Low-Carbon Agriculture (ABC) Credit and Pasture Restoration in Minas Gerais, Brazil
Abstract
1. Introduction
2. ABC Policy in Brazil
2.1. The Brazilian Low-Carbon Agriculture Policy (ABC PLAN)
2.2. ABC Techniques on the Livestock Sector
3. Materials and Methods
3.1. Study Region

3.2. Dataset
3.3. Index and Analysis
3.3.1. ABC Investment Density Index (IDI)
- is the ABC Investment Density Index for municipality ;
- is the value (in BRL) of ABC+ Recovery contracts in municipality in year ;
- is the total pasture area (in hectares) of municipality in 2022;
- The constant is added to handle municipalities with zero investment before the logarithmic transformation.
3.3.2. Pasture Dynamics Index (PDI)
- is the Pasture Dynamics Index for municipality ;
- represents the area (ha) undergoing a specific vigor transition (e.g., is Low to High);
- represents the weight assigned to that transition intensity (e.g., +2 for drastic improvement, −2 for drastic degradation);
- is the total pasture area of the municipality.
3.3.3. Theoretical Carbon Removal Potential Index (TCRP)
- Quantification of Carbon Stock in Degraded Pastures
- Carbon Stock Assignment for High Vigor Pastures
- Measuring the theoretical carbon removal potential
- is the Total Theoretical Carbon Removal Potential for municipality (in tons of equivalent, );
- is the reference Soil Organic Carbon stock for high-vigor pasture in the corresponding biome (), based on literature values (see Table 1);
- is the average current Soil Organic Carbon stock observed in low-vigor pastures within the municipality ();
- is the total area of pasture classified as low vigor in the municipality (in hectares);
- is the stoichiometric factor used to convert elemental Carbon (C) into Carbon Dioxide equivalent ().
| Reference | Biome | Pasture Type | Depth (cm) | SOC (tC ha−1) | Standard Deviation (±) |
|---|---|---|---|---|---|
| Campos et al. (2022) [29] | Cerrado | High vigor | 0–30 | 45.1 | 4.3 |
| Figueiredo et al. (2017) [49] | Mata Atlântica | High vigor | 0–30 | 39.7 | 3.8 |
| Conceição et al. (2017) [32] | Paragominas (PA) 1 | High vigor (ILPF 2) | 0–30 | 43.0 | 5.1 |
| Valle Jr. et al. (2019) [45] | Cerrado | High vigor | 0–20 3 | 41.3 | - |
3.3.4. Statistical Analysis and Baseline Control
4. Results
4.1. Temporal Analysis
4.2. Spatial Analysis
4.3. Statistical Analysis
5. Discussion
Policies Implications
6. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABC | Agricultura de Baixo Carbon—Low-Carbon Agriculture |
| BCB | Central Bank ok Brazil |
| SOC | Soil Organic Carbon |
| GIS | Geographic Information System |
| IDI | Investment Evolution Index (ABC Credit Investment Index) |
| PDI | Pasture Dynamics Index |
| TCRP | Theoretical Carbon Removal Potential |
| ILPF | Integração Lavoura–Pecuária–Floresta (Crop–Livestock–Forest Integration) |
| SEEG | Sistema de Estimativa de Emissão de Gases de Efeito Estufa (Greenhouse Gas Emissions Estimation System) |
| NDVI | Normalized Difference Vegetation Index |
References
- Mendonça, A.K.; Silva, S.A.; Bornia, A.C.; Duarte, S.L. Low Carbon Agriculture Plan: An Analysis for the Period 1990–2018. Rev. Eletrôn. Gest. Educ. Tecnol. Ambient. 2023, 27, e8. [Google Scholar] [CrossRef]
- Gonzaga da Silva, M.D.; de Oliveira, A.L.; Silva de Resende, A.; de Assis Barros, L.; Basso, V.M. The ABC Program: A Case Study on the Availability and Use of Low-Carbon Agriculture Credit. Braz. Rev. Econ. Agribus./Rev. Econ. Agroneg. 2025, 23, 2. [Google Scholar] [CrossRef]
- Manzatto, C.; Araujo, L.S.; Vicente, L.E.; Vincente, A.K.; Perosa, B.B. Plataforma ABC: Monitoramento da Mitigação das Emissões de Carbono na Agropecuária. Agroanalysis 2018, 38, 25–28. [Google Scholar]
- de Campos, M.O.; de Camargo, R.A.L.; Bassetto, C.F.; Pissarra, T.C.T.; Cerri, C.E.P.; La Scala, N., Jr.; da Silva, R.P. Impact of Rural Credit on Sustainable Transformation of Brazilian Agriculture: The Case of the Low Carbon Agriculture (LCA) Program in Minas Gerais, Brazil. Environ. Dev. 2025, 57, 101317. [Google Scholar] [CrossRef]
- Observatório, A.B.C. Desafios e Restrições dos Produtores Rurais na Adoção de Tecnologias de Baixo Carbono ABC: Estudo de Caso em Alta Floresta; Fundação Getulio Vargas—Centro de Estudos Agronegócios (GV-Agro): São Paulo, Brazil, 2017; Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/959512/1/sumarioestudo1.pdf (accessed on 5 November 2025).
