Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = lithium titanate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1866 KiB  
Article
Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification
by Yidong Hu, Fan Yang, Jianguo Li and Qiaodan Hu
Crystals 2025, 15(8), 707; https://doi.org/10.3390/cryst15080707 (registering DOI) - 31 Jul 2025
Abstract
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like [...] Read more.
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like microstructure, which can be hardly obtained by conventional sintering. At optimal nominal lithium content and cooling rate, the solidified LLTO ceramic achieved a high total conductivity of 2.5 × 10−4 S·cm−1 at room temperature, along with excellent mechanical properties such as a high Young’s modulus of 240 GPa and a high hardness of 16.7 GPa. Results from this work suggest that aerodynamic levitation rapid solidification is an effective processing method to manipulate the microstructure of LLTO ceramics to minimize the GBs’ contribution to the total conductivity, which may be expanded to prepare other oxide-type lithium electrolytes. Full article
28 pages, 4399 KiB  
Article
Enhancing Lithium Titanate Battery Charging: Investigating the Benefits of Open-Circuit Voltage Feedback
by Danijel Pavković, Mihael Cipek, Karlo Kvaternik, Nursultan Faiz and Alua Shambilova
Energies 2025, 18(15), 3946; https://doi.org/10.3390/en18153946 - 24 Jul 2025
Viewed by 256
Abstract
In applications where it is crucial that a battery is recharged from the partially discharged state in the minimum time, it is crucial to honor the technological constraints related to maximum safe battery terminal voltage and maximum continuous charging current prescribed by the [...] Read more.
In applications where it is crucial that a battery is recharged from the partially discharged state in the minimum time, it is crucial to honor the technological constraints related to maximum safe battery terminal voltage and maximum continuous charging current prescribed by the battery cell manufacturer. To this end, this contribution outlines the design and comprehensive simulation analysis of an adaptive battery charging system relying on battery open-circuit voltage estimation in real time. A pseudo-random binary sequence test signal and model reference adaptive system are used for the estimation of lithium titanate battery cell electrical circuit model parameters, with the design methodology based on the Lyapunov stability criterion. The proposed adaptive charger is assessed against the conventional constant-current/constant-voltage charging system. The effectiveness of the real-time parameter estimator, along with both the adaptive and traditional charging systems for the lithium titanate battery cell, is validated through simulations and experiments on a dedicated battery test bench. Full article
Show Figures

Graphical abstract

16 pages, 5110 KiB  
Article
Fast Identification of LiNMC Cells for Railway Applications
by Luca Pugi, Aljon Kociu, Antonio Scardina, Lorenzo Berzi, Nico Tiezzi and Massimo Delogu
Energies 2025, 18(13), 3300; https://doi.org/10.3390/en18133300 - 24 Jun 2025
Viewed by 229
Abstract
Batteries are a key element in the development of both battery-operated and hybrid trains. For this type of system, the most common anode choice is LTO (lithium titanate), as the adoption of lithium titanate instead of graphite for anodes ensures an unrivaled level [...] Read more.
Batteries are a key element in the development of both battery-operated and hybrid trains. For this type of system, the most common anode choice is LTO (lithium titanate), as the adoption of lithium titanate instead of graphite for anodes ensures an unrivaled level of reliability, especially against calendar aging. LTO also ensures prolonged load-cycle lifespans. However, LTO’s known drawbacks involve its high production cost and mediocre energy density, which is mainly due to its high anodic potential compared to graphite. In this study, we perform a rapid identification of an LiNMC (lithium, nickel, manganese, and cobalt) cell and propose some preliminary scaled HIL (hardware in the loop) and SIL (software in the loop) testing, aiming to verify the possible usage of LiNMC cells for railway applications. Full article
Show Figures

