Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,107)

Search Parameters:
Keywords = long range dependence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1623 KiB  
Review
Genome-Editing Tools for Lactic Acid Bacteria: Past Achievements, Current Platforms, and Future Directions
by Leonid A. Shaposhnikov, Aleksei S. Rozanov and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(15), 7483; https://doi.org/10.3390/ijms26157483 (registering DOI) - 2 Aug 2025
Abstract
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous [...] Read more.
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous recombination, transposon mutagenesis, and phage-derived recombineering opened the door to targeted gene disruption, but low efficiencies and marker footprints limited throughput. Recent phage RecT/RecE-mediated recombineering and CRISPR/Cas counter-selection now enable scar-less point edits, seamless deletions, and multi-kilobase insertions at efficiencies approaching model organisms. Endogenous Cas9 systems, dCas-based CRISPR interference, and CRISPR-guided transposases further extend the toolbox, allowing multiplex knockouts, precise single-base mutations, conditional knockdowns, and payloads up to 10 kb. The remaining hurdles include strain-specific barriers, reliance on selection markers for large edits, and the limited host-range of recombinases. Nevertheless, convergence of phage enzymes, CRISPR counter-selection and high-throughput oligo recombineering is rapidly transforming LAB into versatile chassis for cell-factory and therapeutic applications. Full article
(This article belongs to the Special Issue Probiotics in Health and Disease)
16 pages, 1508 KiB  
Article
Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake
by Adrián Hernández-DíazCouder, Pablo J. Paz-González, Maryori Valdez-Garcia, Claudia I. Ramírez-Silva, Karol Iliana Avila-Soto, Araceli Pérez-Bautista, Miguel Vazquez-Moreno, Ana Nava-Cabrera, Rodrigo Romero-Nava, Fengyang Huang and Miguel Cruz
Nutrients 2025, 17(15), 2546; https://doi.org/10.3390/nu17152546 (registering DOI) - 2 Aug 2025
Abstract
Background: Obesity and its complications have increased in both adults and children, with pediatric populations developing metabolic disorders at earlier ages. Long non-coding RNAs, particularly MEG3, are involved in obesity through regulation of lipogenic genes including ATF4, FTO, SREBP1, [...] Read more.
Background: Obesity and its complications have increased in both adults and children, with pediatric populations developing metabolic disorders at earlier ages. Long non-coding RNAs, particularly MEG3, are involved in obesity through regulation of lipogenic genes including ATF4, FTO, SREBP1, FASN, and ACACA. However, data on MEG3 expression in pediatric obesity are limited. This study evaluated MEG3, FTO, and ATF4 expression in PBMCs from children with obesity and their associations with added sugar intake and lipid metabolism genes. Methods: In this cross-sectional study 71 children within the age range of 6 to 12 years were included (28 normal weight and 43 with obesity). Anthropometrical and clinical parameters and dietary added sugar consumption were analyzed. Real-time PCR was performed to assess MEG3, FTO, ATF4, SREBP1, FASN, and ACACA gene expression in peripheral blood mononuclear cells. Results: The expression of MEG3, ATF4, FTO, SREBP1, FASN, and ACACA was decreased in children with obesity. MEG3 and FTO showed sex-dependent expression in children without obesity, while additional sex-related differences were observed for SREBP1, FASN, ACACA, FTO, and MEG3 in children with obesity. MEG3 was associated with the expression of SREBP1, FASN, ACACA, FTO, and ATF4. In insulin-resistant (IR) children, MEG3, ATF4, FTO, ACACA, and SREBP1 were reduced, while FASN was increased. Added sugar intake negatively correlated with FTO, SREBP1, and ACACA. Conclusions: The MEG3, FTO, and ATF4 expression was altered in children with obesity, showing sex- and IR-related differences. Added sugar intake correlated negatively with lipogenic gene expression. Full article
(This article belongs to the Special Issue Dietary Effects on Gene Expression and Metabolic Profiles)
Show Figures

