Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (898)

Search Parameters:
Keywords = loam soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2517 KB  
Article
Effects of Slow-Release Fertilizer on Growth, Yield, and Quality of Ziziphus jujuba Mill. ‘Huizao’
by Xueli Wang, Ye Yuan, Shoule Wang, Tianxiang Jiang, Dingyu Fan, Juan Jin, Ying Jin, Qing Hao and Cuiyun Wu
Plants 2026, 15(2), 265; https://doi.org/10.3390/plants15020265 - 15 Jan 2026
Viewed by 64
Abstract
Aiming at the problems of tree vigor decline and unstable fruit quality caused by soil impoverishment and easy nutrient loss in the Ziziphus jujuba Mill. ‘Huizao’ (Huizao) producing areas of southern Xinjiang, the application effect of bag-controlled slow-release fertilizer (BCSRF) in this region [...] Read more.
Aiming at the problems of tree vigor decline and unstable fruit quality caused by soil impoverishment and easy nutrient loss in the Ziziphus jujuba Mill. ‘Huizao’ (Huizao) producing areas of southern Xinjiang, the application effect of bag-controlled slow-release fertilizer (BCSRF) in this region remains unclear. In this study, a field experiment was conducted with four fertilization concentration gradients, including CK (0 kg/ha), T1 (22 kg/ha), T2 (44 kg/ha), and T3 (66 kg/ha), to investigate the effects of BCSRF on soil nutrient dynamics and plant growth, as well as the fruit yield and quality of Huizao. The results showed that BCSRF could effectively maintain the supply levels of soil alkali-hydrolysable nitrogen, available phosphorus, and available potassium during key growth periods, among which the T3 treatment exhibited the most significant effect. This treatment not only significantly increased the yield per plant of Huizao by 39.34% compared with the control, but also markedly enhanced the contents of the endogenous substance, including soluble sugar and cyclic adenosine monophosphate. This study confirms that under the condition of sandy loam soil in southern Xinjiang, a single basal application of an appropriate amount of BCSRF can achieve continuous nutrient supply, simultaneously improve soil fertility and fruit quality, providing a theoretical basis and technical guidance for simplified and efficient fertilization in local jujube orchards. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

14 pages, 273 KB  
Article
Survival of Bacterial Pathogens During Storage of Animal Waste and Wastewater Treatment Sludge and Their Subsequent Application to Clay–Loam Soil
by Natalia Alija-Novo, Paul Whyte and Declan Bolton
Bacteria 2026, 5(1), 5; https://doi.org/10.3390/bacteria5010005 - 12 Jan 2026
Viewed by 94
Abstract
Globally, large quantities of animal waste and human sewage sludge are generated annually. Their application as soil amendments can enhance soil quality and support a circular economy. However, these wastes may harbour pathogenic bacteria, posing contamination risks to soil and water and potential [...] Read more.
Globally, large quantities of animal waste and human sewage sludge are generated annually. Their application as soil amendments can enhance soil quality and support a circular economy. However, these wastes may harbour pathogenic bacteria, posing contamination risks to soil and water and potential transmission to animals and humans. This study investigated the survival of five bacterial pathogens during six months of storage in five types of organic waste and following their subsequent application to soil. During storage, T90 values ranged as follows: Salmonella Typhimurium (2.3–17.7 days), Campylobacter jejuni (0 to 23.9 days), Escherichia coli O157:H7 (4.3 to 57.8 days), and Listeria monocytogenes (1.9 to 170.4 days). In soil, T90 values were S. Typhimurium (4.2 to 17.4 days), C. jejuni (4.8 to 26.8 days), E. coli O157:H7 (4.3 to 52.9 days), and L. monocytogenes (2 to 83.7 days). Clostridium sporogenes remained stable throughout both experiments, preventing T90 calculation. Contrary to our initial hypothesis that soil microbiota would accelerate pathogen decline, T90 values were higher during storage in 11 cases and higher in soil in nine scenarios. These findings highlight the need for pre-treatment strategies for animal waste and biosolids before land spreading to consistently mitigate risks of pathogen transmission and environmental contamination. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
28 pages, 4190 KB  
Article
Effect of Two Calcium Levels and a Chicken Manure-Based Soil Amendment on Tomato Hybrid Performance
by Carlos David Carretillo Moctezuma, Abraham Francisco Aponte Herrera, José Terrones Salgado, Edgar Pérez Arriaga, Flaviano Godínez-Jaimes, María Guzmán Martínez, José Francisco Díaz-Nájera, Ramón Reyes Carreto, José C. García-Preciado and Juan Antonio Chamú-Baranda
Crops 2026, 6(1), 11; https://doi.org/10.3390/crops6010011 - 8 Jan 2026
Viewed by 141
Abstract
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. [...] Read more.
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. This study evaluated soil Ca availability and the effect of a chicken manure-based soil amendment on the growth and yield of four tomato genotypes (Pony Express F1, Palomo F1, Toro F1, and Perseo F1) grown on a loam–clay–sand soil containing 4886 ppm Ca. In the first cycle, conducted in a shade house, two Ca application levels (0% and 25% of the crop’s requirement) were tested. The 0% treatment outperformed the 25% treatment regarding yield-related traits, indicating that native soil Ca met crop demand; application of 25% Ca reduced total fruit weight and fruit number by 19.7% and 5.9%, respectively, while the 0% treatment produced 40.8% more first-quality fruits. Perseo F1 (Perseo) produced the highest yield of first-quality fruits (20.61 t ha−1), exceeding Pony Express F1 (Pony express), Palomo F1 (Palomo), and Toro F1 (Toro) by 10.8%, 6.6%, and 51.4%, respectively. In a second cycle under open-field conditions, incorporation of the chicken manure amendment significantly enhanced growth and yield: treated plants reached a 0.85 m height 58 days after transplanting, and overall yield increased to 70.08 t ha−1 compared with 50.30 t ha−1 in the control (21.9% increase). These results indicate that, while native soil Ca can satisfy crop requirements under the studied conditions, soil amendment under field conditions substantially improves plant performance and commercial yield potential. Full article
Show Figures

