domingos, S.; Cruz, B.; Luís, S.; Loureiro, A. Exploring supply-side barriers for commercialization of new biopolymer production technologies: A systematic review. Sustainability 2025, 17, 820. [Google Scholar] [CrossRef]
- Cheng, J.; Gao, R.; Zhu, Y.; Lin, Q. Applications of biodegradable materials in food packaging: A Review. Alex. Eng. J. 2024, 91, 70–83. [Google Scholar] [CrossRef]
- Markam, M.; Chouksey, S.; Bajpai, A. Novel biopolymer-based sustainable composites for food packaging applications. In Handbook of Nanofillers; Springer: Singapore, 2024; pp. 1–36. [Google Scholar] [CrossRef]
- González-López, M.E.; Calva-Estrada, S.d.J.; Gradilla-Hernández, M.S.; Barajas-Álvarez, P. Current trends in biopolymers for Food Packaging: A Review. Front. Sustain. Food Syst. 2023, 7, 1225371. [Google Scholar] [CrossRef]
- Thapliyal, D.; Karale, M.; Diwan, V.; Kumra, S.; Arya, R.K.; Verros, G.D. Current status of Sustainable Food Packaging Regulations: Global Perspective. Sustainability 2024, 16, 5554. [Google Scholar] [CrossRef]
- Carvalho, A.C.; Ghosh, S.; Hoffmann, T.G.; Prudêncio, E.S.; de Souza, C.K.; Roy, S. Valuing agro-industrial waste in the development of sustainable food packaging based on the system of a circular bioeconomy: A Review. Clean. Waste Syst. 2025, 11, 100275. [Google Scholar] [CrossRef]
- Klai, N.; Yadav, B.; El Hachimi, O.; Pandey, A.; Sellamuthu, B.; Tyagi, R.D. Agro-industrial waste valorization for Biopolymer Production and life-cycle assessment toward circular bioeconomy. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 515–555. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Nanotechnology and Biopolymers: A Perfect Synergy for Modern Applications. ChemRxiv 2024. [Google Scholar] [CrossRef]
Biopolymer | Sources | Extraction Method | Yield (%) | References |
---|---|---|---|---|
Cellulose | Rice Husk | Sodium hypochlorite solution followed by ultrasonication | 34 | [32] |
Corn cobs | Autohydrolysis for hemicellulose removal followed by alkaline delignification | 77 | [33] | |
Starch | Litchi seed | 0.16% sodium bisulfite solution | 21.4 | [34] |
Mango kernel | UAE in 1% sodium bisulfite solution | 54 | [35] | |
PHA | Mixture of molasses and olive oil | Acid pretreatment | 2.03 g/L final concentration of PHA | [36] |
PLA | Grape stalks | Steam explosion |
0.98 g/g Glu | [37] |
Agricultural Waste | Extraction Method | Yield (%) | References |
---|---|---|---|
Bamboo fiber | 64% sulfuric acid at 45 °C for 45 min | 22 | [84] |
Lemon seeds | 64% sulfuric acid solution at 45 °C for 1.5 h | 27.61 | [85] |
Khat waste | 64% sulfuric acid at 45 °C for 60 min | 49 | [86] |
Sugarcane straw | 55% sulfuric acid at 50 °C for 15 min | 21.8 | [87] |
Garlic stalk | 58% sulfuric acid at 55 ± 1 °C for 120 min | 41.98 | [88] |
33% hydrochloric acid at 60 ± 1 °C for 240 min | 50.56 |
Biopolymer | Sources | Properties | Advantages | Disadvantages |
---|---|---|---|---|
Cellulose | Agricultural residues such as rice husk, wheat straw, corn stalks, cotton linters, wood pulp waste | Good mechanical strength, moderate barrier to gases, biodegradable, water-sensitive | Renewable, compostable, widely available, and form transparent films | Poor moisture barrier, requires modification for water resistance |
Starch | Potato peel, corn husk, cassava peels | Good oxygen barrier, poor water resistance, brittle without plasticizers, biodegradable | Cheap, abundant, compostable, edible | Poor moisture barrier, brittle, needs additives for flexibility |
Soy Protein | Soybean meal (byproduct of soybean oil extraction) | Good oxygen barrier, moderate mechanical properties, water-sensitive, biodegradable | Renewable, forms flexible films, good barrier to gases | Poor water resistance, allergen potential, and limited mechanical strength |
Whey Protein | Whey (byproduct of cheese and casein production) | Excellent oxygen barrier, transparent films, water-sensitive, biodegradable | Utilizes dairy waste, good clarity, and renewable | Hygroscopic, poor water barrier, brittle without plasticizers |
Casein | Skimmed milk or curdled milk | Good oxygen barrier, smooth films, biodegradable | Renewable, good film-forming ability | Sensitive to moisture, allergenic, and limited mechanical strength |
Gelatin | Slaughterhouse waste (bones, hides, and connective tissues) | Good mechanical strength and flexibility, water-soluble, and biodegradable | Flexible, transparent, good gas barrier | Derived from animals, sensitive to humidity, water-soluble |
Gluten | Wheat gluten (byproduct of wheat starch or flour processing) | Good gas barrier, biodegradable, water-sensitive | Renewable, forms cohesive films | Allergen, poor water resistance, and limited commercial availability |
PHA (Polyhydroxyalkanoates) | Fermentation of waste oils and agro-industrial effluents | Good mechanical strength, water-insoluble, biodegradable in marine and soil environments | Fully biodegradable, compostable, good barrier properties | Expensive, limited industrial production |
PLA (Polylactic Acid) | Fermentation of sugarcane bagasse, corn stalks, and sugar beet pulp | High transparency, good strength, brittle, biodegradable in industrial compost | Biodegradable, clear, good printability, and food-safe | Brittle, low thermal resistance, and it requires industrial composting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvam, T.; Rahman, N.M.M.A.; Olivito, F.; Ilham, Z.; Ahmad, R.; Wan-Mohtar, W.A.A.Q.I. Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects. Polymers 2025, 17, 1897. https://doi.org/10.3390/polym17141897
Selvam T, Rahman NMMA, Olivito F, Ilham Z, Ahmad R, Wan-Mohtar WAAQI. Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects. Polymers. 2025; 17(14):1897. https://doi.org/10.3390/polym17141897
Chicago/Turabian StyleSelvam, Thivya, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad, and Wan Abd Al Qadr Imad Wan-Mohtar. 2025. "Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects" Polymers 17, no. 14: 1897. https://doi.org/10.3390/polym17141897
APA StyleSelvam, T., Rahman, N. M. M. A., Olivito, F., Ilham, Z., Ahmad, R., & Wan-Mohtar, W. A. A. Q. I. (2025). Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects. Polymers, 17(14), 1897. https://doi.org/10.3390/polym17141897