Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,044)

Search Parameters:
Keywords = long short-term features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9435 KiB  
Article
Intelligent Fault Warning Method for Wind Turbine Gear Transmission System Driven by Digital Twin and Multi-Source Data Fusion
by Tiantian Xu, Xuedong Zhang and Wenlei Sun
Appl. Sci. 2025, 15(15), 8655; https://doi.org/10.3390/app15158655 (registering DOI) - 5 Aug 2025
Abstract
To meet the demands for real-time and accurate fault warning of wind turbine gear transmission systems, this study proposes an innovative intelligent warning method based on the integration of digital twin and multi-source data fusion. A digital twin system architecture is developed, comprising [...] Read more.
To meet the demands for real-time and accurate fault warning of wind turbine gear transmission systems, this study proposes an innovative intelligent warning method based on the integration of digital twin and multi-source data fusion. A digital twin system architecture is developed, comprising a high-precision geometric model and a dynamic mechanism model, enabling real-time interaction and data fusion between the physical transmission system and its virtual model. At the algorithmic level, a CNN-LSTM-Attention fault prediction model is proposed, which innovatively integrates the spatial feature extraction capabilities of a convolutional neural network (CNN), the temporal modeling advantages of long short-term memory (LSTM), and the key information-focusing characteristics of an attention mechanism. Experimental validation shows that this model outperforms traditional methods in prediction accuracy. Specifically, it achieves average improvements of 0.3945, 0.546 and 0.061 in Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2) metrics, respectively. Building on the above findings, a monitoring and early warning platform for the wind turbine transmission system was developed, integrating digital twin visualization with intelligent prediction functions. This platform enables a fully intelligent process from data acquisition and status evaluation to fault warning, providing an innovative solution for the predictive maintenance of wind turbines. Full article
Show Figures

Figure 1

23 pages, 4325 KiB  
Article
Groundwater Level Estimation Using Improved Transformer Model: A Case Study of the Yellow River Basin
by Tianming Zhou, Chun Fu, Yezhong Liu and Libin Xiang
Water 2025, 17(15), 2318; https://doi.org/10.3390/w17152318 - 4 Aug 2025
Abstract
Accurate estimation of groundwater levels in river basins is essential for effective water resource planning. Innovations in deep learning and artificial intelligence (AI) have been introduced into this field to enhance the accuracy of long-term groundwater level estimation. This study employs the Transformer [...] Read more.
Accurate estimation of groundwater levels in river basins is essential for effective water resource planning. Innovations in deep learning and artificial intelligence (AI) have been introduced into this field to enhance the accuracy of long-term groundwater level estimation. This study employs the Transformer deep learning model to estimate groundwater levels, with a benchmark comparison against the long short-term memory (LSTM) model. These models were applied to estimate groundwater levels in the Yellow River Basin, where approximately 1100 monitoring wells are located. Monthly average groundwater level data from the period 2018–2023 were collected from these wells. The two models were used to estimate groundwater levels for the period 2003–2017 by incorporating remote sensing information. The Transformer model was enhanced to simultaneously capture features from both historical temporal data and surrounding spatial data, while automatically enhancing key features, effectively improving estimation accuracy and robustness. At the basin-averaged scale, the enhanced Transformer model outperformed the LSTM model: R2 increased by approximately 17.5%, while RMSE and MAE decreased by approximately 12.4% and 10.9%, respectively. The proportion of poorly predicted samples decreased by an average of approximately 12.1%. The estimation model established in this study contributes to improving the quantitative analysis capability of long-term groundwater level variations in the Yellow River Basin. This could be helpful for water resource development planning in this densely populated region and likely has broad applicability in other river basins. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