Figure 1

21 pages, 4727 KB  
Article
Effects of Groundwater Flux on Denitrification in a Steep Coastal Agricultural Island in Western Japan Using Push–Pull Tests
by Kelly Tiku Tarh, Shin-ichi Onodera, Mitsuyo Saito, Sharon Bih Kimbi and Miho Awamura
Hydrology 2026, 13(1), 23; https://doi.org/10.3390/hydrology13010023 - 7 Jan 2026
Viewed by 368
Abstract
This study investigated the influence of groundwater flux and temperature on denitrification in a steep coastal agricultural Island in western Japan. Push–pull tests (PPTs) were conducted at depths of 3 m, 15 m, and 30 m, during winter, spring, and summer to assess [...] Read more.
This study investigated the influence of groundwater flux and temperature on denitrification in a steep coastal agricultural Island in western Japan. Push–pull tests (PPTs) were conducted at depths of 3 m, 15 m, and 30 m, during winter, spring, and summer to assess denitrification under varying hydrogeological and seasonal conditions. The 3 m layer is silty loam, 15 m is granitic weathered soil, and 30 m is granitic weathered rock, each with distinct hydraulic conductivities and fluxes. The objectives were to assess denitrification rates and fluxes, assess depth- and season-related variability, and determine the relative roles of hydraulic flux and temperature on denitrification. Denitrification was higher at shallow (3 m) and deep (30 m) boreholes during low-flux periods, while low at the intermediate depth (15 m) where fluxes were highest. Temperature variation had weak correlations compared to hydraulic flux, which showed a strong inverse correlation with denitrification. These findings demonstrate that residence time, controlled by groundwater flux, is the dominant factor influencing nitrate attenuation in this steep coastal aquifer. The PPTs results indicate that denitrification rates derived from PPTs decrease under higher hydraulic fluxes, as these conditions promote more oxic conditions. The study highlights the potential for natural denitrification to mitigate nitrate contamination during low-flux periods, providing insights for sustainable groundwater management in agricultural island environments. Full article
Show Figures

