Executive Functions and Reading Skills in Low-Risk Preterm Children
Abstract
Highlights
- No significant difference was found between full-term and low-risk preterm children in their executive functions and their reading skills. Executive functions were assessed using cognitive and behavioral scale measures taken at different ages (4, 5, and 8 years), while reading skills were assessed at 9 years of age.
- Executive functions have a low-to-moderate predictive effect on reading skills. The effects of the different executive functions vary depending on the reading process. Verbal and non-verbal working memory had a positive significant effect on decoding skills. Cognitive flexibility and planning, as well as inhibitory control, showed positive effects on reading comprehension skills.
- There are differences between low-risk and high-risk preterm children in their competencies in reading and in executive functions. It is important to specify the type of population studied.
- Early assessment of executive functions is relevant given the long-lasting effects of executive functions on reading.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedure
2.4. Analyses Performed
3. Results
3.1. EF Comparisons
3.2. Reading Skills Comparisons
3.3. Effects of EFs on Reading Skills
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHEXI | The Childhood Executive Functioning Inventory |
EDAF | Evaluación de la Discriminación Auditiva y Fonológica |
EFs | Executive functions |
EPT | Extremely preterm |
FT | Full-term |
GA | Gestational age |
IVH | Intraventricular hemorrhage |
MLP | Moderate and late preterm |
NEPSY-II | Evaluación Neuropsicológica Infantil |
PEBL | The Psychology Experiment Building Language |
PT | Preterm |
PVL | Periventricular leukomalacia |
RT | Reaction time |
SAM | Sequential auditive memory |
Appendix A
Appendix A.1. Results of Kruskal–Wallis Test
Executive Functions | H | df | Significance |
---|---|---|---|
EDAF seq. auditory memory | 1.184 | 3 | 0.757 |
CORSI total score | 1.933 | 3 | 0.586 |
Reaction time Go/No-Go errors | 4.897 | 3 | 0.179 |
NEPSY auditory attention | 0.113 | 3 | 0.990 |
NEPSY cognitive flexibility | 7.109 | 3 | 0.069 |
NEPSY animal classification | 4.881 | 3 | 0.181 |
NEPSY inhibition | 3.791 | 3 | 0.285 |
NEPSY clocks | 1.205 | 3 | 0.752 |
Reading abilities | |||
Letter names | 0.816 | 3 | 0.846 |
Same–different | 5.392 | 3 | 0.145 |
Word reading | 1.080 | 3 | 0.782 |
Pseudoword reading | 1.873 | 3 | 0.599 |
Grammatical structures | 4.251 | 3 | 0.236 |
Punctuation marks | 0.627 | 3 | 0.890 |
Sentence comprehension | 1.435 | 3 | 0.697 |
Text comprehension | 1.109 | 3 | 775 |
Appendix A.2. Results of Correlation Analysis
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Letter names | 1 | ||||||||||||||||||
2 Same–different | 201 | 1 | |||||||||||||||||
3 Word reading | 0.628 *** | 0.137 | 1 | ||||||||||||||||
4 Pseudoword reading | 0.537 *** | 0.074 | 0.629 *** | 1 | |||||||||||||||
5 Gramma-tical str. | 0.081 | 0.171 | −0.011 | 0.168 | 1 | ||||||||||||||
6 Punctuation marks | 0.073 | −0.083 | 0.191 | 0.371 ** | 0.150 | 1 | |||||||||||||
7 Sentence compr. | −0.085 | 0.229 | 0.022 | 0.106 | 0.142 | 0.118 | 1 | ||||||||||||
8 Text compr. | 0.047 | 0.151 | 0.169 | 0.068 | 0.078 | 0.253 | 0.411 ** | 1 | |||||||||||
9 EDAF SAM | 0.269 | 0.300 * | 0.548 *** | 0.303 * | 0.284 * | 0.068 | 0.140 | 0.085 | 1 | ||||||||||
10 CHEXI WM | −0.386 ** | −0.095 | −0.318 * | −0.192 | 0.112 | −0.122 | −0.088 | −0.274 | −0.291 * | 1 | |||||||||
11 CHEXI IC | −0.306 * | 0.003 | −0.307 * | −0.279 | 0.021 | −0.041 | 0.013 | −0.215 | −0.269 | 0.621 ** | 1 | ||||||||