Figure 1

22 pages, 4480 KiB  
Article
MGMR-Net: Mamba-Guided Multimodal Reconstruction and Fusion Network for Sentiment Analysis with Incomplete Modalities
by Chengcheng Yang, Zhiyao Liang, Tonglai Liu, Zeng Hu and Dashun Yan
Electronics 2025, 14(15), 3088; https://doi.org/10.3390/electronics14153088 (registering DOI) - 1 Aug 2025
Abstract
Multimodal sentiment analysis (MSA) faces key challenges such as incomplete modality inputs, long-range temporal dependencies, and suboptimal fusion strategies. To address these, we propose MGMR-Net, a Mamba-guided multimodal reconstruction and fusion network that integrates modality-aware reconstruction with text-centric fusion within an efficient state-space [...] Read more.
Multimodal sentiment analysis (MSA) faces key challenges such as incomplete modality inputs, long-range temporal dependencies, and suboptimal fusion strategies. To address these, we propose MGMR-Net, a Mamba-guided multimodal reconstruction and fusion network that integrates modality-aware reconstruction with text-centric fusion within an efficient state-space modeling framework. MGMR-Net consists of two core components: the Mamba-collaborative fusion module, which utilizes a two-stage selective state-space mechanism for fine-grained cross-modal alignment and hierarchical temporal integration, and the Mamba-enhanced reconstruction module, which employs continuous-time recurrence and dynamic gating to accurately recover corrupted or missing modality features. The entire network is jointly optimized via a unified multi-task loss, enabling simultaneous learning of discriminative features for sentiment prediction and reconstructive features for modality recovery. Extensive experiments on CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets demonstrate that MGMR-Net consistently outperforms several baseline methods under both complete and missing modality settings, achieving superior accuracy, robustness, and generalization. Full article
(This article belongs to the Special Issue Application of Data Mining in Decision Support Systems (DSSs))
26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

25 pages, 2082 KiB  
Article
XTTS-Based Data Augmentation for Profanity Keyword Recognition in Low-Resource Speech Scenarios
by Shin-Chi Lai, Yi-Chang Zhu, Szu-Ting Wang, Yen-Ching Chang, Ying-Hsiu Hung, Jhen-Kai Tang and Wen-Kai Tsai
Appl. Syst. Innov. 2025, 8(4), 108; https://doi.org/10.3390/asi8040108 - 31 Jul 2025
Abstract
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation [...] Read more.
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation method based on XText-to-Speech (XTTS) synthesis to tackle the challenges of small-sample, multi-class speech recognition, using profanity as a case study to achieve high-accuracy keyword recognition. Two models were therefore evaluated: a CNN model (Proposed-I) and a CNN-Transformer hybrid model (Proposed-II). Proposed-I leverages local feature extraction, improving accuracy on a real human speech (RHS) test set from 55.35% without augmentation to 80.36% with XTTS-enhanced data. Proposed-II integrates CNN’s local feature extraction with Transformer’s long-range dependency modeling, further boosting test set accuracy to 88.90% while reducing the parameter count by approximately 41%, significantly enhancing computational efficiency. Compared to a previously proposed incremental architecture, the Proposed-II model achieves an 8.49% higher accuracy while reducing parameters by about 98.81% and MACs by about 98.97%, demonstrating exceptional resource efficiency. By utilizing XTTS and public corpora to generate a novel keyword speech dataset, this study enhances sample diversity and reduces reliance on large-scale original speech data. Experimental analysis reveals that an optimal synthetic-to-real speech ratio of 1:5 significantly improves the overall system accuracy, effectively addressing data scarcity. Additionally, the Proposed-I and Proposed-II models achieve accuracies of 97.54% and 98.66%, respectively, in distinguishing real from synthetic speech, demonstrating their strong potential for speech security and anti-spoofing applications. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
13 pages, 1879 KiB  
Article
Dynamic Graph Convolutional Network with Dilated Convolution for Epilepsy Seizure Detection
by Xiaoxiao Zhang, Chenyun Dai and Yao Guo
Bioengineering 2025, 12(8), 832; https://doi.org/10.3390/bioengineering12080832 (registering DOI) - 31 Jul 2025
Viewed by 23
Abstract
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that [...] Read more.
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that EEG signals follow a Euclidean structure; (2) Algorithms leveraging graph convolutional networks rely on adjacency matrices constructed with fixed edge weights or predefined connection rules. To address these limitations, we propose a novel algorithm: Dynamic Graph Convolutional Network with Dilated Convolution (DGDCN). By leveraging a spatiotemporal attention mechanism, the proposed model dynamically constructs a task-specific adjacency matrix, which guides the graph convolutional network (GCN) in capturing localized spatial and temporal dependencies among adjacent nodes. Furthermore, a dilated convolutional module is incorporated to expand the receptive field, thereby enabling the model to capture long-range temporal dependencies more effectively. The proposed seizure detection system is evaluated on the TUSZ dataset, achieving AUC values of 88.7% and 90.4% on 12-s and 60-s segments, respectively, demonstrating competitive performance compared to current state-of-the-art methods. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