Graphical abstract

15 pages, 1047 KB  
Article
Desorption-Enhanced QuEChERS Extraction of Tebufenpyrad from Soil and Its Greenhouse Dissipation
by Yoon-Hee Lee, Jae-Woon Baek, Tae-Gyu Min, Da-Geon Lee, Yong-Won Cho, Won-Guen Oh and Yongho Shin
Agriculture 2026, 16(1), 91; https://doi.org/10.3390/agriculture16010091 - 31 Dec 2025
Viewed by 203
Abstract
A method for quantifying tebufenpyrad residues in greenhouse sandy loam soils was developed and validated. Given the strong sorption (high Koc) of tebufenpyrad to mineral–organic domains in soils, desorption-limited and partially bound residues may occur, so sample preparation methods should actively [...] Read more.
A method for quantifying tebufenpyrad residues in greenhouse sandy loam soils was developed and validated. Given the strong sorption (high Koc) of tebufenpyrad to mineral–organic domains in soils, desorption-limited and partially bound residues may occur, so sample preparation methods should actively promote desorption to minimize underestimation. The QuEChERS extraction procedure was optimized by adjusting pre-wetting volume and aqueous medium to enhance desorption prior to salt-induced acetonitrile partitioning. Pre-wetting volume markedly affected phase separation and recovery: acceptable ranges were 80.2–82.0% at 5–10 mL, 94.6% at 15 mL, and 99.1% at 20 mL, while a supra-quantitative value of 119.6% was observed at 25 mL, likely due to salt-induced contraction of the acetonitrile layer, which artificially concentrates tebufenpyrad. Among pre-wetting reagents, 15 mL of 0.05% HCl yielded the highest desorption in field soil (0.20 mg/kg), compared with distilled water (0.13 mg/kg), formic acid (0.16 mg/kg), and EDTA (0.14–0.17 mg/kg). The final method employed 15 mL of 0.05% HCl for pre-wetting, followed by acetonitrile extraction and MgSO4/NaCl partitioning. Linearity (r2 = 0.9990) was achieved over 1.25 to 100 ng/mL, with an LOQ of 0.005 mg/kg and average recoveries of 86.7%, 99.8%, and 98.5% at 0.01, 0.1, and 30 mg/kg, respectively (RSD ≤ 6.2%), satisfying SANTE criteria. In greenhouse soil, residues declined from 1.9 to 0.3 mg/kg at the recommended rate (1×) and from 4.8 to 0.7 mg/kg at the doubled rate (2×) within 46 d (DT50 ≈ 20 d). This validated QuEChERS method provides a reliable analytical basis for evaluating tebufenpyrad dissipation in soil. Full article
(This article belongs to the Special Issue Detection of Pesticide Residues in Agricultural Products)
Show Figures

Figure 1

25 pages, 8139 KB  
Article
Explicit FEM Analysis of Soil–Disc Interaction for APS-Coated Notched Harrow Discs in Representative Agricultural Soils
by Corneliu Munteanu, Ana Tufescu, Fabian Cezar Lupu, Bogdan Istrate, Marcelin Benchea, Iurie Melnic, Vitali Vișanu and Vlad Nicolae Arsenoaia
Appl. Sci. 2026, 16(1), 395; https://doi.org/10.3390/app16010395 - 30 Dec 2025
Viewed by 141
Abstract
The present work develops an explicit dynamic finite element model of soil–disc interaction for a notched harrow disc, aiming to quantify how APS coatings, soil type and disc–soil friction influence stresses in the disc and surrounding soil. The model reproduces a four-gang offset [...] Read more.
The present work develops an explicit dynamic finite element model of soil–disc interaction for a notched harrow disc, aiming to quantify how APS coatings, soil type and disc–soil friction influence stresses in the disc and surrounding soil. The model reproduces a four-gang offset harrow operating at 7 km/h, 0.15 m working depth, with 18°disc angle and 15° tilt angle, and compares an uncoated steel disc with three APS-coated variants (P1 Metco 71NS, P2 Metco 136F, P3 Metco 45C-NS). Mechanical properties of the substrate and coatings are obtained from micro-indentation tests and introduced via a bilinear steel model and Johnson–Cook plasticity for the coatings, while disc–soil friction coefficients are calibrated from microscratch measurements. Soil behaviour is described using the AUTODYN Granular model for four representative agricultural soils, spanning sandy loam to saturated heavy clay. Results show that the uncoated disc develops von Mises stresses in the disc–soil contact region of ≈150–220 MPa, with intermediate-stiffness soils being most critical. APS coatings significantly alter both the level and distribution of stresses: P2, the stiffest ceramic, yields the highest stresses (≈421–448 MPa), P1 keeps stresses near the baseline while shielding the substrate through extended plastic zones, and P3 provides an intermediate, more uniformly distributed stress regime. Increasing disc–soil friction systematically amplifies von Mises stresses in the contact region, especially for P2. Overall, the calibrated explicit model captures the coupled influence of soil properties, coating stiffness and friction, and indicates that P1 is better suited for light-to-medium soils, P3 offers the most balanced response in medium-to-stiff soils, whereas P2 should be reserved for highly abrasive conditions and used with caution in cohesive soils. Full article
Show Figures

