Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,022)

Search Parameters:
Keywords = livestock management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1682 KB  
Article
Consequential Life Cycle Assessment of Integrated Anaerobic Digestion–Pyrolysis–HTC Systems for Bioenergy and Biofertiliser from Cattle Slurry and Grass Silage
by Maneesh Kumar Mediboyina, Nishtha Talwar and Fionnuala Murphy
Sustainability 2026, 18(2), 1040; https://doi.org/10.3390/su18021040 - 20 Jan 2026
Abstract
This study evaluates the environmental outcomes of integrating anaerobic digestion (AD) with pyrolysis (Py) and hydrothermal carbonization (HTC) to treat cattle slurry and grass silage in an Irish agricultural context. A consequential life cycle assessment (CLCA) was carried out for six scenarios based [...] Read more.
This study evaluates the environmental outcomes of integrating anaerobic digestion (AD) with pyrolysis (Py) and hydrothermal carbonization (HTC) to treat cattle slurry and grass silage in an Irish agricultural context. A consequential life cycle assessment (CLCA) was carried out for six scenarios based on 1 t of feedstock (0.4:0.6 cattle slurry/grass silage on a VS basis): two standalone AD systems (producing bioelectricity and biomethane) and four integrated AD–Py/HTC systems with different product utilisation pathways. Across all impact categories, the integrated systems performed better than standalone AD. This improvement is mainly due to the surplus bioenergy (electricity, biomethane, hydrocarbon fuel, hydrochar) that replaces marginal fossil energy (hard coal, natural gas and heavy fuel oil), together with the displacement of mineral NPK fertilisers by digestate-derived biochar and HTC process water. Among the configurations, the AD–HTC bioelectricity scenario (S4) achieved the best overall performance, driven by higher hydrochar yields, a favourable heating value, and a lower pretreatment energy demand compared with Py-based options. Across the integrated scenarios, climate change, freshwater eutrophication, and fossil depletion impacts were reduced by up to 84%, 86%, and 99%, respectively, relative to the fossil-based reference system, while avoiding digestate and fertiliser application reduced terrestrial acidification by up to 74%. Overall, the results show that the cascading utilisation of digestate via AD–Py/HTC can simultaneously enhance bioenergy production and nutrient recycling, providing a robust pathway for low-emission management of agricultural residues. These findings are directly relevant to Ireland’s renewable energy and circular economy targets and are transferable to other livestock-intensive regions seeking to valorise slurry and grass-based residues as low-carbon energy and biofertiliser resources. Full article
(This article belongs to the Special Issue Sustainable Waste Utilisation and Biomass Energy Production)
Show Figures

Figure 1

22 pages, 2446 KB  
Article
Analysis of the Evolution and Driving Factors of Nitrogen Balance in Zhejiang Province from 2011 to 2021
by Hongwei Yang, Guoxian Huang, Qi Lang and JieHao Zhang
Environments 2026, 13(1), 55; https://doi.org/10.3390/environments13010055 - 20 Jan 2026
Abstract
With rapid socioeconomic development and intensified human activities, nitrogen (N) loads have continued to rise, exerting significant impacts on the environment. Most existing studies focus on single cities or short time periods, which limits their ability to capture nitrogen dynamics under rapid urbanization. [...] Read more.
With rapid socioeconomic development and intensified human activities, nitrogen (N) loads have continued to rise, exerting significant impacts on the environment. Most existing studies focus on single cities or short time periods, which limits their ability to capture nitrogen dynamics under rapid urbanization. Based on statistical data from multiple cities in Zhejiang Province from 2011 to 2021, this study applied nitrogen balance accounting and statistical analysis to systematically evaluate the spatiotemporal variations in nitrogen inputs, outputs, and surpluses, as well as their driving factors. The results indicate that although nitrogen inputs and outputs fluctuated over the past decade, the overall nitrogen surplus showed an increasing trend, with the nitrogen surplus per unit area rising from 49.89 kg/(ha·a) in 2011 to 62.59 kg/(ha·a) in 2021. Zhejiang’s nitrogen load was higher than the national average but remained below the levels of highly urbanized regions such as the Yangtze River Delta and Pearl River Delta. Accelerated urbanization and increasing anthropogenic pressures were identified as major contributors to the rising nitrogen surplus, with significant inter-city disparities. Cities like Hangzhou, Ningbo, Wenzhou, and Jinhua were found to face higher risks of nitrogen pollution. Redundancy analysis and Pearson correlation analysis revealed that nitrogen surplus was positively correlated with cropland area, livestock population, total population, precipitation, GDP, and industrial output, further highlighting the dominant role of human activities in nitrogen cycling. This study provides the long-term quantitative assessment of nitrogen balance under multi-city coupling at the provincial scale and identifies key influencing factors. These findings provide scientific support for integrated nitrogen management across multiple environmental compartments in Zhejiang Province, including surface water, groundwater, agricultural systems, and urban wastewater, under conditions of rapid urbanization. Full article
Show Figures