12 CORSI total | 0.204 | 0.088 | 0.078 | −0.019 | 0.244 | −0.070 | −0.090 | 0.011 | 0.140 | −0.005 | −0.036 | 1 | |||||||
13 Total Go | −0.035 | −0.030 | 0.152 | 0.057 | 0.223 | 0.194 | 0.196 | 0.247 | 0.142 | −0.199 | −0.083 | 0.196 | 1 | ||||||
14 RT Go | −0.076 | −0.006 | −0.020 | −0.009 | 0.204 | 0.123 | 0.162 | 0.244 | 0.159 | −0.199 | 0.008 | −0.054 | 0.183 | 1 | |||||
15 NEPSY AA | 0.180 | 0.192 | 0.061 | −0.053 | 0.116 | −0.055 | −0.096 | −0.070 | 0.151 | −0.036 | −0.233 | 0.191 | 0.057 | −0.052 | 1 | ||||
16 NEPSY CF | 0.100 | 0.281 * | 0.031 | −0.111 | 0.204 | 0.044 | 0.050 | −0.059 | 0.176 | −0.192 | −0.105 | 0.179 | −0.020 | 0.029 | 0.435 ** | 1 | |||
17 NEPSY AC | 0.062 | 0.100 | −0.004 | −0.048 | −0.110 | 0.155 | 0.050 | 0.033 | −0.086 | −0.102 | −0.161 | 0.287 | 0.166 | −0.002 | 0.367 ** | 0.395 ** | 1 | ||
18 NEPSY clocks | 0.184 | 0.231 | 0.196 | 0.061 | 0.043 | −0.079 | 0.002 | 0.230 | 0.131 | −0.353 * | −0.313* | 0.397 ** | −0.037 | −0.157 | 0.223 | 0.334 * | 0.217 | 1 | |
19 NEPSY inhibition | −0.012 | 0.068 | 0.035 | −0.090 | −0.025 | 0.038 | 0.166 | 0.076 | 0.084 | −0.071 | −0.067 | −0.015 | −0.101 | 0.011 | 0.264 | 0.172 | 0.025 | 0.142 | 1 |
References
- Foy, J.G.; Mann, V.A. Executive function and early reading skills. Read. Writ. 2013, 26, 453–472. [Google Scholar] [CrossRef]
- Castles, A.; Rastle, K.; Nation, K. Ending the reading wars: Reading acquisition from novice to expert. Psychol. Sci. Public Interest 2018, 19, 5–51. [Google Scholar] [CrossRef] [PubMed]
- van den Broek, P.; Helder, A. Cognitive processes in discourse comprehension: Passive processes, reader-initiated processes, and evolving mental representations. Discourse Process. 2017, 54, 360–372. [Google Scholar] [CrossRef]
- Stafura, J.Z.; Perfetti, C.A. Word-to-text integration: Message level and lexical level influences in ERPs. Neuropsychologia 2014, 64, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Hessel, A.K.; Schroeder, S. Interactions between lower-and higher-level processing when reading in a second language: An eye-tracking study. Discourse Process. 2020, 57, 940–964. [Google Scholar] [CrossRef]
- Swanson, H.L.; Trainin, G.; Necoechea, D.M.; Hammill, D.D. Rapid naming, phonological awareness, and reading: A meta-analysis of the correlation evidence. Rev. Educ. Res. 2003, 73, 407–440. [Google Scholar] [CrossRef]
- Pérez-Pereira, M.; Martínez-López, Z.; Maneiro, L. Longitudinal relationships between reading abilities, phonological awareness, language abilities and executive functions: Comparison of low risk preterm and full-term children. Front. Psychol. 2020, 11, 468. [Google Scholar] [CrossRef]
- Christopher, M.E.; Miyake, A.; Keenan, J.M.; Pennington, B.F.; DeFries, J.C.; Wadsworth, S.J.; Olson, R.K. Predicting word reading and comprehension with executive function and speed measures across development: A latent variable analysis. J. Exp. Psychol. Gen. 2012, 141, 470–488. [Google Scholar] [CrossRef]
- Cutting, L.E.; Materek, A.; Cole, C.A.S.; Levine, T.M.; Mahone, E.M. Effects of fluency, oral language, and executive function on reading comprehension performance. Ann. Dyslexia 2009, 59, 34–54. [Google Scholar] [CrossRef]
- Follmer, D.J. Executive function and reading comprehension: A meta-analytic review. Educ. Psychol. 2018, 53, 42–60. [Google Scholar] [CrossRef]
- Fuhs, M.W.; Farran, D.C.; Nesbitt, K.T. Prekindergarten children’s executive functioning skills and achievement gains: The utility of direct assessments and teacher ratings. J. Educ. Psychol. 2015, 107, 207–221. [Google Scholar] [CrossRef]