Figure 1

12 pages, 2336 KB  
Article
Estimation of Soil Water Flux Using the Heat Pulse Technique and Vector Addition in Saturated Soils of Different Textures
by Fuyun Lu, Zhi Zhao, Qinghua Pan, Yuping Zhang, Dongye Lu and Yang Wu
Water 2026, 18(1), 67; https://doi.org/10.3390/w18010067 - 25 Dec 2025
Viewed by 406
Abstract
Soil water flux is a key parameter for understanding water and heat transport processes in the vadose zone. The heat pulse technique (HPT) has shown considerable potential for predicting soil water flux. Traditional three-needle probe methods, the maximum dimensionless temperature difference (MDTD [...] Read more.
Soil water flux is a key parameter for understanding water and heat transport processes in the vadose zone. The heat pulse technique (HPT) has shown considerable potential for predicting soil water flux. Traditional three-needle probe methods, the maximum dimensionless temperature difference (MDTD) method and the ratio of downstream to upstream temperature increases (Ratio) method, can only measure water flux along the probe alignment. To enhance the applicability of the HPT method, the five-needle probe with vector addition allows for the measurement of soil water flux in any direction within the plane perpendicular to the needles. However, its applicability across different soil textures remains unclear. The objective of this study was to evaluate the applicability of the MDTD and Ratio methods when combined with vector addition across different soil textures. Experimental results show that the vector MDTD and Ratio methods improve water flux measurement accuracy compared with traditional three-needle methods, confirming the reliability of the vector HPT approach. Specifically, the mean absolute percentage error (MAPE) of the vector MDTD method decreased by 1.69%, 1.04%, and 1.80% in sand, sandy loam, and silt loam, respectively, compared with the traditional MDTD method. In contrast, the MAPE of the vector Ratio method varied by +8.83%, −6.73%, and −18.20% in the same soils, relative to the traditional Ratio method. Examining the root mean square error (RMSE) of each method yields a similar conclusion. Similarly to traditional HPT methods, the measurement accuracy of the vector HPT approach is influenced by soil texture, water flux range, and probe spacing. Notably, because the vector HPT method involves four probe spacings, namely the distances between the heating needle and the temperature-sensing needles, it can exacerbate the instability of the resultant water flux measurements. These findings may facilitate the broader application of the HPT method. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

25 pages, 5269 KB  
Article
An Earthworm-Inspired Subsurface Robot for Low-Disturbance Mitigation of Grassland Soil Compaction
by Yimeng Cai and Sha Liu
Appl. Sci. 2026, 16(1), 115; https://doi.org/10.3390/app16010115 - 22 Dec 2025
Viewed by 212
Abstract
Soil compaction in grassland and agricultural soils reduces water infiltration, root growth and ecosystem services. Conventional deep tillage and coring can alleviate compaction but are energy intensive and strongly disturb the turf. This study proposes an earthworm-inspired subsurface robot as a low-disturbance loosening [...] Read more.
Soil compaction in grassland and agricultural soils reduces water infiltration, root growth and ecosystem services. Conventional deep tillage and coring can alleviate compaction but are energy intensive and strongly disturb the turf. This study proposes an earthworm-inspired subsurface robot as a low-disturbance loosening tool for compacted grassland soils. Design principles are abstracted from earthworm body segmentation, anchoring–propulsion peristaltic locomotion and corrugated body surface, and mapped onto a robotic body with anterior and posterior telescopic units, a flexible mid-body segment, a corrugated outer shell and a brace-wire steering mechanism. Kinematic simulations evaluate the peristaltic actuation mechanism and predict a forward displacement of approximately 15 mm/cycle. Using the finite element method and a Modified Cam–Clay soil model, different linkage layouts and outer-shell geometries are compared in terms of radial soil displacement and drag force in cohesive loam. The optimised corrugated outer shell combining circumferential and longitudinal waves lowers drag by up to 20.1% compared with a smooth cylinder. A 3D-printed prototype demonstrates peristaltic locomotion and steering in bench-top tests. The results indicate the potential of earthworm-inspired subsurface robots to provide low-disturbance loosening in conservation agriculture and grassland management, and highlight the need for field experiments to validate performance in real soils. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