27 pages, 1766 KiB  
Article
A Novel Optimized Hybrid Deep Learning Framework for Mental Stress Detection Using Electroencephalography
by Maithili Shailesh Andhare, T. Vijayan, B. Karthik and Shabana Urooj
Brain Sci. 2025, 15(8), 835; https://doi.org/10.3390/brainsci15080835 (registering DOI) - 4 Aug 2025
Abstract
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using [...] Read more.
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using electroencephalograms (EEGs) have been proposed. However, the effectiveness of DL-based schemes is challenging because of the intricate DL structure, class imbalance problems, poor feature representation, low-frequency resolution problems, and complexity of multi-channel signal processing. This paper presents a novel hybrid DL framework, BDDNet, which combines a deep convolutional neural network (DCNN), bidirectional long short-term memory (BiLSTM), and deep belief network (DBN). BDDNet provides superior spectral–temporal feature depiction and better long-term dependency on the local and global features of EEGs. BDDNet accepts multiple EEG features (MEFs) that provide the spectral and time-domain features of EEGs. A novel improved crow search algorithm (ICSA) was presented for channel selection to minimize the computational complexity of multichannel stress detection. Further, the novel employee optimization algorithm (EOA) is utilized for the hyper-parameter optimization of hybrid BDDNet to enhance the training performance. The outcomes of the novel BDDNet were assessed using a public DEAP dataset. The BDDNet-ICSA offers improved recall of 97.6%, precision of 97.6%, F1-score of 97.6%, selectivity of 96.9%, negative predictive value NPV of 96.9%, and accuracy of 97.3% to traditional techniques. Full article
Show Figures

Figure 1

44 pages, 6212 KiB  
Article
A Hybrid Deep Reinforcement Learning Architecture for Optimizing Concrete Mix Design Through Precision Strength Prediction
by Ali Mirzaei and Amir Aghsami
Math. Comput. Appl. 2025, 30(4), 83; https://doi.org/10.3390/mca30040083 (registering DOI) - 3 Aug 2025
Viewed by 32
Abstract
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework [...] Read more.
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework that integrates deep learning with reinforcement learning to overcome these limitations. First, a Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM) model was developed to capture spatial–temporal patterns from a dataset of 1030 historical concrete samples. The extracted features were enhanced using an eXtreme Gradient Boosting (XGBoost) meta-model to improve generalizability and noise resistance. Then, a Dueling Double Deep Q-Network (Dueling DDQN) agent was used to iteratively identify optimal mix ratios that maximize the predicted compressive strength. The proposed framework outperformed ten benchmark models, achieving an MAE of 2.97, RMSE of 4.08, and R2 of 0.94. Feature attribution methods—including SHapley Additive exPlanations (SHAP), Elasticity-Based Feature Importance (EFI), and Permutation Feature Importance (PFI)—highlighted the dominant influence of cement content and curing age, as well as revealing non-intuitive effects such as the compensatory role of superplasticizers in low-water mixtures. These findings demonstrate the potential of the proposed approach to support intelligent concrete mix design and real-time optimization in smart construction environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

24 pages, 997 KiB  
Article
A Spatiotemporal Deep Learning Framework for Joint Load and Renewable Energy Forecasting in Stability-Constrained Power Systems
by Min Cheng, Jiawei Yu, Mingkang Wu, Yihua Zhu, Yayao Zhang and Yuanfu Zhu
Information 2025, 16(8), 662; https://doi.org/10.3390/info16080662 - 3 Aug 2025
Viewed by 69
Abstract
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep [...] Read more.
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep learning-based dispatching framework is proposed, which integrates spatiotemporal feature extraction with a stability-aware mechanism. A joint forecasting model is constructed using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to handle multi-source inputs, while a reinforcement learning-based stability-aware scheduler is developed to manage dynamic system responses. In addition, an uncertainty modeling mechanism combining Dropout and Bayesian networks is incorporated to enhance dispatch robustness. Experiments conducted on real-world power grid and renewable generation datasets demonstrate that the proposed forecasting module achieves approximately a 2.1% improvement in accuracy compared with Autoformer and reduces Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) by 18.1% and 14.1%, respectively, compared with traditional LSTM models. The achieved Mean Absolute Percentage Error (MAPE) of 5.82% outperforms all baseline models. In terms of scheduling performance, the proposed method reduces the total operating cost by 5.8% relative to Autoformer, decreases the frequency deviation from 0.158 Hz to 0.129 Hz, and increases the Critical Clearing Time (CCT) to 2.74 s, significantly enhancing dynamic system stability. Ablation studies reveal that removing the uncertainty modeling module increases the frequency deviation to 0.153 Hz and raises operational costs by approximately 6.9%, confirming the critical role of this module in maintaining robustness. Furthermore, under diverse load profiles and meteorological disturbances, the proposed method maintains stable forecasting accuracy and scheduling policy outputs, demonstrating strong generalization capabilities. Overall, the proposed approach achieves a well-balanced performance in terms of forecasting precision, system stability, and economic efficiency in power grids with high renewable energy penetration, indicating substantial potential for practical deployment and further research. Full article
(This article belongs to the Special Issue Real-World Applications of Machine Learning Techniques)
Show Figures