Figure 1

14 pages, 1029 KiB  
Article
Advanced Algorithm for SOC, Internal Resistance, and SOH Co-Estimation of Lithium-Titanate-Oxide Batteries Using Neural Networks
by Riccardo Di Dio, Roberto Di Rienzo, Gianluca Aurilio, Davide Cavaliere and Roberto Saletti
Batteries 2025, 11(6), 235; https://doi.org/10.3390/batteries11060235 - 19 Jun 2025
Viewed by 442
Abstract
Lithium-titanate-oxide batteries can reduce the long charging time of electric vehicles by offering fast charging capabilities. However, high charging currents require an accurate estimation of battery internal state to prevent early aging of the battery and dangerous situations. An accurate algorithm based on [...] Read more.
Lithium-titanate-oxide batteries can reduce the long charging time of electric vehicles by offering fast charging capabilities. However, high charging currents require an accurate estimation of battery internal state to prevent early aging of the battery and dangerous situations. An accurate algorithm based on neural networks for the co-estimation of state of charge, internal resistance, and capacity state of health is proposed in this work. The algorithm is trained with synthetic data generated by an electric vehicle simulation platform running seven different standard driving cycles at various settings. The algorithm is then validated using an additional standard driving cycle, achieving, for state of charge, internal resistance, and capacity state of health, a root mean square error lower than 2%, 80 μΩ, and 2.9%, and a mean absolute percentage error lower than 3.4%, 4.4%, and 3.3%, respectively. The results obtained and the comparison with literature works indicate that the co-estimation algorithm proposed is able to estimate the considered quantities with very good accuracy. Full article
Show Figures

Graphical abstract

21 pages, 6666 KiB  
Article
Hydrothermal Synthesis of Lithium Lanthanum Titanate
by Alexandru Okos, Ana-Maria Mocioiu, Dumitru Valentin Drăguț, Alexandru Cristian Matei and Cristian Bogdănescu
Crystals 2025, 15(3), 241; https://doi.org/10.3390/cryst15030241 - 28 Feb 2025
Viewed by 972
Abstract
Lithium lanthanum titanate (LLTO) is a very promising material due to its ability to conduct lithium ions. It has many potential applications in the field of lithium batteries and sensors. Typical synthesis methods include solid-state reaction and sol–gel synthesis. We report a novel [...] Read more.
Lithium lanthanum titanate (LLTO) is a very promising material due to its ability to conduct lithium ions. It has many potential applications in the field of lithium batteries and sensors. Typical synthesis methods include solid-state reaction and sol–gel synthesis. We report a novel solvothermal synthesis method that produces almost single-phase LLTO samples at significantly reduced costs. The samples thus obtained were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical impedance spectroscopy (EIS), and chemical analysis. The results obtained for the newly synthesized samples were compared with results obtained from samples prepared using the solid-state reaction method. The XRD data show the formation of orthorhombic LLTO for the solvothermal synthesis, tetragonal LLTO for the hydrothermal synthesis, and cubic LLTO for the solid-state reaction. Additionally, XRD showed that the solid-state reaction of LLTO is a multi-stage process in which intermediary compounds such as La2Ti2O7 are formed. The bulk ionic conductivity of the LLTO samples produced through the solvothermal and hydrothermal processes is estimated at 10−4 S/cm, and the grain boundary conductivity is estimated at 10−6 S/cm. Full article
Show Figures

Figure 1

18 pages, 3145 KiB  
Article
Simulation of Combined Aging Effects for Battery Operated Trains: A Benchmark Case Study on the Line Between Reggio Calabria and Catanzaro
by Luca Pugi, Tommaso Elios Povolato and Nico Tiezzi
Energies 2025, 18(5), 1143; https://doi.org/10.3390/en18051143 - 26 Feb 2025
Cited by 2 | Viewed by 747
Abstract
The expected life and reliability of components is a critical aspect for railway applications where the expected life and maintenance intervals of rolling stock are quite demanding issues both in terms of equivalent mileage and duration. For these reasons, when the mileage of [...] Read more.
The expected life and reliability of components is a critical aspect for railway applications where the expected life and maintenance intervals of rolling stock are quite demanding issues both in terms of equivalent mileage and duration. For these reasons, when the mileage of the mission is within 100 km, adopted accumulators are based on lithium titanate chemistry, which, despite a relatively low density, ensures a very long operational life both in terms of cycle and time aging. In this work, the authors introduce a benchmark test case, an Italian line between Reggio Calabria and Catanzaro, in which the required autonomy, more than 170 km, involves the usage of high-energy batteries such as LiNMC or LiFePO4 derived from corresponding automotive applications. In this work, the authors propose a simulation model based on IEC 62864-1:2016 to investigate how the combined effect of cycle and time aging should influence in different ways the design of the system and how relatively small interventions such as the partial electrification of a small intermediate section of the line should improve the overall stability and reliability of the performed engineering analysis. Full article
(This article belongs to the Special Issue Studies of Microgrids for Electrified Transportation)
Show Figures