19 pages, 3072 KB  
Article
Microtopography-Driven Soil Loss in Loess Slopes Based on Surface Heterogeneity with BPNN Prediction
by Lin Chen, Yiting Song, Jie Lin, Qinqian Meng and Jian Wang
Agriculture 2025, 15(24), 2602; https://doi.org/10.3390/agriculture15242602 - 16 Dec 2025
Viewed by 364
Abstract
Microtopography regulates soil erosion by shaping surface heterogeneity, but the mechanism of loess slope soil loss remains insufficiently quantified. This study combined laboratory rainfall simulations and machine learning to investigate how tillage-induced microtopography modulates soil loss through surface heterogeneity and hydrodynamic processes. Simulations [...] Read more.
Microtopography regulates soil erosion by shaping surface heterogeneity, but the mechanism of loess slope soil loss remains insufficiently quantified. This study combined laboratory rainfall simulations and machine learning to investigate how tillage-induced microtopography modulates soil loss through surface heterogeneity and hydrodynamic processes. Simulations used loess soil (silty loam) with a 5° slope, 60 mm/h rainfall intensity, and 5–30 min rainfall durations (RD). Results indicated that the mean weight diameter (MWD) and aggregate stability index (ASI) of structural, transition, and depositional crusts under micro-terrain decreased by 36~65% and 41~60%, respectively, while the fractal dimension (D) increased by 10~19%. Negative relationships were observed between ASI/MWD and D (R2 = 0.83~0.98). Horizontal cultivation (THC, surface roughness [SR] = 1.76, average depression storage [ADS] = 2.34 × 10−2 m3) delayed runoff connectivity and reduced cumulative soil loss (LS) by 42–58% compared to hoeing cultivation (THE, SR = 1.47, ADS = 3.23 × 10−4 m3). Abrupt hydrodynamic transitions occurred at 10 min RD (THE) and 15 min RD (artificial digging [TAD]), driven by trench connectivity and depression overflow. LS exhibited a significant positive correlation with D and RD and was inversely correlated with ASI, MWD, and SR. A three-hidden-layer BPNN exhibited high predictive accuracy for LS (mean square error = 0.07), verifying applicability in complex scenarios with significant microtopographic heterogeneity and multi-factor coupling. This study demonstrated that surface roughness and depression storage were the dominant microtopographic controls on loess slope soil loss. BPNN provided a reliable tool for soil loss prediction in heterogeneous microtopographic systems. The findings provide critical insights into optimizing tillage-based soil conservation strategies for sloping loess farmlands. Full article
Show Figures