Figure 1

30 pages, 731 KB  
Review
Bacteriocins, a New Generation of Sustainable Alternatives to Antibacterial Agents in Primary Food Production Systems
by Besarion Meskhi, Svetoslav Dimitrov Todorov, Dmitry Rudoy, Anastasiya Olshevskaya, Victoria Shevchenko, Tatiana Maltseva, Arkady Mirzoyan, Denis Kozyrev, Mary Odabashyan, Svetlana Teplyakova and Maria Mazanko
Molecules 2026, 31(2), 356; https://doi.org/10.3390/molecules31020356 - 19 Jan 2026
Abstract
Modern agriculture faces the critical need to develop sustainable, safe, and effective strategies for enhancing productivity, protecting plants and animals, and ensuring food security. Challenges posed by antibiotic resistance and the adverse environmental and consumer health impacts of chemical agents are driving the [...] Read more.
Modern agriculture faces the critical need to develop sustainable, safe, and effective strategies for enhancing productivity, protecting plants and animals, and ensuring food security. Challenges posed by antibiotic resistance and the adverse environmental and consumer health impacts of chemical agents are driving the search for eco-friendly alternatives. In this context, bacteriocins—naturally occurring antimicrobial peptides synthesized by diverse bacteria—represent a promising alternative to traditional chemical compounds. This article reviews the potential and current advances in bacteriocin applications across agricultural sectors, with particular focus on their targeted antagonistic activity, structural diversity, commercial bacteriocin-based products, and their utilization in livestock farming, crop production, poultry farming, and aquaculture. Key findings demonstrate that bacteriocins, particularly nisin and pediocin PA-1, exhibit potent activity against major agricultural pathogens including Listeria monocytogenes, Staphylococcus aureus, Clostridium perfringens, and Escherichia coli, with efficacy rates reaching 90% in mastitis treatment and significantly reducing pathogen loads in poultry and aquaculture systems. Commercial products such as Nisaplin, Wipe Out, and ALTA 2431 have been successfully implemented in veterinary medicine and food production. In aquaculture, bacteriocins effectively control Lactococcus garvieae, Aeromonas spp., Vibrio spp., and Pseudomonas aeruginosa, contributing to sustainable disease management with minimal environmental impact. It can be suggested that bacteriocins may play an essential role in combating pathogens and offer viable alternatives to conventional antibiotics across primary food production systems, though optimization of production methods and regulatory frameworks remains essential for broader commercial adoption. Full article
(This article belongs to the Special Issue Green Chemistry and Molecular Tools in Agriculture)
20 pages, 2572 KB  
Article
Single-Nucleotide Polymorphisms in Calpastatin (CAST) and Micro-Calpain (CAPN1) Genes Influencing Meat Tenderness in Crossbred Beef Cattle in Thailand
by Thanathip Thaloengsakdadech, Supawit Triwutanon, Preeda Lertwatcharasarakul, Nitipong Homwong and Theera Rukkwamsuk
Vet. Sci. 2026, 13(1), 99; https://doi.org/10.3390/vetsci13010099 - 19 Jan 2026
Abstract
This study investigated single-nucleotide polymorphisms (SNPs) within the CAPN1 316, CAPN1 4751, and CAST 2959 markers using high-resolution melting (HRM) analysis to predict meat tenderness in crossbred beef cattle. Tenderness was assessed using the Warner–Bratzler shear force (WBSF) test, with results expressed in [...] Read more.
This study investigated single-nucleotide polymorphisms (SNPs) within the CAPN1 316, CAPN1 4751, and CAST 2959 markers using high-resolution melting (HRM) analysis to predict meat tenderness in crossbred beef cattle. Tenderness was assessed using the Warner–Bratzler shear force (WBSF) test, with results expressed in grams (g), representing the force required to shear muscle fibers. Significant differences in phenotypic data were observed among the genotypic groups. The finding showed that polymorphisms at CAPN1 316, CAPN1 4751, and CAST 2959 exert interactive effects on meat quality traits. Notably, the TT genotype at CAPN1 4751 increased the adjusted WBSF (aWBSF) by approximately 792 g, indicating that TT was an unfavorable variant for tenderness. These results support the use of marker-assisted selection strategies in which the TT genotype is managed to minimize its frequency while other relevant markers are concurrently monitored, thereby enhancing genetic progress in meat tenderness across commercial cattle populations. This study demonstrated that CAPN1 4751 could serve as an effective marker for genetic selection in crossbred beef cattle and confirmed the efficiency of HRM analysis as a molecular tool for SNP genotyping. In conclusion, the findings provided an alternative approach for SNP detection in livestock breeding programs and represented an important step toward improving meat quality, meeting consumer expectations, and supporting the long-term sustainability of Thailand’s beef industry. The results highlighted the polygenic nature of meat tenderness and emphasized the importance of integrating multiple SNP markers to accurately assess the genetic potential for meat quality traits in cattle. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