Figure 1

16 pages, 1530 KiB  
Article
Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation
by Yeonkyeong Kim, Kyu Bom Kim, Ah Young Leem, Kyuseok Kim and Su Hwan Lee
J. Clin. Med. 2025, 14(15), 5437; https://doi.org/10.3390/jcm14155437 - 1 Aug 2025
Viewed by 112
Abstract
Background/Objectives: Identifying and classifying abnormal lung sounds is essential for diagnosing patients with respiratory disorders. In particular, the simultaneous recording of auscultation signals from multiple clinically relevant positions offers greater diagnostic potential compared to traditional single-channel measurements. This study aims to improve [...] Read more.
Background/Objectives: Identifying and classifying abnormal lung sounds is essential for diagnosing patients with respiratory disorders. In particular, the simultaneous recording of auscultation signals from multiple clinically relevant positions offers greater diagnostic potential compared to traditional single-channel measurements. This study aims to improve the accuracy of respiratory sound classification by leveraging multichannel signals and capturing positional characteristics from multiple sites in the same patient. Methods: We evaluated the performance of respiratory sound classification using multichannel lung sound data with a deep learning model that combines a convolutional neural network (CNN) and long short-term memory (LSTM), based on mel-frequency cepstral coefficients (MFCCs). We analyzed the impact of the number and placement of channels on classification performance. Results: The results demonstrated that using four-channel recordings improved accuracy, sensitivity, specificity, precision, and F1-score by approximately 1.11, 1.15, 1.05, 1.08, and 1.13 times, respectively, compared to using three, two, or single-channel recordings. Conclusions: This study confirms that multichannel data capture a richer set of features corresponding to various respiratory sound characteristics, leading to significantly improved classification performance. The proposed method holds promise for enhancing sound classification accuracy not only in clinical applications but also in broader domains such as speech and audio processing. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 - 1 Aug 2025
Viewed by 295
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

25 pages, 2515 KiB  
Article
Solar Agro Savior: Smart Agricultural Monitoring Using Drones and Deep Learning Techniques
by Manu Mundappat Ramachandran, Bisni Fahad Mon, Mohammad Hayajneh, Najah Abu Ali and Elarbi Badidi
Agriculture 2025, 15(15), 1656; https://doi.org/10.3390/agriculture15151656 - 1 Aug 2025
Viewed by 233
Abstract
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the [...] Read more.
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the plants’ health and optimization in water utilization, which enhances plant yield productivity. A significant feature of the system is the efficient monitoring system in a larger region through drones’ high-resolution cameras, which enables real-time, efficient response and alerting for environmental fluctuations to the authorities. The machine learning algorithm, particularly recurrent neural networks, which is a pioneer with agriculture and pest control, is incorporated for intelligent monitoring systems. The proposed system incorporates a specialized form of a recurrent neural network, Long Short-Term Memory (LSTM), which effectively addresses the vanishing gradient problem. It also utilizes an attention-based mechanism that enables the model to assign meaningful weights to the most important parts of the data sequence. This algorithm not only enhances water utilization efficiency but also boosts plant yield and strengthens pest control mechanisms. This system also provides sustainability through the re-utilization of water and the elimination of electric energy through solar panel systems for powering the inbuilt irrigation system. A comparative analysis of variant algorithms in the agriculture sector with a machine learning approach was also illustrated, and the proposed system yielded 99% yield accuracy, a 97.8% precision value, 98.4% recall, and a 98.4% F1 score value. By encompassing solar irrigation and artificial intelligence-driven analysis, the proposed algorithm, Solar Argo Savior, established a sustainable framework in the latest agricultural sectors and promoted sustainability to protect our environment and community. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