- Carrer, M.J.; Souza Filho, H.M.; Vinholis, M.M.B. Determinantes da Demanda de Crédito Rural por Pecuaristas de Corte no Estado de São Paulo. Rev. Econ. Sociol. Rural 2013, 51, 455–478. [Google Scholar]
- Gianetti, G.W.; Ferreira Filho, J.B.S. O Plano e Programa ABC: Uma Análise da Alocação dos Recursos. Rev. Econ. Sociol. Rural 2020, 59, e216524. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Produção Agrícola Municipal (PAM) 2022. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html (accessed on 12 October 2025).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Agropecuário de 2017. Available online: https://censoagro2017.ibge.gov.br/ (accessed on 15 September 2025).
- Laboratório de Processamento de Imagens e Geoprocessamento (LAPIG). Atlas das Pastagens; Universidade Federal de Goiás: Goiânia, Brazil, 2022; Available online: https://atlasdaspastagens.ufg.br/map (accessed on 5 November 2025).
- FAS/USDA. Brazil: Livestock and Products Annual; Foreign Agricultural Service—United States Department of Agriculture: Washington, DC, USA, 2024. Available online: https://www.fas.usda.gov/ (accessed on 15 January 2025).
- Parente, L.; Ferreira, L.G.; Faria, R.M.; Nogueira, S.F.; Araújo, F.M.; Teixeira, A.H.M. Monitoring pasture quality and degradation using time-series NDVI in the Brazilian Cerrado. Remote Sens. 2018, 10, 1761. [Google Scholar]
- Dias-Filho, M.B. Diagnóstico das Pastagens no Brasil; Documentos 402; Embrapa Amazônia Oriental: Belém, Brazil, 2014. [Google Scholar]
- Projeto MapBiomas. Módulo de Condição de Vigor da Pastagem Versão 2. 2023. Available online: https://plataforma.brasil.mapbiomas.org/pastagem (accessed on 5 November 2025).
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- Carauta, M.; Troost, C.; Guzman-Bustamante, I.; Hampf, A.; Libera, A.; Meurer, K.; Berger, T. Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture? Land Use Policy 2021, 109, 105618. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Damian, J.M.; Franco, A.L.C.; Cerri, C.E.P. Soil organic matter in pasture areas in Brazil. Rev. Bras. Ciênc. Solo 2023, 47, e0220149. [Google Scholar]
- SEEG. Sistema de Estimativas de Emissões de Gases de Efeito Estufa. 2022. Available online: https://seeg.eco.br (accessed on 9 November 2024).
- Reis, J.C.; Kamoi, M.Y.T.; Latorraca, D.; Chen, R.F.F.; Michetti, M.; Wruck, F.J.; Garrett, R.D.; Valentim, J.F.; Rodrigues, R.D.A.R.; Rodrigues-Filho, S. Assessing the economic viability of integrated crop-livestock systems in Mato Grosso, Brazil. Renew. Agric. Food Syst. 2019, 35, 631–642. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Lima, L.; Bowman, M.S.; Viana, L.; Gouvello, C. Challenges for Low-Carbon Agriculture and Forest Conservation in Brazil. 2012. Available online: https://publications.iadb.org/en/challenges-low-carbon-agriculture-and-forest-conservation-brazil?eloutlink=imf2adb (accessed on 17 December 2025).