16 pages, 1529 KB  
Article
Dynamics of Soil CH4 and CO2 Fluxes from Cattle Urine with and Without a Nitrification Inhibitor, and Dung Deposited onto a UK Grassland Soil
by Jerry Celumusa Dlamini, David Chadwick and Laura Maritza Cardenas
Methane 2026, 5(1), 4; https://doi.org/10.3390/methane5010004 - 19 Jan 2026
Abstract
Food production systems associated with livestock management are significant sources of greenhouse gases (GHGs). Livestock excreta are one of the primary sources of GHG emissions from grazing livestock. Against this context, a field experiment was established in a UK grassland to establish the [...] Read more.
Food production systems associated with livestock management are significant sources of greenhouse gases (GHGs). Livestock excreta are one of the primary sources of GHG emissions from grazing livestock. Against this context, a field experiment was established in a UK grassland to establish the extent of soil methane (CH4), carbon dioxide (CO2), andN2O fluxes upon the deposition of (i) cattle urine (U), (ii) urine + dicyandiamide (DCD) (U + DCD), (iii) artificial urine (AU), and dung (D), and compared with a (iv) control, where neither urine nor dung was applied. Excreta applications were made at three experimental periods during the grazing season: early-, mid-, and late-season. Soil N2O emissions data have been published already by co-authors; hence, this paper summarizes the emissions of soil-borne CH4 and CO2 emissions, and explores in particular, the effects of the addition of DCD, a nitrification inhibitor used to reduce direct and indirect N2O emissions from urine patches, on these (carbon) C-GHGs. Soil moisture (p = 0.47), soil temperature (p = 0.51), and nitrate (NO3) (p = 0.049) and ammonium (NH4+) (p = 0.66) availability, and C (p = 0.54) addition were key controls of both soil CH4 and CO2 emissions. The dung treatment stimulated the production and subsequent emissions of soil CH4 and CO2, a significantly high net CH4 and CO2-based global warming potential (GWP). The findings of the current study lay a foundation for an in-depth understanding of the magnitude and dynamics of soil-borne CH4 and CO2 upon urine and dung deposition during three different seasons. This study implies that the use of DCD may have the potential to reduce carbon-based GHGs from the urine and dung of grazing animals. Full article
Show Figures