Figure 1

10 pages, 3086 KiB  
Article
Enhancing the Structural and Electrochemical Properties of Lithium Iron Phosphate via Titanium Doping During Precursor Synthesis
by Puliang Li, Yang Wang, Weifang Liu, Tao Chen and Kaiyu Liu
Energies 2025, 18(4), 930; https://doi.org/10.3390/en18040930 - 14 Feb 2025
Viewed by 745
Abstract
This study investigates the effects of different titanium doping concentrations on the properties of iron phosphate precursors and the final lithium iron phosphate (LiFePO4) materials, aiming to optimize the structural and electrochemical performance of LiFePO4 by introducing titanium during the [...] Read more.
This study investigates the effects of different titanium doping concentrations on the properties of iron phosphate precursors and the final lithium iron phosphate (LiFePO4) materials, aiming to optimize the structural and electrochemical performance of LiFePO4 by introducing titanium during the precursor synthesis stage. Titanium was introduced using titanate as a titanium source to prepare iron phosphate precursors with varying titanium concentrations. The materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and other techniques. The results showed that titanium incorporation significantly influenced the Fe and P content in the precursors, with a decrease in both Fe and P levels as the titanium doping concentration increased. Moreover, as the titanium content increased, the particle size of the precursor decreased, and the particle distribution became more uniform. Additionally, titanium doping improved the tap density of the precursors, with a significant increase in tap density observed when the titanium content reached 4000 ppm. Electrochemical measurements revealed that titanium doping had a certain impact on the discharge capacity of LiFePO4, with the discharge capacity gradually decreasing as the titanium content increased. Overall, this study effectively improved the physical properties of LiFePO4 materials by introducing titanium during the precursor synthesis stage, providing a theoretical foundation for further optimization of titanium-doped LiFePO4. Full article
(This article belongs to the Section I3: Energy Chemistry)
Show Figures

Figure 1

12 pages, 4571 KiB  
Article
High-Efficiency Lithium Niobate Electro-Optic Modulator with Barium Titanate Cladding on Quartz
by Hongkang Liu, Jianping Li, Weiqin Zheng, Zixin Chen, Jianbo Zhang and Yuwen Qin
Photonics 2025, 12(2), 157; https://doi.org/10.3390/photonics12020157 - 14 Feb 2025
Viewed by 1649
Abstract
The thin-film lithium niobate (TFLN)-based electro-optic (EO) modulator is one of the most important devices for optical communications in terms of the advantages of low voltages and large bandwidth. However, the large size of devices limits their applicability in large-scale integrated optical systems, [...] Read more.
The thin-film lithium niobate (TFLN)-based electro-optic (EO) modulator is one of the most important devices for optical communications in terms of the advantages of low voltages and large bandwidth. However, the large size of devices limits their applicability in large-scale integrated optical systems, posing a key challenge in maintaining performance advantages under restricted design space. In this paper, we propose a novel TFLN modulator on a quartz substrate incorporating barium titanate (BaTiO3, BTO) as the cladding material. The device is designed with silicon–lithium niobate (Si-LN) hybrid waveguides for operation at a wavelength of 1.55 µm. After theoretical analysis and parameter optimization, the proposed 10 mm long modulator demonstrates high-efficiency modulation, featuring a low half-wave voltage-length product of 1.39 V·cm, a broad 3 dB EO bandwidth of 152 GHz, and low optical loss. This theoretical model provides a novel design solution for TFLN modulators on quartz substrates. Moreover, it is a promising solution for enhancing the integration of photonic devices on the TFLN platform. Full article
Show Figures