- Balbino, L.C.; Cordeiro, L.A.M.; Porfírio-da-Silva, V.; Moraes, A.D.; Martínez, G.B.; Alvarenga, R.C.; Galerani, P.R. Evolução tecnológica e arranjos produtivos de sistemas de integração lavoura-pecuária-floresta no Brasil. Pesq. Agropec. Bras. 2011, 46, i–xii. [Google Scholar] [CrossRef]
- Verdi, P.H.P. Análise da Viabilidade Econômica de Sistemas de Recuperação de Pastagens Degradadas em Solos Arenosos. Master’s Thesis, Fundação Getulio Vargas, São Paulo, Brazil, 2018. [Google Scholar]
- Alves-Pinto, H.N.; Newton, P.; Pinto, L.F.G. Certifying Sustainability: Opportunities and Challenges for the Cattle Supply Chain in Brazil; CCAFS Working Paper No. 57, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2013. [Google Scholar]
- Molossi, M.; Hoshide, A.K.; de Abreu, D.C.; de Oliveira, R.A. Agricultural Support and Public Policies Improving Sustainability in Brazil’s Beef Industry. Sustainability 2023, 15, 4801. [Google Scholar] [CrossRef]
- Alves, F.V.; Almeida, R.G.d.; Laura, V.A. Carbon Neutral Brazilian Beef: A New Concept for Sustainable Beef Production in the Tropics; Documentos 243; EMBRAPA Gado de Corte: Brasília, Brazil, 2017. [Google Scholar]
- Gil, J.D.B.; Garrett, R.; Berger, T. Determinants of crop–livestock integration in Brazil: Evidence from the household and regional levels. Land Use Policy 2016, 59, 557–568. [Google Scholar] [CrossRef]
- Hott, M.C.; Carvalho, L.M.T.; Antunes, M.A.H.; Resende, J.C.; Rocha, W.S.D. Analysis of grassland degradation in Zona da Mata, MG, Brazil, based on NDVI time series data with phenological metrics. Remote Sens. 2019, 11, 2956. [Google Scholar] [CrossRef]
- Campos, M.O.; Cerri, C.E.P.; La Scala, N. Atmospheric CO2, soil carbon stock and control variables in managed and degraded pastures in Central Brazil. Remote Sens. Appl. Soc. Environ. 2022, 28, 100848. [Google Scholar] [CrossRef]
- Carlos, S.M.; Assad, E.D.; Genaro, C.; Lima, C.Z.; Pavão, E.M.; Pinto, T.P. Custos da Recuperação de Pastagens Degradadas nos Estados e Biomas Brasileiros; Observatório da Bioeconomia, FGV EESP: São Paulo, Brazil, 2022. [Google Scholar]
- MapBiomas. Coleção 8 de Mapas Anuais de Uso e Cobertura da Terra do Brasil (1985–2022). Available online: https://mapbiomas.org/ (accessed on 25 October 2024).
- Conceição, M.C.G.; Matos, E.S.; Bidone, E.D.; Rodrigues, R.d.A.R.; Cordeiro, R.C. Changes in Soil Carbon Stocks under Integrated Crop-Livestock-Forest System in the Brazilian Amazon Region. Agric. Sci. 2017, 8, 904–913. [Google Scholar] [CrossRef]
- Universidade Federal de Viçosa (UFV). Levantamento Detalhado de Solos do Estado de Minas Gerais; UFV: Viçosa, MG, Brazil, 2010. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2015; p. 182. [Google Scholar]
- Costa, M.H.G.; Almeida, A.Q.; Alves, L.M. Sustentabilidade na Agricultura do Triângulo Mineiro: Análise das Condições Ambientais e Produtivas. Rev. Geogr. Meio Ambiente 2019, 11, 88–107. [Google Scholar]
- IDE-SISEMA. Spatial Data Infrastructure of the State System for Environment and Water Resources (IDE-Sisema); State Secretariat for Environment and Sustainable Development of Minas Gerais: Belo Horizonte, Brazil, 2025. Available online: https://idesisema.meioambiente.mg.gov.br/ (accessed on 23 May 2025).
- NEREUS-USP. Shapefile of Brazil. Nucleus of Regional and Urban Economics of the University of São Paulo (NEREUS). Available online: https://nereus.webhostusp.sti.usp.br/?dados=brasil (accessed on 23 May 2025).