30 pages, 4409 KiB  
Article
Accident Impact Prediction Based on a Deep Convolutional and Recurrent Neural Network Model
by Pouyan Sajadi, Mahya Qorbani, Sobhan Moosavi and Erfan Hassannayebi
Urban Sci. 2025, 9(8), 299; https://doi.org/10.3390/urbansci9080299 - 1 Aug 2025
Viewed by 260
Abstract
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role [...] Read more.
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role in preventing adverse outcomes and enhancing overall safety. However, existing accident predictive models encounter two main challenges: first, a reliance on either costly or non-real-time data, and second, the absence of a comprehensive metric to measure post-accident impact accurately. To address these limitations, this study proposes a deep neural network model known as the cascade model. It leverages readily available real-world data from Los Angeles County to predict post-accident impacts. The model consists of two components: Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN). The LSTM model captures temporal patterns, while the CNN extracts patterns from the sparse accident dataset. Furthermore, an external traffic congestion dataset is incorporated to derive a new feature called the “accident impact” factor, which quantifies the influence of an accident on surrounding traffic flow. Extensive experiments were conducted to demonstrate the effectiveness of the proposed hybrid machine learning method in predicting the post-accident impact compared to state-of-the-art baselines. The results reveal a higher precision in predicting minimal impacts (i.e., cases with no reported accidents) and a higher recall in predicting more significant impacts (i.e., cases with reported accidents). Full article
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 107
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

20 pages, 2619 KiB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 - 31 Jul 2025
Viewed by 216
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

28 pages, 5699 KiB  
Article
Multi-Modal Excavator Activity Recognition Using Two-Stream CNN-LSTM with RGB and Point Cloud Inputs
by Hyuk Soo Cho, Kamran Latif, Abubakar Sharafat and Jongwon Seo
Appl. Sci. 2025, 15(15), 8505; https://doi.org/10.3390/app15158505 (registering DOI) - 31 Jul 2025
Viewed by 128
Abstract
Recently, deep learning algorithms have been increasingly applied in construction for activity recognition, particularly for excavators, to automate processes and enhance safety and productivity through continuous monitoring of earthmoving activities. These deep learning algorithms analyze construction videos to classify excavator activities for earthmoving [...] Read more.
Recently, deep learning algorithms have been increasingly applied in construction for activity recognition, particularly for excavators, to automate processes and enhance safety and productivity through continuous monitoring of earthmoving activities. These deep learning algorithms analyze construction videos to classify excavator activities for earthmoving purposes. However, previous studies have solely focused on single-source external videos, which limits the activity recognition capabilities of the deep learning algorithm. This paper introduces a novel multi-modal deep learning-based methodology for recognizing excavator activities, utilizing multi-stream input data. It processes point clouds and RGB images using the two-stream long short-term memory convolutional neural network (CNN-LSTM) method to extract spatiotemporal features, enabling the recognition of excavator activities. A comprehensive dataset comprising 495,000 video frames of synchronized RGB and point cloud data was collected across multiple construction sites under varying conditions. The dataset encompasses five key excavator activities: Approach, Digging, Dumping, Idle, and Leveling. To assess the effectiveness of the proposed method, the performance of the two-stream CNN-LSTM architecture is compared with that of single-stream CNN-LSTM models on the same RGB and point cloud datasets, separately. The results demonstrate that the proposed multi-stream approach achieved an accuracy of 94.67%, outperforming existing state-of-the-art single-stream models, which achieved 90.67% accuracy for the RGB-based model and 92.00% for the point cloud-based model. These findings underscore the potential of the proposed activity recognition method, making it highly effective for automatic real-time monitoring of excavator activities, thereby laying the groundwork for future integration into digital twin systems for proactive maintenance and intelligent equipment management. Full article
(This article belongs to the Special Issue AI-Based Machinery Health Monitoring)
Show Figures