23 pages, 480 KiB  
Article
Executive Functions and Reading Skills in Low-Risk Preterm Children
by Miguel Pérez-Pereira, Constantino Arce and Anastasiia Ogneva
Children 2025, 12(8), 1011; https://doi.org/10.3390/children12081011 - 31 Jul 2025
Viewed by 36
Abstract
Background/Objectives. Previous research with extremely and very preterm children indicates that these children obtain significantly lower results in executive functions (EFs) and in reading skills than full-term (FT) children. The comparison results do not seem to be so clear when other PT children [...] Read more.
Background/Objectives. Previous research with extremely and very preterm children indicates that these children obtain significantly lower results in executive functions (EFs) and in reading skills than full-term (FT) children. The comparison results do not seem to be so clear when other PT children in lower-risk conditions are studied. Many studies with typically developing and preterm (PT) children indicate that reading ability is determined, in part, by EFs. Therefore, the study of EFs and reading and their relationships in low-risk PT children is pertinent. Methods. In the present study, 111 PT children, classified into three groups with different ranges of gestational age (GA), and one group of 34 FT children participated in a longitudinal study, carried out from 4 to 9 years of age. The results obtained from the four groups in different EFs measured at 4, 5, and 8 years of age, and in reading skills at 9 years of age were compared. The possible effects of EFs on reading skills were studied through multiple linear regression analyses. Results. The results obtained indicate that no significant difference was found between FT children and any of the GA groups of PT children, either in EFs or reading skills. The effect of EFs on reading skills was low to moderate. Verbal and non-verbal working memory had a positive significant effect on decoding skills (letter names, same–different, and word reading), but not on reading comprehension processes. Higher-order EFs (cognitive flexibility and planning), as well as inhibitory control, showed positive effects on reading comprehension skills. The effects of the different EFs varied depending on the reading process. Conclusions. In conclusion, low-risk PT children do not differ from FT children in their competence in EFs or reading skills. There are long-lasting effects of EFs, measured several years before, on reading skills measured at 9 years of age. Full article
(This article belongs to the Special Issue Advances in Neurodevelopmental Outcomes for Preterm Infants)
Show Figures

Figure 1

29 pages, 15488 KiB  
Article
GOFENet: A Hybrid Transformer–CNN Network Integrating GEOBIA-Based Object Priors for Semantic Segmentation of Remote Sensing Images
by Tao He, Jianyu Chen and Delu Pan
Remote Sens. 2025, 17(15), 2652; https://doi.org/10.3390/rs17152652 (registering DOI) - 31 Jul 2025
Viewed by 43
Abstract
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability [...] Read more.
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability in semantic segmentation. While convolutional neural networks (CNNs) excel at local feature extraction, they inherently struggle to capture long-range dependencies. In contrast, Transformer-based models are well suited for global context modeling but often lack fine-grained local detail. To overcome these limitations, we propose GOFENet (Geo-Object Feature Enhanced Network)—a hybrid semantic segmentation architecture that effectively fuses object-level priors into deep feature representations. GOFENet employs a dual-encoder design combining CNN and Swin Transformer architectures, enabling multi-scale feature fusion through skip connections to preserve both local and global semantics. An auxiliary branch incorporating cascaded atrous convolutions is introduced to inject information of segmented objects into the learning process. Furthermore, we develop a cross-channel selection module (CSM) for refined channel-wise attention, a feature enhancement module (FEM) to merge global and local representations, and a shallow–deep feature fusion module (SDFM) to integrate pixel- and object-level cues across scales. Experimental results on the GID and LoveDA datasets demonstrate that GOFENet achieves superior segmentation performance, with 66.02% mIoU and 51.92% mIoU, respectively. The model exhibits strong capability in delineating large-scale land cover features, producing sharper object boundaries and reducing classification noise, while preserving the integrity and discriminability of land cover categories. Full article
Show Figures