- Miller, A.C.; Keenan, J.M.; Betjemann, R.S.; Willcutt, E.G.; Pennington, B.F.; Olson, R.K. Reading comprehension in children with ADHD: Cognitive underpinnings of the centrality deficit. J. Abnorm. Child Psychol. 2013, 41, 473–483. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. The nature and organization of individual differences in executive functions: Four general conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Sesma, H.W.; Mahone, E.M.; Levine, T.; Eason, S.H.; Cutting, L.E. The contribution of executive skills to reading comprehension. Child Neuropsychol. 2009, 15, 232–246. [Google Scholar] [CrossRef]
- Segers, E.; Damhuis, C.M.; van de Sande, E.; Verhoeven, L. Role of executive functioning and home environment in early reading development. Learn. Individ. Differ. 2016, 49, 251–259. [Google Scholar] [CrossRef]
- Cirino, P.T.; Miciak, J.; Ahmed, Y.; Barnes, M.A.; Taylor, W.P.; Gerst, E.H. Executive Function: Association with Multiple Reading Skills. Read. Writ. 2019, 32, 1819–1846. [Google Scholar] [CrossRef]
- Gough, P.B.; Tunmer, W.E. Decoding, Reading, and Reading Disability. Remedial Spec. Educ. 1986, 7, 6–10. [Google Scholar] [CrossRef]
- Meixner, J.M.; Laubrock, J. Executive functioning predicts development of reading skill and perceptual span seven years later. J. Mem. Lang. 2024, 136, 104511. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; Pelegrina, S. The specific role of inhibition in reading comprehension in good and poor comprehenders. J. Learn. Disabil. 2010, 43, 541–552. [Google Scholar] [CrossRef] [PubMed]
- De Rom, M.; Szmalec, A.; Van Reybroeck, M. The involvement of inhibition in word and sentence reading. Read. Writ. 2023, 36, 1283–1318. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, T.C.; Georgiou, G.K.; Apostolou, T. The role of distal and proximal cognitive processes in literacy skills in Greek. In Reading-Writing Connections: Towards Integrative Literacy Science; Alves, R.A., Limpo, T., Joshi, R.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 171–184. [Google Scholar]
- Nouwens, S.; Groen, M.A.; Kleemans, T.; Verhoeven, L. How executive functions contribute to reading comprehension. Br. J. Educ. Psychol. 2021, 91, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, C.; Berni, M.; Pierucci, G.; Pecini, C. Executive functions as predictors of learning prerequisites in preschool: A longitudinal study. Trends Neurosci. Educ. 2024, 36, 100239. [Google Scholar] [CrossRef] [PubMed]
- Dolean, D.D.; Lervåg, A.; Visu-Petra, L.; Melby-Lervåg, M. Language skills, and not executive functions, predict the development of reading comprehension of early readers. Read. Writ. 2021, 34, 1491–1512. [Google Scholar] [CrossRef]
- Haft, S.L.; Caballero, J.N.; Tanaka, H.; Zekelman, L.; Cutting, L.E.; Uchikoshi, Y.; Hoeft, F. Direct and indirect contributions of executive function to word decoding and reading comprehension in kindergarten. Learn. Individ. Differ. 2019, 76, 101783. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, N.; Zhang, X.; Wang, L.-C.A.; Liu, D. Effects of working memory and visual search skill on Chinese reading comprehension: Examining the simple view of reading. Read. Writ. 2025, 38, 329–351. [Google Scholar] [CrossRef]
- Aarnoudse-Moens, C.S.; Smidts, D.P.; Oosterlaan, J.; Duivenvoorden, H.J.; Weisglas-Kuperus, N. Executive function in very preterm children at early school age. J. Abnorm. Child Psychol. 2009, 37, 981–993. [Google Scholar] [CrossRef]
- Aarnoudse-Moens, C.S.H.; Duivenvoorden, H.J.; Weisglas-Kuperus, N.; Van Goudoever, J.B.; Oosterlaan, J. The profile of executive function in very preterm children at 4 to 12 years. Dev. Med. Child Neurol. 2012, 54, 247–253. [Google Scholar] [CrossRef]
- Anderson, P.J.; Doyle, L.W. Executive functioning in school-aged children who were born very preterm or with extremely low birth weight in the 1990s. Pediatrics 2004, 114, 50–57. [Google Scholar] [CrossRef]