Figure 1

24 pages, 4618 KiB  
Article
A Sensor Data Prediction and Early-Warning Method for Coal Mining Faces Based on the MTGNN-Bayesian-IF-DBSCAN Algorithm
by Mingyang Liu, Xiaodong Wang, Wei Qiao, Hongbo Shang, Zhenguo Yan and Zhixin Qin
Sensors 2025, 25(15), 4717; https://doi.org/10.3390/s25154717 - 31 Jul 2025
Viewed by 195
Abstract
In the context of intelligent coal mine safety monitoring, an integrated prediction and early-warning method named MTGNN-Bayesian-IF-DBSCAN (Multi-Task Graph Neural Network–Bayesian Optimization–Isolation Forest–Density-Based Spatial Clustering of Applications with Noise) is proposed to address the challenges of gas concentration prediction and anomaly detection in [...] Read more.
In the context of intelligent coal mine safety monitoring, an integrated prediction and early-warning method named MTGNN-Bayesian-IF-DBSCAN (Multi-Task Graph Neural Network–Bayesian Optimization–Isolation Forest–Density-Based Spatial Clustering of Applications with Noise) is proposed to address the challenges of gas concentration prediction and anomaly detection in coal mining faces. The MTGNN (Multi-Task Graph Neural Network) is first employed to model the spatiotemporal coupling characteristics of gas concentration and wind speed data. By constructing a graph structure based on sensor spatial dependencies and utilizing temporal convolutional layers to capture long short-term time-series features, the high-precision dynamic prediction of gas concentrations is achieved via the MTGNN. Experimental results indicate that the MTGNN outperforms comparative algorithms, such as CrossGNN and FourierGNN, in prediction accuracy, with the mean absolute error (MAE) being as low as 0.00237 and the root mean square error (RMSE) maintained below 0.0203 across different sensor locations (T0, T1, T2). For anomaly detection, a Bayesian optimization framework is introduced to adaptively optimize the fusion weights of IF (Isolation Forest) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Through defining the objective function as the F1 score and employing Gaussian process surrogate models, the optimal weight combination (w_if = 0.43, w_dbscan = 0.52) is determined, achieving an F1 score of 1.0. By integrating original concentration data and residual features, gas anomalies are effectively identified by the proposed method, with the detection rate reaching a range of 93–96% and the false alarm rate controlled below 5%. Multidimensional analysis diagrams (e.g., residual distribution, 45° diagonal error plot, and boxplots) further validate the model’s robustness in different spatial locations, particularly in capturing abrupt changes and low-concentration anomalies. This study provides a new technical pathway for intelligent gas warning in coal mines, integrating spatiotemporal modeling, multi-algorithm fusion, and statistical optimization. The proposed framework not only enhances the accuracy and reliability of gas prediction and anomaly detection but also demonstrates potential for generalization to other industrial sensor networks. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

26 pages, 2625 KiB  
Article
Evaluating the Efficacy of the More Young HIFU Device for Facial Skin Improvement: A Comparative Study with 7D Ultrasound
by Ihab Adib and Youjun Liu
Appl. Sci. 2025, 15(15), 8485; https://doi.org/10.3390/app15158485 (registering DOI) - 31 Jul 2025
Viewed by 410
Abstract
High-Intensity Focused Ultrasound (HIFU) is a non-invasive technology widely used in aesthetic dermatology for skin tightening and facial rejuvenation. This study aimed to evaluate the safety and efficacy of a modified HIFU device, More Young, compared to the standard 7D HIFU system through [...] Read more.
High-Intensity Focused Ultrasound (HIFU) is a non-invasive technology widely used in aesthetic dermatology for skin tightening and facial rejuvenation. This study aimed to evaluate the safety and efficacy of a modified HIFU device, More Young, compared to the standard 7D HIFU system through a randomized, single-blinded clinical trial. The More Young device features enhanced focal depth precision and energy delivery algorithms, including nine pre-programmed stabilization checkpoints to minimize treatment risks. A total of 100 participants with facial wrinkles and skin laxity were randomly assigned to receive either More Young or 7D HIFU treatment. Skin improvements were assessed at baseline and one to six months post-treatment using the VISIA® Skin Analysis System (7th Generation), focusing on eight key parameters. Patient satisfaction was evaluated through the Global Aesthetic Improvement Scale (GAIS). Data were analyzed using paired and independent t-tests, with effect sizes measured via Cohen’s d. Both groups showed significant post-treatment improvements; however, the More Young group demonstrated superior outcomes in wrinkle reduction, skin tightening, and texture enhancement, along with higher satisfaction and fewer adverse effects. No significant differences were observed in five of the eight skin parameters. Limitations include the absence of a placebo group, limited sample diversity, and short follow-up duration. Further studies are needed to validate long-term outcomes and assess performance across varied demographics and skin types. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