Figure 1

24 pages, 4618 KiB  
Article
A Sensor Data Prediction and Early-Warning Method for Coal Mining Faces Based on the MTGNN-Bayesian-IF-DBSCAN Algorithm
by Mingyang Liu, Xiaodong Wang, Wei Qiao, Hongbo Shang, Zhenguo Yan and Zhixin Qin
Sensors 2025, 25(15), 4717; https://doi.org/10.3390/s25154717 (registering DOI) - 31 Jul 2025
Viewed by 42
Abstract
In the context of intelligent coal mine safety monitoring, an integrated prediction and early-warning method named MTGNN-Bayesian-IF-DBSCAN (Multi-Task Graph Neural Network–Bayesian Optimization–Isolation Forest–Density-Based Spatial Clustering of Applications with Noise) is proposed to address the challenges of gas concentration prediction and anomaly detection in [...] Read more.
In the context of intelligent coal mine safety monitoring, an integrated prediction and early-warning method named MTGNN-Bayesian-IF-DBSCAN (Multi-Task Graph Neural Network–Bayesian Optimization–Isolation Forest–Density-Based Spatial Clustering of Applications with Noise) is proposed to address the challenges of gas concentration prediction and anomaly detection in coal mining faces. The MTGNN (Multi-Task Graph Neural Network) is first employed to model the spatiotemporal coupling characteristics of gas concentration and wind speed data. By constructing a graph structure based on sensor spatial dependencies and utilizing temporal convolutional layers to capture long short-term time-series features, the high-precision dynamic prediction of gas concentrations is achieved via the MTGNN. Experimental results indicate that the MTGNN outperforms comparative algorithms, such as CrossGNN and FourierGNN, in prediction accuracy, with the mean absolute error (MAE) being as low as 0.00237 and the root mean square error (RMSE) maintained below 0.0203 across different sensor locations (T0, T1, T2). For anomaly detection, a Bayesian optimization framework is introduced to adaptively optimize the fusion weights of IF (Isolation Forest) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Through defining the objective function as the F1 score and employing Gaussian process surrogate models, the optimal weight combination (w_if = 0.43, w_dbscan = 0.52) is determined, achieving an F1 score of 1.0. By integrating original concentration data and residual features, gas anomalies are effectively identified by the proposed method, with the detection rate reaching a range of 93–96% and the false alarm rate controlled below 5%. Multidimensional analysis diagrams (e.g., residual distribution, 45° diagonal error plot, and boxplots) further validate the model’s robustness in different spatial locations, particularly in capturing abrupt changes and low-concentration anomalies. This study provides a new technical pathway for intelligent gas warning in coal mines, integrating spatiotemporal modeling, multi-algorithm fusion, and statistical optimization. The proposed framework not only enhances the accuracy and reliability of gas prediction and anomaly detection but also demonstrates potential for generalization to other industrial sensor networks. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 3436 KiB  
Article
An Improved Wind Power Forecasting Model Considering Peak Fluctuations
by Shengjie Yang, Jie Tang, Lun Ye, Jiangang Liu and Wenjun Zhao
Electronics 2025, 14(15), 3050; https://doi.org/10.3390/electronics14153050 - 30 Jul 2025
Viewed by 117
Abstract
Wind power output sequences exhibit strong randomness and intermittency characteristics; traditional single forecasting models struggle to capture the internal features of sequences and are highly susceptible to interference from high-frequency noise and predictive accuracy is still notably poor at the peaks where the [...] Read more.
Wind power output sequences exhibit strong randomness and intermittency characteristics; traditional single forecasting models struggle to capture the internal features of sequences and are highly susceptible to interference from high-frequency noise and predictive accuracy is still notably poor at the peaks where the power curve undergoes abrupt changes. To address the poor fitting at peaks, a short-term wind power forecasting method based on the improved Informer model is proposed. First, the temporal convolutional network (TCN) is introduced to enhance the model’s ability to capture regional segment features along the temporal dimension, enhancing the model’s receptive field to address wind power fluctuation under varying environmental conditions. Next, a discrete cosine transform (DCT) is employed for adaptive modeling of frequency dependencies between channels, converting the time series data into frequency domain representations to extract its frequency features. These frequency domain features are then weighted using a channel attention mechanism to improve the model’s ability to capture peak features and resist noise interference. Finally, the Informer generative decoder is used to output the power prediction results, this enables the model to simultaneously leverage neighboring temporal segment features and long-range inter-temporal dependencies for future wind-power prediction, thereby substantially improving the fitting accuracy at power-curve peaks. Experimental results validate the effectiveness and practicality of the proposed model; compared with other models, the proposed approach reduces MAE by 9.14–42.31% and RMSE by 12.57–47.59%. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications)
Show Figures