- Bohm, B.; Smedler, A.C.; Forssberg, H. Impulse control, working memory and other executive functions in preterm children when starting school. Acta Paediatr. 2004, 93, 1363–1371. [Google Scholar] [CrossRef]
- Loe, I.M.; Chatav, M.; Alduncin, N. Complementary assessments of executive function in preterm and full-term preschoolers. Child Neuropsychol. 2015, 21, 331–353. [Google Scholar] [CrossRef]
- Mulder, H.; Pitchford, N.J.; Hagger, M.S.; Marlow, N. Development of executive function and attention in preterm children: A systematic review. Dev. Neuropsychol. 2009, 34, 393–421. [Google Scholar] [CrossRef]
- Sansavini, A.; Guarini, A.; Alessandroni, R.; Faldella, G.; Giovanelli, G.; Salvioli, G. Are early grammatical and phonological working memory abilities affected by preterm birth? J. Commun. Disord. 2007, 40, 239–256. [Google Scholar] [CrossRef]
- Wehrle, F.M.; Stockli, A.; Disselhoff, V.; Schnider, B.; Grunt, S.; Mouthon, A.L.; Latal, B.; Hagmann, C.F.; Everts, R. Effects of correcting for prematurity on executive function scores of children born very preterm at school age. J. Pediatr. 2021, 238, 145–152. [Google Scholar] [CrossRef] [PubMed]
- van Houdt, C.A.; Oosterlaan, J.; van Wassenaer-Leemhuis, A.G.; van Kaam, A.H.; Aarnoudse-Moens, C.S.H. Executive function deficits in children born preterm or at low birthweight: A meta-analysis. Dev. Med. Child Neurol. 2019, 61, 1015–1024. [Google Scholar] [CrossRef]
- Ritter, B.C.; Perrig, W.; Steinlin, M.; Everts, R. Cognitive and behavioral aspects of executive functions in children born very preterm. Child Neuropsychol. 2014, 20, 129–144. [Google Scholar] [CrossRef]
- Pascal, A.; Govaert, P.; Oostra, A.; Naulaers, G.; Ortibus, E.; Van den Broeck, C. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: A meta-analytic review. Dev. Med. Child Neurol. 2018, 60, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Baron, I.S.; Kerns, K.A.; Müller, U.; Ahronovich, M.D.; Litman, F.R. Executive functions in extremely low birth weight and late-preterm preschoolers: Effects on working memory and response inhibition. Child Neuropsychol. 2012, 18, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pereira, M.; Peralbo, M.; Veleiro Vidal, A. Prematurity, executive functions and language. In Atypical Language Development in Romance Languages; Aguilar-Mediavilla, E., Buil-Legaz, L., López-Penadés, R., Sánchez-Azanza, V., Adrover-Roig, D., Eds.; John Benjamins Publishing: Amsterdam, The Netherlands, 2019; pp. 37–56. [Google Scholar]
- Rossetti, L.; Pascoe, L.; Piazza, C.; Mills, T.; Stedall, P.; Cheong, J.L.Y.; Anderson, P.J. Executive Function in Children Born Moderate-to-Late Preterm: A Meta-Analysis. Pediatrics 2024, 154, e2024067382. [Google Scholar] [CrossRef]
- Rossetti, L.; Pascoe, L.; Mainzer, R.M.; Ellis, R.; Olsen, J.E.; Spittle, A.J.; Anderson, P.J. Executive Function Outcomes at School Age in Children Born Moderate-to-Late Preterm. J. Pediatr. 2025, 284, 114634. [Google Scholar] [CrossRef]
- Anderson, P.; Doyle, L.W.; Victorian Infant Collaborative Study Group. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003, 289, 3264–3272. [Google Scholar] [CrossRef]
- Johnson, S.; Wolke, D.; Hennessy, E.; Marlow, N. Educational outcomes in extremely preterm children: Neuropsychological correlates and predictors of attainment. Dev. Neuropsychol. 2011, 36, 74–95. [Google Scholar] [CrossRef]
- Johnson, S.; Strauss, V.; Gilmore, C.; Jaekel, J.; Marlow, N.; Wolke, D. Learning disabilities among extremely preterm children without neurosensory impairment: Comorbidity, neuropsychological profiles and scholastic outcomes. Early Hum. Dev. 2016, 103, 69–75. [Google Scholar] [CrossRef]