14 pages, 5355 KiB  
Article
Risk Factors for Long-Term Delayed Gastric Emptying and Its Impact on the Quality of Life After Laparoscopic Pylorus-Preserving Gastrectomy in Patients with Gastric Cancer: Secondary Analysis of the Prospective Multicenter Trial KLASS-04
by Young Shick Rhee, Sang Soo Eom, Bang Wool Eom, Dong-eun Lee, Sa-Hong Kim, Hyuk-Joon Lee, Young-Woo Kim, Han-Kwang Yang, Do Joong Park, Sang Uk Han, Hyung-Ho Kim, Woo Jin Hyung, Ji-Ho Park, Yun-Suhk Suh, Oh Kyoung Kwon, Wook Kim, Young-Kyu Park, Hong Man Yoon, Sang-Hoon Ahn, Seong-Ho Kong and Keun Won Ryuadd Show full author list remove Hide full author list
Cancers 2025, 17(15), 2527; https://doi.org/10.3390/cancers17152527 - 30 Jul 2025
Viewed by 159
Abstract
Background/Objectives: Delayed gastric emptying (DGE) is a well-known complication of laparoscopic pylorus-preserving gastrectomy (LPPG). Patients who underwent LPPG in the KLASS-04 trial, which was a multicenter prospective randomized control trial comparing LPPG and laparoscopic distal gastrectomy (LDG), showed an unneglectable incidence of long-term [...] Read more.
Background/Objectives: Delayed gastric emptying (DGE) is a well-known complication of laparoscopic pylorus-preserving gastrectomy (LPPG). Patients who underwent LPPG in the KLASS-04 trial, which was a multicenter prospective randomized control trial comparing LPPG and laparoscopic distal gastrectomy (LDG), showed an unneglectable incidence of long-term DGE compared to patients who underwent LDG. This study aimed to identify the multifactorial risk factors associated with DGE and to analyze the quality of life (QoL) of patients with DGE following LPPG. Methods: DGE was defined as “nearly normal diet residue” at least once in the endoscopic follow-up at 1, 2, and 3 years after the surgery. Clinicopathological features, surgical outcomes, and QoL were compared between the DGE and non-DGE groups. Results: DGE was observed in 21/124 patients (16.3%) who underwent LPPG. Patients without previous abdominal surgery had a higher incidence of DGE in the univariate (32% vs. 4.8%, p = 0.011) and logistic regression analyses (odds ratio: 0.106, 95% confidence interval: 0.014–0.824, p = 0.032). Patients with DGE reported more symptoms of nausea and vomiting (p = 0.004), constipation (p = 0.04), and a dry mouth (p = 0.005). Conclusions: Despite the strict protocol used to avoid well-known risk factors for DGE, such as damage to the hepatic branch of the vagus nerve, infrapyloric artery and vein, and short antral cuff, the LPPG group of the KLASS-04 trial exhibited a considerable incidence of DGE. No clinicopathological or surgical factors, other than the absence of a previous surgical history, were identified as multifactorial risk factors for DGE. However, DGE had a negative impact on the QoL of patients. Full article
(This article belongs to the Special Issue Ultrasonography for Pancreatobiliary Cancer)
Show Figures

Figure 1

Back to TopTop