Figure 1

16 pages, 7509 KiB  
Article
Highly Sensitive Non-Dispersive Infrared Gas Sensor with Innovative Application for Monitoring Carbon Dioxide Emissions from Lithium-Ion Battery Thermal Runaway
by Liang Luo, Jianwei Chen, Aisn Gioronara Hui, Rongzhen Liu, Yao Zhou, Haitong Liang, Ziyuan Wang, Haosu Luo and Fei Fang
Micromachines 2025, 16(1), 36; https://doi.org/10.3390/mi16010036 - 29 Dec 2024
Cited by 3 | Viewed by 4968
Abstract
The safety of power batteries in the automotive industry is of paramount importance and cannot be emphasized enough. As lithium-ion battery technology continues to evolve, the energy density of these batteries increases, thereby amplifying the potential risks linked to battery failures. This study [...] Read more.
The safety of power batteries in the automotive industry is of paramount importance and cannot be emphasized enough. As lithium-ion battery technology continues to evolve, the energy density of these batteries increases, thereby amplifying the potential risks linked to battery failures. This study explores pivotal safety challenges within the electric vehicle sector, with a particular focus on thermal runaway and gas emissions originating from lithium-ion batteries. We offer a non-dispersive infrared (NDIR) gas sensor designed to efficiently monitor battery emissions. Notably, carbon dioxide (CO2) gas sensors are emphasized for their ability to enhance early-warning systems, facilitating the timely detection of potential issues and, in turn, improving the overall safety standards of electric vehicles. In this study, we introduce a novel CO2 gas sensor based on the advanced pyroelectric single-crystal lead niobium magnesium titanate (PMNT), which exhibits exceptionally high pyroelectric properties compared to commercially available materials, such as lithium tantalate single crystals and lead zirconate titanate ceramics. The specific detection rate of PMNT single-crystal pyroelectric infrared detectors is more than four times higher than lithium tantalate single-crystal infrared detectors. The PMNT single-crystal NDIR gas detector is used to monitor thermal runaway in lithium-ion batteries, enabling the rapid and highly accurate detection of gases released by the battery. This research offers an in-depth exploration of real-time monitoring for power battery safety, utilizing the cutting-edge pyroelectric single-crystal gas sensor. Beyond providing valuable insights, the study also presents practical recommendations for mitigating the risks of thermal runaway in lithium-ion batteries, with a particular emphasis on the development of effective warning systems. Full article
(This article belongs to the Special Issue Gas Sensors: From Fundamental Research to Applications)
Show Figures

Figure 1

14 pages, 6536 KiB  
Article
Engineering of Metal–Organic Framework-Derived CoTiO3 Micro-Prisms for Lithium-Ion Batteries
by Tao Li, Minghui Song, Qi Zhang, Yifan Li, Gengchen Yu and Xue Bai
Molecules 2025, 30(1), 34; https://doi.org/10.3390/molecules30010034 - 26 Dec 2024
Cited by 2 | Viewed by 686
Abstract
Metal–organic framework (MOF)-derived transition metal compounds and their composites have attracted great interest for applications in energy conversion and storage. In this work, hexagonal micro-prisms of Ni-doped CoTiO3 composited with amorphous carbon (NixCTO/C) were synthesized using Ti-Co-based MOFs as precursors. [...] Read more.
Metal–organic framework (MOF)-derived transition metal compounds and their composites have attracted great interest for applications in energy conversion and storage. In this work, hexagonal micro-prisms of Ni-doped CoTiO3 composited with amorphous carbon (NixCTO/C) were synthesized using Ti-Co-based MOFs as precursors. The experimental results indicate the substitutional doping of Ni2+ for Co2+ in CoTiO3 (CTO), leading to improved conductivity, as further confirmed by density functional theory calculations. Thus, the carbon-free sample of Ni-doped CTO exhibits improved lithium storage properties compared to the pristine one. Furthermore, when coupled with in situ-formed carbon, the dually modified Ni0.05CTO/C micro-prisms demonstrated a significantly increased reversible capacity of 584.8 mA h g−1, excellent rate capability, and superior cycling stability at a high current density of 500 mA g−1. This enhanced electrochemical performance can be attributed to the synergistic effect of Ni doping and carbon coating. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