- Taylor, R.; Pascoe, L.; Scratch, S.; Doyle, L.W.; Anderson, P.; Roberts, G. A simple screen performed at school entry can predict academic under-achievement at age seven in children born very preterm. J. Paediatr. Child Health 2016, 52, 759–764. [Google Scholar] [CrossRef]
- Alanko, O.; Niemi, P.; Munck, P.; Matomaki, J.; Turunen, T.; Nurmi, J.E.; Rautava, P. Reading and math abilities of Finnish school beginners born very preterm or with very low birth weight. Learn. Individ. Differ. 2017, 54, 173–183. [Google Scholar] [CrossRef]
- Guarini, A.; Bonifacci, P.; Tobia, V.; Alessandroni, R.; Faldella, G.; Sansavini, A. The profile of very preterm children on academic achievement: A cross-population comparison with children with specific learning disorders. Res. Dev. Disabil. 2019, 87, 54–63. [Google Scholar] [CrossRef]
- Lee, E.S.; Yeatman, J.D.; Luna, B.; Feldman, H.M. Specific language and reading skills in school-aged children and adolescents are associated with prematurity after controlling for IQ. Neuropsychologia 2011, 49, 906–913. [Google Scholar] [CrossRef]
- Pritchard, V.E.; Clark, C.A.C.; Liberty, K.; Champion, P.R.; Wilson, K.; Woodward, L.J. Early school-based learning difficulties in children born very preterm. Early Hum. Dev. 2009, 85, 215–224. [Google Scholar] [CrossRef]
- Leijon, I.; Ingemansson, F.; Nelson, N.; Samuelsson, S.; Wadsby, M. Children with a very low birthweight showed poorer reading skills at eight years of age but caught up in most areas by the age of 10. Acta Paediatr. 2018, 107, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, M.; Kallankari, H.; Partanen, L.; Korkalainen, N.; Kaukola, T.; Yliherva, A. Children born before 32 weeks of gestation displayed impaired reading fluency, comprehension and spelling skills at 9 years of age. Acta Paediatr. 2021, 110, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Hedenius, M.; Johansson, M.; Kaul, Y.F.; Andersson, E.; Montgomery, C.; Hellstrom-Westas, L.; Kochukhova, O. Predictors of language and reading outcomes in 12-year-old children born very preterm. Acta Paediatr. 2025, 114, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Aarnoudse-Moens, C.; Weisglas-Kuperus, N.; Van Goudoever, J.B.; Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Acta Paediatr. 2009, 124, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Kovachy, V.N.; Adams, J.N.; Tamaresis, J.S.; Feldman, H.M. Reading abilities in school-aged preterm children: A review and meta-analysis. Dev. Med. Child Neurol. 2015, 57, 410–419. [Google Scholar] [CrossRef] [PubMed]
- McBryde, M.; Fitzallen, G.C.; Liley, H.G.; Taylor, H.G.; Bora, S. Academic outcomes of school-aged children born preterm: A systematic review and meta-analysis. JAMA Netw. Open 2020, 3, e202027. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Ortega, M.; Alvarez-Bardon, A.; Vergara-Moragues, E.; Tubio, J.; Gonzalez-Andrade, A. Reading abilities in preterm children: A systematic review and meta-analysis. Cogn. Process. 2024, 25, 545–565. [Google Scholar] [CrossRef]
- Frye, R.E.; Landry, S.H.; Swank, P.R.; Smith, K.E. Executive dysfunction in poor readers born prematurely at high risk. Dev. Neuropsychol. 2009, 34, 254–271. [Google Scholar] [CrossRef]
- Alba, E.F.; Bujnowska, A.M.; Rodriguez, M.S.; Solis-Sanchez, G.; Rodriguez, C. Reading competencies in school-age children born preterm: The role of birth weight. Read. Writ. 2025. [Google Scholar] [CrossRef]
- Graf, R.; Kalmar, M.; Harnos, A.; Boross, G.; Nagy, A. Reading and spelling skills of prematurely born children in light of the underlying cognitive factors. Cogn. Process. 2021, 22, 311–319. [Google Scholar] [CrossRef]