- Esri. “World Shaded Relief” [Basemap]. Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. Available online: https://www.arcgis.com/home/item.html?id=9c5370d0b54f4de1b48a3792d7377ff2 (accessed on 23 May 2025).
- Victoria, D.C.; Silva, R.F.B.; Nossack, F.Á.; Viña, A.; Millington, J.D.A.; Vieira, S.A.; Batistella, M.; Moran, E.; Liu, J. Slow-down of deforestation following a Brazilian forest policy was less effective on private lands than in all conservation areas. Commun. Earth Environ. 2023, 4, 111. [Google Scholar] [CrossRef]
- Empresa de Assistência Técnica e Extensão Rural do Estado de Minas Gerais (EMATER-MG). Minas Gerais Lidera Ranking de Crédito do Plano ABC. 2015. Available online: https://www.emater.mg.gov.br/portal.do/site-noticias/minas-gerais-lidera-ranking-de-credito-do-plano-abc/?flagweb=novosite_pagina_interna&id=15400 (accessed on 3 July 2025).
- Banco Central do Brasil (BCB). Sistema de Operações de Crédito Rural e do Proagro (SICOR). Available online: https://www.bcb.gov.br/estatisticas/sicor (accessed on 10 October 2025).
- SoilGrids250m2.0. ISRIC—World Soil Information. Available online: https://soilgrids.org/ (accessed on 5 August 2022).
- MapBiomas. Collection 9 of the Annual Land Cover and Land Use Maps of Brazil (1985–2022); MapBiomas: São Paulo, Brazil, 2023. [Google Scholar] [CrossRef]
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- Valle Júnior, R.F.d.; Siqueira, H.E.; Valera, C.A.; Oliveira, C.F.; Sanches Fernandes, L.F.; Moura, J.P.; Pacheco, F.A.L. Diagnosis of degraded pastures using an improved NDVI-based remote sensing approach: An application to the Environmental Protection Area of Uberaba River Basin (Minas Gerais, Brazil). Remote Sens. Appl. Soc. Environ. 2019, 14, 20–33. [Google Scholar] [CrossRef]
- Silva, F.D.; Amado, T.J.C.; Ferreira, A.O.; Assmann, J.M.; Anghinoni, I.; Carvalho, P.C.F. Soil Carbon Indices as Affected by 10 Years of Integrated Crop-Livestock Production with Different Pasture Grazing Intensities in Southern Brazil. Agric. Ecosyst. Environ. 2014, 190, 60–69. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Maia, S.M.F.; Damian, J.M.; Cerri, C.E.P. Matéria Orgânica do Solo em Áreas de Pastagens no Brasil. Entendendo a Matéria Orgânica do Solo em Ambientes Tropicais e Subtropicais; Embrapa: Brasília, Brazil, 2023; Volume 788, pp. 601–625. [Google Scholar]
- Oliveira Bordonal, R.; Lal, R.; Alves Aguiar, D.; Figueiredo, E.B.; Perillo, L.I.; Adami, M.; Rudorff, B.F.T.; La Scala, N. Greenhouse Gas Balance from Cultivation and Direct Land Use Change of Recently Established Sugarcane Plantation in South-Central Brazil. Renew. Sustain. Energy Rev. 2015, 52, 611–623. [Google Scholar] [CrossRef]
- Figueiredo, E.B.; Panosso, A.R.; Bordonal, R.O.; Teixeira, D.D.B.; Berchielli, T.T.; La Scala, N. Soil CO2–C Emissions and Correlations with Soil Properties in Degraded and Managed Pastures in Southern Brazil. Land Degrad. Dev. 2017, 28, 1263–1273. [Google Scholar] [CrossRef]
- Kerr, D.D.; Ochsner, T.E. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil Sci. Soc. Am. J. 2020, 84, 587–596. [Google Scholar] [CrossRef]
- Tito, M.R.; León, M.C.; Porro, R. Guia para Determinação de Carbono em Pequenas Propriedades Rurais; Centro Mundial Agroflorestal (ICRAF): Nairobi, Kenya, 2009. [Google Scholar]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Change Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association Between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Siegel, S.; Castellan, N.J., Jr. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Rivera, J.A. Characterization of the recent (2019–2022) La Plata Basin hydrological drought from a centennial-scale perspective. HydroResearch 2024, 7, 140–153. [Google Scholar] [CrossRef]
- Machado, M.Z.P. Agricultura de Baixa Emissão de Carbono: Uma Investigação sobre Financiamento e Potenciais Benefícios. Master’s Thesis, Fundação Getulio Vargas, São Paulo, Brazil, 2016. Available online: https://hdl.handle.net/10438/16416 (accessed on 3 July 2025).