Figure 1

15 pages, 1600 KiB  
Article
XLNet-CRF: Efficient Named Entity Recognition for Cyber Threat Intelligence with Permutation Language Modeling
by Tianhao Wang, Yang Liu, Chao Liang, Bailing Wang and Hongri Liu
Electronics 2025, 14(15), 3034; https://doi.org/10.3390/electronics14153034 - 30 Jul 2025
Viewed by 143
Abstract
As cyberattacks continue to rise in frequency and sophistication, extracting actionable Cyber Threat Intelligence (CTI) from diverse online sources has become critical for proactive threat detection and defense. However, accurately identifying complex entities from lengthy and heterogeneous threat reports remains challenging due to [...] Read more.
As cyberattacks continue to rise in frequency and sophistication, extracting actionable Cyber Threat Intelligence (CTI) from diverse online sources has become critical for proactive threat detection and defense. However, accurately identifying complex entities from lengthy and heterogeneous threat reports remains challenging due to long-range dependencies and domain-specific terminology. To address this, we propose XLNet-CRF, a hybrid framework that combines permutation-based language modeling with structured prediction using Conditional Random Fields (CRF) to enhance Named Entity Recognition (NER) in cybersecurity contexts. XLNet-CRF directly addresses key challenges in CTI-NER by modeling bidirectional dependencies and capturing non-contiguous semantic patterns more effectively than traditional approaches. Comprehensive evaluations on two benchmark cybersecurity corpora validate the efficacy of our approach. On the CTI-Reports dataset, XLNet-CRF achieves a precision of 97.41% and an F1-score of 97.43%; on MalwareTextDB, it attains a precision of 85.33% and an F1-score of 88.65%—significantly surpassing strong BERT-based baselines in both accuracy and robustness. Full article
Show Figures

Figure 1

32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 220
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

19 pages, 3397 KiB  
Article
FEMNet: A Feature-Enriched Mamba Network for Cloud Detection in Remote Sensing Imagery
by Weixing Liu, Bin Luo, Jun Liu, Han Nie and Xin Su
Remote Sens. 2025, 17(15), 2639; https://doi.org/10.3390/rs17152639 - 30 Jul 2025
Viewed by 202
Abstract
Accurate and efficient cloud detection is critical for maintaining the usability of optical remote sensing imagery, particularly in large-scale Earth observation systems. In this study, we propose FEMNet, a lightweight dual-branch network that combines state space modeling with convolutional encoding for multi-class cloud [...] Read more.
Accurate and efficient cloud detection is critical for maintaining the usability of optical remote sensing imagery, particularly in large-scale Earth observation systems. In this study, we propose FEMNet, a lightweight dual-branch network that combines state space modeling with convolutional encoding for multi-class cloud segmentation. The Mamba-based encoder captures long-range semantic dependencies with linear complexity, while a parallel CNN path preserves spatial detail. To address the semantic inconsistency across feature hierarchies and limited context perception in decoding, we introduce the following two targeted modules: a cross-stage semantic enhancement (CSSE) block that adaptively aligns low- and high-level features, and a multi-scale context aggregation (MSCA) block that integrates contextual cues at multiple resolutions. Extensive experiments on five benchmark datasets demonstrate that FEMNet achieves state-of-the-art performance across both binary and multi-class settings, while requiring only 4.4M parameters and 1.3G multiply–accumulate operations. These results highlight FEMNet’s suitability for resource-efficient deployment in real-world remote sensing applications. Full article
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 166
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

27 pages, 15511 KiB  
Review
Recent Advances in the Structural Studies of the Proteolytic ClpP/ClpX Molecular Machine
by Astrid Audibert, Jerome Boisbouvier and Annelise Vermot
Biomolecules 2025, 15(8), 1097; https://doi.org/10.3390/biom15081097 - 29 Jul 2025
Viewed by 128
Abstract
AAA+ ATPases are ring-shaped hexameric protein complexes that operate as elaborate macromolecular motors, driving a variety of ATP-dependent cellular processes. AAA+ ATPases undergo large-scale conformational changes that lead to the conversion of chemical energy from ATP into mechanical work to perform a wide [...] Read more.
AAA+ ATPases are ring-shaped hexameric protein complexes that operate as elaborate macromolecular motors, driving a variety of ATP-dependent cellular processes. AAA+ ATPases undergo large-scale conformational changes that lead to the conversion of chemical energy from ATP into mechanical work to perform a wide range of functions, such as unfolding and translocation of the protein substrate inside a proteolysis chamber of an AAA+-associated protease. Despite extensive biochemical studies on these macromolecular assemblies, the mechanism of substrate unfolding and degradation has long remained elusive. Indeed, until recently, structural characterization of AAA+ protease complexes remained hampered by the size and complexity of the machinery, harboring multiple protein subunits acting together to process proteins to be degraded. Additionally, the major structural rearrangements involved in the mechanism of this complex represent a crucial challenge for structural biology. Here, we report the main advances in deciphering molecular details of the proteolytic reaction performed by AAA+ proteases, based on the remarkable progress in structural biology techniques. Particular emphasis is placed on the latest findings from high-resolution structural analysis of the ClpXP proteolytic complex, using crystallographic and cryo-EM investigations. In addition, this review presents some additional dynamic information obtained using solution-state NMR. This information provides molecular details that help to explain the protein degradation process by such molecular machines. Full article
(This article belongs to the Special Issue Structural Biology of Protein)
Show Figures

Figure 1

Back to TopTop