- Joensuu, E.; Munck, P.; Nyman, A.H.; Setanen, S.; Rautava, P.; Stolt, S. Finnish children born very preterm have good reading comprehension but weak reading fluency at age 11 years: A longitudinal cohort study. Child Neuropsychol. 2025, 31, 585–612. [Google Scholar] [CrossRef]
- Rose, S.A.; Feldman, J.F.; Jankowski, J.J. Modeling a cascade of effects: The role of speed and executive functioning in preterm/full-term differences in academic achievement. Dev. Sci. 2011, 14, 1161–1175. [Google Scholar] [CrossRef]
- Guarini, A.; Sansavini, A. Language, executive functions, short-term memory and literacy in preterm children: A longitudinal study. Riv. Psicoling. Appl. 2012, 12, 101–115. [Google Scholar]
- Guarini, A.; Sansavini, A.; Fabbri, C.; Savini, S.; Alessandroni, R.; Faldella, G.; Karmiloff-Smith, A. Long-term effects of preterm birth on language and literacy at eight years. J. Child Lang. 2010, 37, 865–885. [Google Scholar] [CrossRef] [PubMed]
- Borchers, L.R.; Bruckert, L.; Travis, K.E.; Dodson, C.K.; Loe, I.M.; Marchman, V.A.; Feldman, H.M. Predicting text reading skills at age 8 years in children born preterm and at term. Early Hum. Dev. 2019, 130, 80–86. [Google Scholar] [CrossRef]
- Trickett, J.; Bernardi, M.; Fahy, A.; Lancaster, R.; Larsen, J.; Ni, Y.; Johnson, S. Neuropsychological abilities underpinning academic attainment in children born extremely preterm. Child Neuropsychol. 2022, 28, 746–767. [Google Scholar] [CrossRef] [PubMed]
- Brancal, M.F.; Alcantud, F.; Ferrer, A.M.; Quiroga, M.E. EDAF: Evaluación de la Discriminación Auditiva y Fonológica; Ediciones Lebón, S.L.: Ciudad Real, Spain, 2005. [Google Scholar]
- Thorell, L.B.; Nyberg, L. The Childhood Executive Functioning Inventory (CHEXI): A new rating instrument for parents and teachers. Dev. Neuropsychol. 2008, 33, 536–552. [Google Scholar] [CrossRef]
- Farrell Pagulayan, K.; Busch, R.M.; Medina, K.L.; Bartok, J.A.; Krikorian, R. Developmental normative data for the Corsi Block-tapping task. J. Clin. Exp. Neuropsychol. 2006, 28, 1043–1052. [Google Scholar] [CrossRef]
- Kessels, R.P.; Van Zandvoort, M.J.; Postma, A.; Kappelle, L.J.; De Haan, E.H. The Corsi block-tapping task: Standardization and normative data. Appl. Neuropsychol. 2000, 7, 252–258. [Google Scholar] [CrossRef]
- Mueller, S.T.; Piper, B.J. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J. Neurosci. Methods 2014, 222, 250–259. [Google Scholar] [CrossRef]
- Bezdjian, S.; Baker, L.; Lozano, D.; Raine, A. Assessing inattention and impulsivity in children during the go/no-go task. Br. J. Dev. Psychol. 2009, 27, 365–383. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Guevara, M.E.; Bolaños, M.F.; Ramos, D.A. Adaptación y estudio descriptivo del experimento Go/No-Go en una muestra de estudiantes ecuatorianos. Rev. Tecnol. ESPOL–RTE 2015, 28, 119–133. [Google Scholar]
- Saunders, B.; Farag, N.; Vincent, A.S.; Collins, F.L., Jr.; Sorocco, K.H.; Lovallo, W.R. Impulsive errors on a Go-NoGo reaction time task: Disinhibitory traits in relation to a family history of alcoholism. Alcohol Clin. Exp. Res. 2008, 32, 888–894. [Google Scholar] [CrossRef]
- Korkman, M.; Kirk, U.; Temp, S. NEPSY-II-Evaluación Neuropsicológica Infantil; Pearson: Madrid, Spain, 2013. [Google Scholar]
- Cuetos, F.; Rodríguez, B.; Ruano, E.; Arribas, D. Prolec-R. Batería de Evaluación de los Procesos Lectores, Revisada; TEA: Madrid, Spain, 2007. [Google Scholar]
- Giménez de la Peña, A.; López-Zamora, M.; Vila, O.; Sánchez, A.; Thorell, L.B. Validation of the Spanish version of the Childhood Executive Functioning Inventory (CHEXI) in 4–5-year-old children. An. Psicol. 2022, 38, 101–109. [Google Scholar] [CrossRef]