Figure 1

18 pages, 2448 KB  
Article
Integrated Numerical Approach to Glyphosate Transport in Soil Profiles Under Farming Conditions
by Jesús García-Gallego, Sebastian Fuentes, Teobaldis Mercado-Fernández, Eusebio Ventura-Ramos, José Treviño-Reséndez, Josué D. García-Espinoza, Carlos Fuentes and Carlos Chávez
Water 2025, 17(24), 3569; https://doi.org/10.3390/w17243569 - 16 Dec 2025
Viewed by 497
Abstract
Glyphosate is the most widely used herbicide in the world for weed control; however, due to lixiviation, wind and runoff effects, an important fraction can reach the soil, aquifers and surface waters, affecting environmental and human health. The behavior of glyphosate in two [...] Read more.
Glyphosate is the most widely used herbicide in the world for weed control; however, due to lixiviation, wind and runoff effects, an important fraction can reach the soil, aquifers and surface waters, affecting environmental and human health. The behavior of glyphosate in two agricultural soils (C1: silty clay texture, and C2: silty loam texture) was analyzed in this study using a laboratory-scale model. Water transfer was modeled with the Richards equation, while glyphosate transport was modeled using the advection–dispersion equation, with both solved using finite difference methods. The glyphosate dispersion coefficient was obtained from laboratory concentration data derived from the soil profile via inverse modeling using a non-linear optimization algorithm. The goals of this study were to (i) quantify glyphosate retention in soils with different physical and chemical properties, (ii) calibrate a numerical model for the estimation of dispersivity and simulation of short- and long-term scenarios, and (iii) assess vulnerability to groundwater contamination. The results showed that C1 retained a greater amount of glyphosate in the soil profile, while C2 was considered more vulnerable as it liberated the contaminant more easily. The model accurately reproduced the measured concentrations, as evidenced by the RMSE and R2 statistics, thus supporting further scenario simulations allowing for prediction of the fate of the herbicide in soils. The approach utilized in this study may be useful as a tool for authorities in environmental fields, enabling better control and monitoring of soil contamination. These findings highlight potential risks of contamination and reinforce the importance of agricultural management strategies. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

18 pages, 2611 KB  
Article
Nitrogen Matters: Assessing the Effects of Nitrogen Fertilization on Maize Growth and Grain Productivity
by Nasratullah Habibi, Zarir Sharaf, Mohammad Yousuf Fakoor, Shafiqullah Aryan, Abdul Basir Mahmoodzada, Amruddin Fakhri and Shah Mahmoud Faqiri
Nitrogen 2025, 6(4), 115; https://doi.org/10.3390/nitrogen6040115 - 16 Dec 2025
Viewed by 730
Abstract
Nitrogen deficiency is a major constraint on maize (Zea mays L.) productivity in Afghanistan, where poor soil fertility limits yields. This study investigated the effect of urea fertilizer on maize growth, physiology, and yield under semi-arid conditions in Balkh Province with a [...] Read more.
Nitrogen deficiency is a major constraint on maize (Zea mays L.) productivity in Afghanistan, where poor soil fertility limits yields. This study investigated the effect of urea fertilizer on maize growth, physiology, and yield under semi-arid conditions in Balkh Province with a Calcisols soil type, focusing on maize cultivated for grain production. A field experiment was conducted in 2019 using a randomized complete block design with three replications and four nitrogen levels: 0 (control), 38.4, 76.8, and 115.2 kg ha−1. The region consists of fertile alluvial plains suitable for crop cultivation, though maize productivity is constrained by soil nutrient limitations, especially nitrogen deficiency. The soil at the experimental site is silty loam in texture, moderately fertile with alkaline pH (8.1), low organic matter (0.5%), and limited available nitrogen (15 mg kg−1). Growth traits (plant height, leaf number, leaf area, SPAD value), physiological parameters (leaf area index, crop growth rate, biomass), and yield components (cob length, cob diameter, seed number, 100-seed weight, biological yield, and Brix content) were recorded. Results showed that nitrogen application significantly improved all traits compared to the control. The highest values for plant height (260.2 cm), cob length (31.67 cm), biological yield (216.6 t ha−1), and Brix content (8.6%) were observed at 115.2 kg ha−1, although 76.8 kg ha−1 produced nearly similar results. Correlation analysis revealed strong positive associations between SPAD values, vegetative traits, and yield. The findings indicate that 115.2 kg ha−1 urea is an efficient and practical nitrogen rate for enhancing maize productivity under Afghan conditions. Full article
(This article belongs to the Special Issue Nitrogen Management in Plant Cultivation)
Show Figures