20 pages, 15802 KiB  
Article
Analysis of the Thermal Runaway Mitigation Performances of Dielectric Fluids During Overcharge Abuse Tests of Lithium-Ion Cells with Lithium Titanate Oxide Anodes
by Carla Menale, Antonio Nicolò Mancino, Francesco Vitiello, Vincenzo Sglavo, Francesco Vellucci, Laura Caiazzo and Roberto Bubbico
World Electr. Veh. J. 2024, 15(12), 554; https://doi.org/10.3390/wevj15120554 - 27 Nov 2024
Cited by 2 | Viewed by 1949
Abstract
Lithium titanate oxide cells are gaining attention in electric vehicle applications due to their ability to support high-current charging and their enhanced thermal stability. However, despite these advantages, safety concerns, particularly thermal runaway, pose significant challenges during abuse conditions such as overcharging. In [...] Read more.
Lithium titanate oxide cells are gaining attention in electric vehicle applications due to their ability to support high-current charging and their enhanced thermal stability. However, despite these advantages, safety concerns, particularly thermal runaway, pose significant challenges during abuse conditions such as overcharging. In this study, we investigated the effectiveness of various dielectric fluids in mitigating thermal runaway during overcharge abuse tests of cylindrical LTO cells with a capacity of 10 Ah. The experimental campaign focused on overcharging fully charged cells (starting at 100% State of Charge) at a current of 40A (4C). The tests were conducted under two conditions: the first benchmark test involved a cell exposed to air, while the subsequent tests involved cells submerged in different dielectric fluids. These fluids included two perfluoropolyether fluorinated fluids (PFPEs) with boiling points of 170 °C and 270 °C, respectively, a synthetic ester, and a silicone oil. The results were analyzed to determine the fluids’ ability to delay possible thermal runaway and prevent catastrophic failures. The findings demonstrate that some dielectric fluids can delay thermal runaway, with one fluid showing superior performance with respect to the others in preventing fire during thermal runaway. The top-performing fluid was further evaluated in a simulated battery pack environment, confirming its ability to mitigate thermal runaway risks. These results provide important insights for improving the safety of battery systems in electric vehicles. Full article
(This article belongs to the Special Issue Research Progress in Power-Oriented Solid-State Lithium-Ion Batteries)
Show Figures

Figure 1

22 pages, 8697 KiB  
Review
Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries
by Maria Apostolopoulou, Dimitra Vernardou and Stefano Passerini
Nanomaterials 2024, 14(22), 1799; https://doi.org/10.3390/nano14221799 - 9 Nov 2024
Cited by 2 | Viewed by 1615
Abstract
Lithium-ion batteries, due to their high energy density, compact size, long lifetime, and low environmental impact, have achieved a dominant position in everyday life. These attributes have made them the preferred choice for powering portable devices such as laptops and smartphones, power tools, [...] Read more.
Lithium-ion batteries, due to their high energy density, compact size, long lifetime, and low environmental impact, have achieved a dominant position in everyday life. These attributes have made them the preferred choice for powering portable devices such as laptops and smartphones, power tools, and electric vehicles. As technology advances rapidly, the demand for even more efficient energy storage devices continues to rise. In lithium-ion batteries, anodes play a crucial role, with lithium titanate oxide standing out as a highly promising material. This anode is favored for its exceptional cycle stability, safety features, and fast charging capabilities. The impressive cycle stability of lithium titanate oxide is largely due to its zero-strain nature, meaning it undergoes minimal volume changes during lithium-ion insertion and extraction. This stability enhances the anode’s durability, leading to longer battery life. In addition, the lithium titanate oxide anode operates at a voltage of approximately 1.55 V vs. Li+/Li, significantly reducing the risk of dendrite formation, a major safety concern that can cause short circuits and fires. The material’s spinel structure, with its large active surface area, further allows fast electron transfer and ion diffusion, facilitating fast charging. This review explores the characteristics of lithium titanate oxide, the various synthesis methods employed, and its integration with carbon materials to enhance cycle stability, coulombic efficiency, and safety. It also proposes strategies for optimizing lithium titanate oxide properties to create sustainable anodes with reduced environmental impact using eco-friendly routes. Full article
Show Figures