Variable | Group | N | Mean | SD | df | F | η2 | p |
---|---|---|---|---|---|---|---|---|
CHEXI working memory total score | <32 | 36 | 30.19 | 10.40 | ||||
32–33 | 32 | 27.00 | 8.21 | |||||
34–36 | 43 | 30.58 | 11.07 | |||||
>37 | 34 | 30.11 | 7.43 | |||||
Total | 145 | 29.58 | 9.55 | 3.141 | 1.02 | 0.02 | 0.38 | |
CHEXI inhibitory control total score | <32 | 36 | 31.83 | 9.37 | ||||
32–33 | 32 | 30.31 | 7.32 | |||||
34–36 | 43 | 35.13 | 6.87 | |||||
>37 | 34 | 34.08 | 6.30 | |||||
Total | 145 | 33.00 | 7.70 | 3.141 | 3.02 | 0.06 | 0.03 | |
EDAF sequential auditory memory score | <32 | 34 | 5.41 | 2.36 | ||||
32–33 | 32 | 5.28 | 2.78 | |||||
34–36 | 42 | 5.98 | 2.51 | |||||
>37 | 34 | 5.79 | 2.54 | |||||
Total | 142 | 5.64 | 2.54 | 3.138 | 0.58 | 0.01 | 0.62 | |
CORSI total score | <32 | 32 | 10.50 | 7.42 | ||||
32–33 | 28 | 9.25 | 8.30 | |||||
34–36 | 37 | 11.78 | 8.47 | |||||
>37 | 31 | 10.64 | 7.60 | |||||
Total | 128 | 10.63 | 7.93 | 3.125 | 0.54 | 0.013 | 0.65 | |
Correct responses Go/No-Go total score | <32 | 30 | 73.10 | 11.33 | ||||
32–33 | 26 | 68.80 | 12.16 | |||||
34–36 | 40 | 73.52 | 10.54 | |||||
>37 | 33 | 70.39 | 18.17 | |||||
Total | 129 | 71.67 | 13.34 | 3.125 | 0.86 | 0.02 | 0.45 | |
Reaction time Go/No-Go errors | <32 | 29 | 606.15 | 188.66 | ||||
32–33 | 25 | 557.90 | 92.02 | |||||
34–36 | 40 | 636.30 | 171.34 | |||||
>37 | 32 | 609.51 | 196.09 | |||||
Total | 126 | 607.00 | 170.45 | 3.104 | 1.14 * | 0.026 | 0.33 | |
NEPSY auditory attention combined scale score | <32 | 27 | 12.55 | 2.60 | ||||
32–33 | 27 | 13.07 | 1.93 | |||||
34–36 | 33 | 12.90 | 2.11 | |||||
>37 | 26 | 12.88 | 2.02 | |||||
Total | 113 | 12.85 | 2.16 | 3.109 | 0.26 | 0.007 | 0.84 | |
NEPSY cognitive flexibility combined scale score | <32 | 27 | 12.33 | 3.43 | ||||
32–33 | 27 | 12.70 | 3.16 | |||||
34–36 | 33 | 13.15 | 3.29 | |||||
>37 | 25 | 14.48 | 2.67 | |||||
Total | 112 | 13.14 | 3.22 | 3.105 | 2.27 * | 0.59 | 0.85 | |
NEPSY animal classification combined scale score | <32 | 27 | 8.51 | 1.36 | ||||
32–33 | 24 | 9.41 | 2.24 | |||||
34–36 | 32 | 8.28 | 1.54 | |||||
>37 | 26 | 9.00 | 1.32 | |||||
Total | 109 | 8.76 | 1.67 | 3.105 | 2.56 | 0.68 | 0.58 | |
NEPSY inhibition total score | <32 | 27 | 32.62 | 1.37 | ||||
32–33 | 26 | 34.11 | 1.10 | |||||
34–36 | 33 | 33.03 | 0.94 | |||||
>37 | 26 | 34.96 | 1.09 | |||||
Total | 112 | 33.63 | 0.56 | 3.108 | 0.85 | 0.23 | 0.46 | |
NEPSY clocks scale score | <32 | 28 | 6.21 | 4.12 | ||||
32–33 | 26 | 6.61 | 4.07 | |||||
34–36 | 34 | 6.88 | 4.54 | |||||
>37 | 26 | 5.76 | 4.39 | |||||
Total | 114 | 6.40 | 4.26 | 3.110 | 0.36 | 0.01 | 0.77 |
Variable | Group | N | Mean | SD | df | F | η2 | p |
---|---|---|---|---|---|---|---|---|
Letter names | <32 | 18 | 160.80 | 27.49 | ||||
32–33 | 23 | 156.54 | 40.31 | |||||
34–36 | 28 | 158.83 | 38.42 | |||||
>37 | 20 | 168.48 | 30.17 | |||||
Total | 89 | 160.80 | 34.94 | 3.85 | 0.45 | 0.01 | 0.71 | |
Same–different | <32 | 18 | 32.59 | 6.95 | ||||
32–33 | 22 | 35.05 | 8.34 | |||||
34–36 | 27 | 36.26 | 8.88 | |||||
>37 | 20 | 37.91 | 5.73 | |||||
Total | 87 | 35.57 | 7.81 | 3.83 | 1.60 | 0.05 | 0.19 | |
Word reading | <32 | 18 | 95.08 | 38.22 | ||||
32–33 | 23 | 89.65 | 19.89 | |||||
34–36 | 28 | 90.24 | 31.61 | |||||
>37 | 20 | 90.94 | 28.30 | |||||
Total | 89 | 91.22 | 29.40 | 3.85 | 0.13 | 0.00 | 0.94 | |
Pseudoword reading | <32 | 18 | 61.36 | 18.81 | ||||
32–33 | 23 | 56.23 | 13.17 | |||||
34–36 | 28 | 58.15 | 16.36 | |||||
>37 | 19 | 97.99 | 161.15 | |||||
Total | 88 | 66.91 | 76.42 | 3.84 | 1.13 * | 0.04 | 0.36 | |
Grammatical structures | <32 | 18 | 14.28 | 1.67 | ||||