Figure 1

16 pages, 1829 KB  
Article
Environmental Sustainability of Nanobubble Watering Through Life-Cycle Evidence and Eco-Innovation for Circular Farming Systems
by Yeganeh Arablousabet, Bahman Peyravi and Arvydas Povilaitis
Water 2025, 17(24), 3543; https://doi.org/10.3390/w17243543 - 14 Dec 2025
Viewed by 473
Abstract
Nanobubble-saturated water (NBSW) is widely seen as a potential innovation for sustainable agriculture; however, its overall environmental impact still requires clarification. This study examined the sustainability performance of NBSW using laboratory experiments, a life-cycle assessment (LCA), and an expert-based feasibility evaluation. Air and [...] Read more.
Nanobubble-saturated water (NBSW) is widely seen as a potential innovation for sustainable agriculture; however, its overall environmental impact still requires clarification. This study examined the sustainability performance of NBSW using laboratory experiments, a life-cycle assessment (LCA), and an expert-based feasibility evaluation. Air and oxygen nanobubble (ONB) watering were applied to silty clay loam and sandy loam soils, and environmental impacts were assessed using ILCD 2011 midpoint indicators. The results revealed that the electricity required for NB generation was the most significant contributor to the impacts across all categories, while material and nutrient inputs had only a minor impact. Air-NB and ONB treatments demonstrated similar life-cycle profiles because of their comparable energy demand. Conventional watering did not involve electricity use but increased nitrate leaching in sandy soil, leading to the possibility of eutrophication. Expert assessments indicated that future adoption of NBSW depends mainly on reducing energy consumption and improving operational reliability and cost efficiency. When combined with low-carbon energy and efficiency improvements, NBSW may contribute to reducing nutrient losses and enhancing resource efficiency in watering. These findings show that NB technology has potential as an eco-innovation, but more study is needed before it can be considered a viable circular-agriculture solution. Full article
Show Figures

Figure 1

20 pages, 365 KB  
Article
Nutritional Status and Nitrogen Uptake Dynamics of Waxy-Type Winter Wheat Under Liquid Organic Fertilization
by Aušra Arlauskienė, Danutė Petraitytė, Tadas Palubinskas, Marlo Jimenez and Jurgita Cesevičienė
Plants 2025, 14(24), 3799; https://doi.org/10.3390/plants14243799 - 13 Dec 2025
Viewed by 370
Abstract
The growing demand for sustainable farming has increased interest in niche crops, including waxy wheat (Triticum aestivum L.). However, their nitrogen (N) nutrition characteristics from organic and mineral fertilizers are not sufficiently studied. In this research, the effects of pig slurry and [...] Read more.
The growing demand for sustainable farming has increased interest in niche crops, including waxy wheat (Triticum aestivum L.). However, their nitrogen (N) nutrition characteristics from organic and mineral fertilizers are not sufficiently studied. In this research, the effects of pig slurry and liquid anaerobic digestate, as a sustainable alternative, were investigated and compared to ammonium nitrate, on waxy winter wheat, using N application rates of 0, 60, 120, and 120 + 50 kg ha−1 (the additional 50 kg ha−1 was applied as ammonium nitrate). The experiments were conducted in the northern part of Lithuania at the Joniškėlis Experimental Station of the Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC) on clay loam Cambisol and repeated over two years (2019/2020 and 2020/2021) by reseeding winter wheat. The study evaluated mineral N in the 0–60 cm soil layer during active growing and autumn–non-vegetation periods, N accumulation in plant biomass, wheat grain and straw yield, fertilizer N use efficiency (NUE), and total energy yield. It was found that more than half of the total N required by the crop was taken up during the first half of the vegetation period (in favourable years—56%; in less favourable years—75% of the total required N). The optimal N rate for waxy winter wheat was 60–120 kg ha−1. The fertilizer’s NUE depended on the N rate; in favourable years, NUE values were 50–75% for N60, 19–43% for N120, and 29–40% for N120 + 50. Results indicate that biogas slurry can serve as a sustainable alternative for winter wheat main N fertilization, contributing to improved environmental outcomes. Full article
Show Figures