Figure 1

19 pages, 1638 KB  
Article
Effectiveness of Protected Areas in the Conservation of Nothofagus antarctica Forests in Santa Cruz, Argentina
by Rocío L. Arcidiácono, Nirvana N. Churquina, Julián Rodríguez-Souilla, Juan M. Cellini, María Vanessa Lencinas, Francisco Ferrer, Pablo L. Peri and Guillermo Martínez Pastur
Land 2026, 15(1), 178; https://doi.org/10.3390/land15010178 - 18 Jan 2026
Viewed by 54
Abstract
Protected areas (PAs) constitute a fundamental strategy for mitigating biodiversity loss. The land–sparing approach has expanded in response to international agreements, but expansion of PAs does not guarantee conservation objectives. The objective was to assess PA effectiveness in conserving Nothofagus antarctica forests in [...] Read more.
Protected areas (PAs) constitute a fundamental strategy for mitigating biodiversity loss. The land–sparing approach has expanded in response to international agreements, but expansion of PAs does not guarantee conservation objectives. The objective was to assess PA effectiveness in conserving Nothofagus antarctica forests in Santa Cruz (Argentina), evaluating human impacts associated with fires, animal uses, and harvesting. The research was conducted within pure native forests in Santa Cruz, Argentina. This province encompasses 52 protected areas, representing the highest concentration of conservation units within the forested landscapes across Argentina. At least eight PAs included N. antarctica forests. Three land tenure categories were evaluated: protected areas (PAs), a buffer of 15 km from PA boundaries on private lands (BL), and private lands (PL) outside the buffer. In total, 103 stands were sampled, where 38 variables were assessed (impacts, soil, forest structure, understory, and animal use). Three indices were developed to analyze ecosystem integrity: forest structure (FI), soil (SI), and animal use (AI). PAs presented the highest FI (0.64 for PA, 0.44 for BL, and 0.30 for PL) and AI (0.60 for PA, 0.55 for BL, and 0.52 for PL), and together with buffer areas, the highest SI (0.43 for PA, 0.47 for BL, and 0.32 for PL). PAs were clearly distinct from private lands; however, sustained actions for livestock exclusion, harvest regulation, and fire management remain necessary for future sustainable planning at the landscape level. Full article
Show Figures

Figure 1

15 pages, 2460 KB  
Article
Exercise-Induced Meat Quality Improvement Is Associated with an lncRNA-miRNA-mRNA Network in Tibetan Sheep
by Pengfei Zhao, Zhiyong Jiang, Xin He, Ting Tian, Fang He and Xiong Ma
Biology 2026, 15(2), 158; https://doi.org/10.3390/biology15020158 - 16 Jan 2026
Viewed by 79
Abstract
Tibetan sheep, a unique breed indigenous to the Qinghai–Tibet Plateau, exhibit remarkable adaptations to high-altitude hypoxia, and their muscle quality is a key economic determinant. However, the molecular mechanisms by which exercise regulates meat quality in this breed remain poorly understood. This study [...] Read more.
Tibetan sheep, a unique breed indigenous to the Qinghai–Tibet Plateau, exhibit remarkable adaptations to high-altitude hypoxia, and their muscle quality is a key economic determinant. However, the molecular mechanisms by which exercise regulates meat quality in this breed remain poorly understood. This study aimed to systematically investigate the effects of different exercise volumes on the biceps femoris muscle of Tibetan sheep, integrating histological analysis with high-throughput transcriptome sequencing. We compared a low-exercise group with a high-exercise group and found that long-term endurance exercise resulted in phenotypic changes suggestive of a shift toward oxidative muscle fiber characteristics. This adaptation was characterized by significantly reduced muscle fiber diameter and cross-sectional area, alongside a crucial increase in intramuscular fat content, collectively enhancing meat tenderness, flavor, and juiciness. Transcriptomic analysis revealed extensive gene expression reprogramming, identifying 208 mRNAs and 490 lncRNAs that were differentially expressed and primarily associated with muscle fiber transition and energy metabolism. Furthermore, we constructed a putative lncRNA-miRNA-mRNA competing endogenous RNA network based on expression correlations and bioinformatic predictions, highlighting potential key regulatory axes such as LOC105603384/miR-16-z/MYLK3, LOC121820630/miR-381-y/NOX4, and LOC132659150/oar-miR-329a-3p/NF1. These findings provide a new perspective on the molecular basis of exercise-induced muscle adaptation in high-altitude animals and offer a solid theoretical framework for improving meat quality through scientific livestock management. Full article
(This article belongs to the Special Issue Non-Coding RNA Research and Functional Insights)
Show Figures