- Bragança, A.; Newton, P.; Cohn, A.; Garrett, R.; Reis, J.; Valentim, J.; Rodrigues-Filho, S.; Rodrigues, R. Extension Services Can Promote Pasture Restoration: Evidence from Brazil’s Low Carbon Agriculture Plan. Proc. Natl. Acad. Sci. USA 2022, 119, e2114913119. [Google Scholar] [CrossRef]
- Perosa, B.; Newton, P.; Carrer, M.J. Access to information affects the adoption of integrated systems by farmers in Brazil. Land Use Policy 2021, 106, 105459. [Google Scholar] [CrossRef]




| Mesoregion | Area in 2015 | Area in 2022 | Variation % |
|---|---|---|---|
| Norte de Minas (North of Minas Gerais) | 324,747.36 | 1,304,166.37 | 301.59 |
| Jequitinhonha | 189,121.79 | 308,295.96 | 63.01 |
| Vale do Rio Doce (Rio Doce Valley) | 256,329.98 | 351,757.87 | 37.23 |
| Noroeste de Minas (Northwest of Minas Gerais) | 121,198.22 | 160,244.38 | 32.22 |
| Vale do Mucuri (Mucuri Valley) | 159,497.70 | 188,934.55 | 18.46 |
| Zona da Mata (Forest Zone) | 524,728.53 | 579,603.53 | 10.46 |
| Central Mineira (Center of Minas Gerais) | 145,664.55 | 138,288.15 | −5.06 |
| Metropolitana de Belo Horizonte (Belo Horizonte Metropolitan Area) | 382,967.40 | 328,906.23 | −14.12 |
| Campo das Vertentes (Field of Slopes) | 79,097.78 | 59,033.37 | −25.37 |
| Oeste de Minas (West of Minas Gerais) | 425,244.26 | 307,931.60 | −27.59 |
| Triângulo Mineiro/Alto Paranaíba (Western of Minas Gerais) | 778,030.56 | 558,399.06 | −28.23 |
| Sul/Sudoeste de Minas (South/Southwest of Minas Gerais) | 924,827.64 | 615,149.12 | −33.48 |
| Variable | Coefficient (β) | Std. Error | t-Statistic | p-Value |
|---|---|---|---|---|
| Constant | −0.0731 | 0.010 | −7.627 | <0.001 *** |
| ABC Credit Density (Log) | −0.0010 | 0.003 | −0.304 | 0.762 |
| Initial Degradation (Baseline) | 0.5896 | 0.026 | 22.727 | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Perosa, B.B.; Silva, R.B.; Leão, G.d.O.; Campos, M.O. Low-Carbon Agriculture (ABC) Credit and Pasture Restoration in Minas Gerais, Brazil. Sustainability 2026, 18, 744. https://doi.org/10.3390/su18020744
Perosa BB, Silva RB, Leão GdO, Campos MO. Low-Carbon Agriculture (ABC) Credit and Pasture Restoration in Minas Gerais, Brazil. Sustainability. 2026; 18(2):744. https://doi.org/10.3390/su18020744
Chicago/Turabian StylePerosa, Bruno Benzaquen, Ramon Bicudo Silva, Guilherme de Oliveira Leão, and Marcelo Odorizzi Campos. 2026. "Low-Carbon Agriculture (ABC) Credit and Pasture Restoration in Minas Gerais, Brazil" Sustainability 18, no. 2: 744. https://doi.org/10.3390/su18020744
APA StylePerosa, B. B., Silva, R. B., Leão, G. d. O., & Campos, M. O. (2026). Low-Carbon Agriculture (ABC) Credit and Pasture Restoration in Minas Gerais, Brazil. Sustainability, 18(2), 744. https://doi.org/10.3390/su18020744