32–33 | 22 | 13.82 | 2.26 | |||||
34–36 | 28 | 14.61 | 1.61 | |||||
>37 | 20 | 14.70 | 1.52 | |||||
Total | 88 | 14.36 | 1.79 | 3.84 | 1.10 | 0.03 | 0.35 | |
Punctuation marks | <32 | 14 | 23.26 | 3.57 | ||||
32–33 | 20 | 22.08 | 5.03 | |||||
34–36 | 22 | 23.35 | 5.37 | |||||
>37 | 14 | 26.41 | 19.02 | |||||
Total | 70 | 23.58 | 9.41 | 3.66 | 0.59 | 0.02 | 0.62 | |
Sentence comprehension | <32 | 18 | 15.72 | 0.57 | ||||
32–33 | 23 | 15.48 | 1.12 | |||||
34–36 | 28 | 15.75 | 0.585 | |||||
>37 | 19 | 15.63 | 0.59 | |||||
Total | 88 | 15.65 | 0.75 | 3.84 | 0.60 | 0.02 | 0.61 | |
Text comprehension | <32 | 18 | 14.39 | 1.19 | ||||
32–33 | 23 | 14.57 | 1.19 | |||||
34–36 | 28 | 14.46 | 1.07 | |||||
>37 | 19 | 14.32 | 1.20 | |||||
Total | 88 | 14.44 | 1.14 | 3.84 | 0.178 | 0.00 | 0.91 |
IV | Letter Names | Same–Different | Word Reading | Pseudoword Reading | Grammatical Structures | Punctuation Marks | Sentence Comprehension | Text Comprehension | |
---|---|---|---|---|---|---|---|---|---|
DV | |||||||||
CHEXI working memory | −0.426 (<0.001) | −0.091 (0.357) | 0.041 (0.668) | 0.153 (0.129) | 0.137 (0.161) | −0.078 (0.501) | −0.060 (0.507) | −0.167 (0.080) | |
CHEXI inhibitory control | 0.087 (0.329) | 0.099 (0.317) | −0.135 (0.162) | −0.095 (0.350) | −0.051 (0.602) | −0.016 (0.888) | 0.193 (0.032) | 0.022 (0.814) | |
Sequential auditory memory EDAF | 0.115 (0.200) | 0.291 (0.004) | 0.334 (<0.001) | −0.075 (0.467) | 0.132 (0.180) | 0.001 (0.993) | 0.029 (0.753) | 0.004 (0.964) | |
CORSI total score | 0.186 (0.044) | −0.053 (0.605) | −0.109 (0.276) | 0.078 (0.456) | 0.123 (0.224) | −0.116 (0.330) | −0.167 (0.074) | −0.264 (0.007) | |
Correct responses Go/No-Go | −0.141 (0.128) | 0.046 (0.658) | 0.147 (0.141) | −0.061 (0.558) | 0.153 (0.131) | 0.123 (0.307) | 0.357 (<0.001) | 0.131 (0.185) | |
Reaction time Go/No-Go errors | −0.069 (0.462) | −0.006 (0.956) | −0.002 (0.980) | 0.104 (0.322) | 0.019 (0.849) | 0.066 (0.586) | 0.035 (0.707) | −0.019 (0.852) | |
NEPSY auditory attention combined scale | 0.152 (0.097) | 0.080 (0.430) | −0.011 (0.915) | −0.025 (0.808) | −0.001 (0.996) | −0.109 (0.360) | −0.056 (0.546) | −0.128 (0.190) | |
NEPSY cognitive flexibility combined scale | 0.040 (0.661) | 0.154 (0.128) | 0.066 (0.505) | 0.149 (0.148) | 0.230 (0.021) | 0.122 (0.302) | 0.205 (0.026) | 0.006 (0.949) | |
NEPSY animal classification combined scale | 0.080 (0.381) | 0.013 (0.901) | −0.434 (0.802) | 0.033 (0.751) | −0.159 (0.111) | 0.071 (0.552) | −0.196 (0.033) | 0.018 (0.855) | |
NEPSY inhibition total score | 0.014 (0.878) | 0.105 (0.305) | −0.004 (0.966) | 0.045 (0.669) | 0.110 (0.276) | 0.050 (0.677) | 0.091 (0.330) | 0.151 (0.125) | |
NEPSY clocks scale score | −0.025 (0.784) | 0.016 (0.873) | 0.103 (0.300) | −0.152 (0.142) | −0.002 (0.988) | −0.051 (0.668) | 0.083 (0.370) | 0.244 (0.012) | |
R2 | 0.29 | 0.15 | 0.18 | 0.11 | 0.17 | 0.08 | 0.30 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Pereira, M.; Arce, C.; Ogneva, A. Executive Functions and Reading Skills in Low-Risk Preterm Children. Children 2025, 12, 1011. https://doi.org/10.3390/children12081011
Pérez-Pereira M, Arce C, Ogneva A. Executive Functions and Reading Skills in Low-Risk Preterm Children. Children. 2025; 12(8):1011. https://doi.org/10.3390/children12081011
Chicago/Turabian StylePérez-Pereira, Miguel, Constantino Arce, and Anastasiia Ogneva. 2025. "Executive Functions and Reading Skills in Low-Risk Preterm Children" Children 12, no. 8: 1011. https://doi.org/10.3390/children12081011
APA StylePérez-Pereira, M., Arce, C., & Ogneva, A. (2025). Executive Functions and Reading Skills in Low-Risk Preterm Children. Children, 12(8), 1011. https://doi.org/10.3390/children12081011