Figure 1

26 pages, 9482 KB  
Article
Can Environmental Analysis Algorithms Be Improved by Data Fusion and Soil Removal for UAV-Based Buffel Grass Biomass Prediction?
by Wagner Martins dos Santos, Alexandre Maniçoba da Rosa Ferraz Jardim, Lady Daiane Costa de Sousa Martins, Márcia Bruna Marim de Moura, Elania Freire da Silva, Luciana Sandra Bastos de Souza, Alan Cezar Bezerra, José Raliuson Inácio Silva, Ênio Farias de França e Silva, João L. M. P. de Lima, Leonor Patricia Cerdeira Morellato and Thieres George Freire da Silva
Drones 2026, 10(1), 61; https://doi.org/10.3390/drones10010061 - 15 Jan 2026
Viewed by 140
Abstract
The growing demand for sustainable livestock systems requires efficient methods for monitoring forage biomass. This study evaluated spectral (RGB and multispectral), textural (GLCM), and area attributes derived from unmanned aerial vehicle (UAV) imagery to predict buffelgrass (Cenchrus ciliaris L.) biomass, also testing [...] Read more.
The growing demand for sustainable livestock systems requires efficient methods for monitoring forage biomass. This study evaluated spectral (RGB and multispectral), textural (GLCM), and area attributes derived from unmanned aerial vehicle (UAV) imagery to predict buffelgrass (Cenchrus ciliaris L.) biomass, also testing the effect of soil pixel removal. A comprehensive machine learning pipeline (12 algorithms and 6 feature selection methods) was applied to 14 data combinations. Our results demonstrated that soil removal consistently improved the performance of the applied models. Multispectral (MSI) sensors were the most robust individually, whereas textural (GLCM) attributes did not contribute significantly. Although the MSI and RGB data combination proved complementary, the model with the highest accuracy was obtained with CatBoost using only RGB information after Boruta feature selection, achieving a CCC of 0.83, RMSE of 0.214 kg, and R2 of 0.81 in the test set. The most important variable was vegetation cover area (19.94%), surpassing spectral indices. We conclude that integrating RGB UAVs with robust processing can generate accessible and effective tools for forage monitoring. This approach can support pasture management by optimizing stocking rates, enhancing natural resource efficiency, and supporting data-driven decisions in precision silvopastoral systems. Full article
Show Figures

Figure 1

18 pages, 2734 KB  
Article
Feeding Rate Impacts on Hermetia Illucens Growth and Bioconversion Efficiency When Using Low-Value Organic Wastes
by Martha Sumba, Carlos Amador, Diego Portalanza, Jorge Amaya, Omar Ruiz, Malena Torres, Narcisa Gorotiza, Barbara Guerrero, Juan D. Cabrera and Eduardo Álava
Recycling 2026, 11(1), 17; https://doi.org/10.3390/recycling11010017 - 15 Jan 2026
Viewed by 176
Abstract
The growing generation of organic solid waste from small-scale agriculture poses major environmental challenges in developing countries like Ecuador, where rural areas often lack waste management infrastructure. Residues from livestock rearing and traditional brewing such as poultry manure (PM), bovine manure (BM), and [...] Read more.
The growing generation of organic solid waste from small-scale agriculture poses major environmental challenges in developing countries like Ecuador, where rural areas often lack waste management infrastructure. Residues from livestock rearing and traditional brewing such as poultry manure (PM), bovine manure (BM), and barley by-product (BB) are often discarded untreated. This study evaluated the bioconversion potential of Hermetia illucens (black soldier fly larvae (BSFL), using a local Ecuadorian strain reared on these substrates under natural conditions and three feeding rates (50, 100, and 150 mg·larva−1·day−1). Larval growth and process efficiency were analyzed on a dry-matter basis. Both substrate and feeding rate significantly influenced performance (p < 0.05). PM and BB produced the highest larval dry weights (37.4 and 35.9 mg, respectively) at 100 mg·larva−1·day−1, with development completed in 35 days. BM-fed larvae reached only 17.6 mg and required up to 91 days. Bioconversion peaked at 4.6% (PM100) and 4.2% (BB50), while all BM treatments showed very low efficiency (<0.8%). Waste reduction was highest in BB100 (52.9%) and PM100 (43.5%). These results demonstrate the potential of BSFL as a biological treatment option for rural organic waste streams; however, performance strongly depended on substrate quality and feeding rate, indicating that not all locally available residues are equally suitable for larval bioconversion. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