Graphical abstract

24 pages, 9382 KB  
Article
Interaction of Soil Texture and Irrigation Level Improves Mesophyll Conductance Estimation
by Lu Lin, Pengpeng Wang, Zhenxu Liang, Mingde Sun, Yang Zhao, Hongning Wang, Kai Zhu, Lu Yu, Songzhong Liu and Zhiqiang Li
Plants 2025, 14(24), 3784; https://doi.org/10.3390/plants14243784 - 12 Dec 2025
Viewed by 343
Abstract
Combining leaf gas exchange with chlorophyll fluorescence, this study quantified the effects of soil water content (SWC) on mesophyll conductance (gm) and biochemical parameters in 8-year-old pear trees across three soil textures [clay (CS), sandy (SS), loam (LS)], [...] Read more.
Combining leaf gas exchange with chlorophyll fluorescence, this study quantified the effects of soil water content (SWC) on mesophyll conductance (gm) and biochemical parameters in 8-year-old pear trees across three soil textures [clay (CS), sandy (SS), loam (LS)], each subjected to three irrigation levels (100%FI, 75%FI, 50%FI). Results showed that SWC differed significantly, with CS > LS > SS, and that the difference in SWC in loam soil was the most obvious among different irrigation levels. The leaf water content (LWC) of SS was higher than that of LS and CS, and SS50%FI showed 7.53% and 13.30% greater LWC compared to LS50%FI and CS50%FI, respectively. Specific leaf area (SLA) peaked at CS75%FI and SS100%FI. Soil texture and irrigation level had significant interactive effects on gm, the product of light absorption coefficient and light energy partitioning ratio (α·β), leaf apparent CO2 compensation point, dark respiration rate under light, and photosynthetic biochemical parameters. Differences in the values of α·β among the nine treatments were significant and the maximum values in the three soil textures were 0.660 (LS75%FI), 0.366 (SS100%FI) and 0.462 (CS50%FI), respectively. The most sensitive treatment of gm, responding to photosynthetically active radiation (PAR), was SS100%FI and the maximal gm under saturated PAR reached 0.271 molCO2·m−2·s−1, increasing 2.2-fold and 8.8-fold compared to that of SS75%FI and SS50%FI, respectively. An underestimation of 26.4% to an overestimation of 30.3% for gm and an underestimation of 28.8% to an overestimation of 15.5% were observed for biochemical parameters if the empirical value (0.425) of α·β was adopted. Our findings indicated that the maximum leaf gm could be obtained at 75%FI for loam soil, 100% FI for sandy soil, and 50% FI for clay soil, respectively. Full article
Show Figures

Figure 1

13 pages, 1842 KB  
Article
Unlocking Soil Hydrological Connectivity: FFC-NMR Evidence of the Optimal Zeolite Concentration
by Alessio Nicosia, Calogero Librici, Pellegrino Conte and Vito Ferro
Water 2025, 17(24), 3511; https://doi.org/10.3390/w17243511 - 11 Dec 2025
Viewed by 391
Abstract
Zeolite is a popular soil amendment capable of improving physical and chemical properties of soils. This study investigates how zeolite concentration affects the hydrological connectivity of sandy loam soil. Soil samples with different zeolite concentrations Cz (0, 1, 1.5, 2.5, 5, 10, [...] Read more.
Zeolite is a popular soil amendment capable of improving physical and chemical properties of soils. This study investigates how zeolite concentration affects the hydrological connectivity of sandy loam soil. Soil samples with different zeolite concentrations Cz (0, 1, 1.5, 2.5, 5, 10, 15, and 30%) were analyzed for changes in water dynamics through Fast Field Cycling Nuclear Magnetic Resonance (FFC-NMR) relaxometry. FFC-NMR data revealed that the investigated zeolite can modify the pore size distribution in a wide range (1–15%) of Cz, as the zeolite particle size distribution has a percentage of coarse particles (56%) appreciably higher than that of the original soil (37%). Moreover, a concentration of 1% produces a more relevant increase in the soil’s meso- and macropores, while for Cz > 1.5%, the change in pore size distribution is damped by the increase in water retention that occurs upon increasing zeolite concentration. The analysis also demonstrated that Cz = 1% is sufficient to achieve the highest values of both structural and functional connectivity indexes. In conclusion, for sandy loam soil, adding a zeolite concentration of 1% is sufficient to improve the soil’s physical characteristics, with significant effects on soil hydrological behavior, and can be considered a valid practice to manage the addition of a water resource to the soil. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

Back to TopTop