20 pages, 1167 KB  
Review
One Health Perspective on Antimicrobial Resistance in Bovine Mastitis Pathogens—A Narrative Review
by Bigya Dhital, Rameshwor Pudasaini, Jui-Chun Hsieh, Ramchandra Pudasaini, Ying-Tsong Chen, Day-Yu Chao and Hsin-I Chiang
Antibiotics 2026, 15(1), 84; https://doi.org/10.3390/antibiotics15010084 - 14 Jan 2026
Viewed by 567
Abstract
Background/Objectives: Bovine mastitis, a significant global concern in dairy farming, results in substantial economic losses and poses considerable risks to both animal and human health. With the increasing prevalence of antimicrobial resistance (AMR) in mastitis pathogens, the potential for resistant infections to [...] Read more.
Background/Objectives: Bovine mastitis, a significant global concern in dairy farming, results in substantial economic losses and poses considerable risks to both animal and human health. With the increasing prevalence of antimicrobial resistance (AMR) in mastitis pathogens, the potential for resistant infections to spread from livestock to humans and the environment is becoming a critical public health issue. This narrative review summarizes the current evidence on antimicrobial resistance in pathogens causing bovine mastitis and examines it from a One Health perspective, encompassing animal, human, and environmental interfaces. Results: By examining the complex interplay among animal, human, and environmental health, we highlight key factors that drive resistance, including the overuse of antimicrobials, poor farm management, and environmental contamination. We also discuss innovative strategies, such as enhanced surveillance, pathogen-specific diagnostics, alternatives to antimicrobials, and sustainable farm practices, that can mitigate the emergence of resistance. Key knowledge gaps include a limited understanding of antimicrobial residues, resistant pathogens, and gene transmission pathways and inconsistent implementation of antimicrobial stewardship practices. Conclusions: This review emphasizes the need for a coordinated, multidisciplinary effort to reduce the burden of AMR in bovine mastitis pathogens, ensuring the continued efficacy of antimicrobials and safeguarding public health through responsible management and policy interventions. Full article
(This article belongs to the Section The Global Need for Effective Antibiotics)
Show Figures

Figure 1

17 pages, 2465 KB  
Article
Comparative Effects of Raw Milk and Milk Replacer Feeding on Gut Microbiota Diversity and Function in Cryptosporidium parvum-Infected Neonatal Dairy Calves on a Japanese Farm
by Momoko Yachida, Megumi Itoh and Yasuhiro Morita
Vet. Sci. 2026, 13(1), 82; https://doi.org/10.3390/vetsci13010082 - 14 Jan 2026
Viewed by 182
Abstract
Neonatal diarrhea is a major health concern in the livestock industry, and Cryptosporidium parvum is a key pathogen responsible for this condition in calves. Milk management and gut microbiome regulation may play important roles in preventing cryptosporidiosis symptoms. This study analyzed the gut [...] Read more.
Neonatal diarrhea is a major health concern in the livestock industry, and Cryptosporidium parvum is a key pathogen responsible for this condition in calves. Milk management and gut microbiome regulation may play important roles in preventing cryptosporidiosis symptoms. This study analyzed the gut microbiota of neonatal calves fed raw milk (BM) or milk replacer (MR) using a total of 58 fecal samples collected on the same farm in 2022 and 2024. In milk replacer-fed calves, alpha diversity was significantly higher in C. parvum-positive (P) calves without diarrhea (N) (PN, n = 5) than in C. parvum-positive calves with diarrhea(D) (PD, n = 18) (Shannon p = 0.0358; Chao1 p = 0.0598). Beta diversity also differed between PN and PD (PERMANOVA, R2 = 0.1763, p = 0.0092). Predicted microbial taxa such as Faecalibacterium (ALDEx2, effect size = 2.31, p = 0.00003) and Butyricicoccus (effect size = 1.31, p = 0.0041) were enriched in PN calves in MR. Comparison between milk types (BM vs. MR) further showed higher species richness in PN calves in MR than in those (n = 5) in BM(Chao1, p = 0.0088), along with significant differences in beta diversity (R2 = 0.4112, p = 0.0069). These findings suggest that microbial diversity and the presence of specific taxa may be associated with reduced diarrheal symptoms. Predicted metabolic pathway profiling using a computational functional profiling approach showed the distinct metabolic pathways, including amino acid, carbohydrate, lipid, and vitamin biosynthesis, were enriched in healthier calves in both groups. These results suggest certain functional features of the microbiome could be associated with anti-inflammatory activity and short-chain fatty acid production, potentially mitigating diarrheal symptoms. Full article
Show Figures

Figure 1

20 pages, 1126 KB  
Article
Geographic Distance as a Driver of Tabanidae Community Structure in the Coastal Plain of Southern Brazil
by Rodrigo Ferreira Krüger, Helena Iris Leite de Lima Silva, Rafaela de Freitas Rodrigues Mengue Dimer, Marta Farias Aita, Pablo Parodi, Steve Mihok and Tiago Kütter Krolow
Parasitologia 2026, 6(1), 5; https://doi.org/10.3390/parasitologia6010005 - 13 Jan 2026
Viewed by 104
Abstract
Horse flies (Tabanidae) negatively affect livestock by reducing productivity, compromising animal welfare, and serving as mechanical vectors of pathogens. However, the spatial processes shaping their community organization in southern Brazil’s Coastal Plain of Rio Grande do Sul (CPRS) remain poorly understood. To address [...] Read more.
Horse flies (Tabanidae) negatively affect livestock by reducing productivity, compromising animal welfare, and serving as mechanical vectors of pathogens. However, the spatial processes shaping their community organization in southern Brazil’s Coastal Plain of Rio Grande do Sul (CPRS) remain poorly understood. To address this, we conducted standardized Malaise-trap surveys and combined them with historical–contemporary comparisons to examine distance–decay patterns in community composition. We evaluated both abundance-based (Bray–Curtis) and presence–absence (Jaccard) dissimilarities using candidate models. Across sites, Tabanus triangulum emerged as the dominant species. Dissimilarity in community structure increased monotonically with geographic distance, with no evidence of abrupt thresholds. The square-root model provided the best fit for abundance-based data, whereas a linear model best described presence–absence patterns, reflecting dispersal limitation and environmental filtering across a heterogeneous coastal landscape. Sites within riparian forests and conservation units displayed higher diversity, emphasizing the ecological role of protected habitats and the importance of maintaining connected corridors. Collectively, these findings establish a process-based framework for surveillance and landscape management strategies to mitigate vector, host contact. Future directions include integrating remote sensing and host distribution, applying predictive validation across temporal scales. Full article
Show Figures

Figure 1

20 pages, 2350 KB  
Article
Low-Carbon Agriculture (ABC) Credit and Pasture Restoration in Minas Gerais, Brazil
by Bruno Benzaquen Perosa, Ramon Bicudo Silva, Guilherme de Oliveira Leão and Marcelo Odorizzi Campos
Sustainability 2026, 18(2), 744; https://doi.org/10.3390/su18020744 - 12 Jan 2026
Viewed by 175
Abstract
Low-carbon agriculture (ABC—from the acronym in Portuguese) encompasses techniques that reduce carbon emissions while maintaining productivity and profitability. Among these, the restoration of degraded pastures is a major focus of the Brazilian ABC policy, achieved through improved pasture management or crop–livestock integration. This [...] Read more.
Low-carbon agriculture (ABC—from the acronym in Portuguese) encompasses techniques that reduce carbon emissions while maintaining productivity and profitability. Among these, the restoration of degraded pastures is a major focus of the Brazilian ABC policy, achieved through improved pasture management or crop–livestock integration. This study analyzed the relationship between ABC credit and improvements in pasture vigor in the municipalities of Minas Gerais from 2015 to 2022, considering the carbon-mitigation potential of each region. We evaluated whether credit resources were directed toward areas with greater mitigation potential and whether this investment contributed to pasture recovery. Composite indexes were developed to represent credit investment, pasture dynamics, and theoretical carbon removal potential, followed by spatial mapping and correlation analysis. The results show that ABC credit was strongly concentrated in regions with high carbon-sequestration potential, especially Triângulo Mineiro and Alto Paranaíba, indicating a generally effective targeting of resources toward areas with greater mitigation potential. Correlation analysis also indicates a positive, although moderate, association between credit volume and pasture improvement at the municipal level. Although initial results indicated more substantial improvements in pasture vigor in lower-credit regions such as North of Minas, Jequitinhonha, and Mucuri Valley (with relative increases reaching up to 300%), an additional analysis considering the initial vigor level (baseline) revealed that these gains are strongly affected by initial pasture conditions. From a policy perspective, these findings highlight the importance of rural credit as a driver of sustainable technology adoption, while also showing that baseline conditions, technical assistance, and other public or private incentives can significantly influence restoration outcomes. Strengthening credit allocation criteria, improving technical support, and integrating carbon-mitigation indicators into regional planning could enhance environmental effectiveness. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

26 pages, 5344 KB  
Article
Research on Water and Fertilizer Use Strategies for Silage Corn Under Different Irrigation Methods to Mitigate Abiotic Stress
by Delong Tian, Yuchao Chen, Bing Xu, Guoshuai Wang and Lingyun Xu
Plants 2026, 15(2), 228; https://doi.org/10.3390/plants15020228 - 11 Jan 2026
Viewed by 223
Abstract
To reconcile the intensifying trade-off between chronic water scarcity and escalating forage demand in the Yellow River Basin, this study optimized integrated irrigation and fertilization regimes for silage maize. Leveraging the AquaCrop model, validated by 2023–2024 field experiments and a 35-year (1990–2024) meteorological [...] Read more.
To reconcile the intensifying trade-off between chronic water scarcity and escalating forage demand in the Yellow River Basin, this study optimized integrated irrigation and fertilization regimes for silage maize. Leveraging the AquaCrop model, validated by 2023–2024 field experiments and a 35-year (1990–2024) meteorological dataset, we systematically quantified the impacts of multi-factorial water–fertilizer–heat stress under drip irrigation with mulch (DIM) and shallow-buried drip irrigation (SBDI). Model performance was robust, yielding high simulation accuracy for soil moisture (RMSE < 3.3%), canopy cover (RMSE < 3.95%), and aboveground biomass (RMSE < 4.5 t·ha−1), with EF > 0.7 and R2 ≥ 0.85. Results revealed distinct stress dynamics across hydrological scenarios: mild temperature stress predominated in wet years, whereas severe water and fertilizer stresses emerged as the primary constraints during dry years. To mitigate these stresses, a medium fertilizer rate (555 kg·ha−1) was identified as the stable optimum, while dynamic irrigation requirements were determined as 90, 135, and 180 mm for wet, normal, and dry years, respectively. Comparative evaluation indicated that DIM achieved maximum productivity in wet years (aboveground biomass yield 70.4 t·ha−1), whereas SBDI exhibited superior “stable yield–water saving” performance in normal and dry years. The established “hydrological year–irrigation method–threshold” framework provides a robust decision-making tool for precision management, offering critical scientific support for the sustainable, high-quality development of livestock farming in arid regions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

14 pages, 1030 KB  
Review
How Can Grazing Mitigate Wildfires? A Review of Fuel Management, Ecological Trade-Offs, and Adaptive Frameworks
by Shiying Xu, Xilong Zhu, Hang Ren, Xiangxiang Yan, Xiangyang Fang, Sazal Ahmed and Qiuhua Wang
Sustainability 2026, 18(2), 718; https://doi.org/10.3390/su18020718 - 10 Jan 2026
Viewed by 220
Abstract
Under the influence of multiple factors such as climate change and human activities, the frequency, intensity, and destructiveness of forest fires are increasing, which may trigger multiple ecological crises. Forest fires can be scientifically prevented, and their risks can be mitigated through specific [...] Read more.
Under the influence of multiple factors such as climate change and human activities, the frequency, intensity, and destructiveness of forest fires are increasing, which may trigger multiple ecological crises. Forest fires can be scientifically prevented, and their risks can be mitigated through specific approaches, particularly by managing forest combustible materials. Common methods include mechanical clearance, prescribed burning, and the establishment of biological firebreak belts, along with the application of grazing to regulate forest fuels. This paper presents a review of studies on grazing and fire risk, both domestically and internationally. Research indicates that livestock grazing has complex effects on forest fire risk: appropriate grazing can manage fuels and modify ecosystem structure to reduce fire hazards—for instance, by decreasing the accumulation of surface flammable materials and promoting the regeneration of fire-resistant tree species. Conversely, overgrazing may disrupt ecological balance and increase fire risk, such as by exacerbating soil erosion and encouraging the invasion of flammable weed species. Case studies from different ecological regions worldwide demonstrate varied effects of grazing on fire prevention, though research in this area exhibits geographical disparities. Adaptive management should integrate targeted grazing, prescribed burning, and mechanical treatments in a synergistic manner. Future efforts should prioritize cross-scale studies, investigate the mechanisms of woody fuel modulation, and refine fire ecology models to enhance the precision and global applicability of grazing-based fire management. Full article
Show Figures

Figure 1

Back to TopTop