Figure 1

15 pages, 15469 KiB  
Article
Unveiling BaTiO3-SrTiO3 as Anodes for Highly Efficient and Stable Lithium-Ion Batteries
by Nischal Oli, Nawraj Sapkota, Brad R. Weiner, Gerardo Morell and Ram S. Katiyar
Nanomaterials 2024, 14(21), 1723; https://doi.org/10.3390/nano14211723 - 29 Oct 2024
Cited by 2 | Viewed by 1821
Abstract
Amidst the swift expansion of the electric vehicle industry, the imperative for alternative battery technologies that balance economic feasibility with sustainability has reached unprecedented importance. Herein, we utilized Perovskite-based oxide compounds barium titanate (BaTiO3) and strontium titanate (SrTiO3) nanoparticles [...] Read more.
Amidst the swift expansion of the electric vehicle industry, the imperative for alternative battery technologies that balance economic feasibility with sustainability has reached unprecedented importance. Herein, we utilized Perovskite-based oxide compounds barium titanate (BaTiO3) and strontium titanate (SrTiO3) nanoparticles as anode materials for lithium-ion batteries from straightforward and standard carbonate-based electrolyte with 10% fluoroethylene carbonate (FEC) additive [1M LiPF6 (1:1 EC: DEC) + 10% FEC]. SrTiO3 and BaTiO3 electrodes can deliver a high specific capacity of 80 mA h g−1 at a safe and low average working potential of ≈0.6 V vs. Li/Li+ with excellent high-rate performance with specific capacity of ~90 mA h g−1 at low current density of 20 mA g−1 and specific capacity of ~80 mA h g−1 for over 500 cycles at high current density of 100 mA g−1. Our findings pave the way for the direct utilization of perovskite-type materials as anode materials in Li-ion batteries due to their promising potential for Li+ ion storage. This investigation addresses the escalating market demands in a sustainable manner and opens avenues for the investigation of diverse perovskite oxides as advanced anodes for next-generation metal-ion batteries. Full article
Show Figures

Graphical abstract

17 pages, 4486 KiB  
Article
A Data-Driven Online Prediction Model for Battery Charging Efficiency Accounting for Entropic Heat
by Xiaowei Ding, Weige Zhang, Chenyang Yuan, Chang Ge, Yan Bao, Zhenjia An, Qiang Liu, Zhenpo Wang, Jinkai Shi and Zhihao Wang
Batteries 2024, 10(10), 350; https://doi.org/10.3390/batteries10100350 - 2 Oct 2024
Cited by 2 | Viewed by 1609
Abstract
This study proposes a charging efficiency calculation model based on an equivalent internal resistance framework. A data-driven neural network model is developed to predict the charging efficiency of lithium titanate (LTO) batteries for 5% state of charge (SOC) segments under various charging conditions. [...] Read more.
This study proposes a charging efficiency calculation model based on an equivalent internal resistance framework. A data-driven neural network model is developed to predict the charging efficiency of lithium titanate (LTO) batteries for 5% state of charge (SOC) segments under various charging conditions. By considering the impact of entropy change on the open-circuit voltage (OCV) during the charging process, the accuracy of energy efficiency calculations is improved. Incorporating battery data under various charging conditions, and comparing the predictive accuracy and computational complexity of different hyperparameter configurations, we establish a backpropagation neural network model designed for implementation in embedded systems. The model predicts the energy efficiency of subsequent 5% SOC segments based on the current SOC and operating conditions. The results indicate that the model achieves a prediction error of only 0.29% under unknown charging conditions while also facilitating the deployment of the neural network model in embedded systems. In future applications, the relevant predictive data can be transmitted in real time to the cooling system for thermal generation forecasting and predictive control of battery systems, thereby enhancing temperature control precision and improving cooling system efficiency. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Graphical abstract

17 pages, 2221 KiB  
Article
Toxicity Assessment of Gas, Solid and Liquid Emissions from Li-Ion Cells of Different Chemistry Subjected to Thermal Abuse
by Sofia Ubaldi and Paola Russo
Energies 2024, 17(17), 4402; https://doi.org/10.3390/en17174402 - 3 Sep 2024
Cited by 4 | Viewed by 1559
Abstract
Lithium-ion batteries (LIBs) are employed in a range of devices due to their high energy and power density. However, the increased power density of LIBs raises concerns regarding their safety when subjected to external abuse. The thermal behavior is influenced by a number [...] Read more.
Lithium-ion batteries (LIBs) are employed in a range of devices due to their high energy and power density. However, the increased power density of LIBs raises concerns regarding their safety when subjected to external abuse. The thermal behavior is influenced by a number of factors, i.e., the state of charge (SoC), the cell chemistry and the abuse conditions. In this study, three distinct cylindrical Li-ion cells, i.e., lithium nickel cobalt aluminum oxide (NCA), lithium titanate oxide (LTO), and lithium iron phosphate (LFP), were subjected to thermal abuse (heating rate of 5 °C/min) in an air flow reactor, with 100% SoC. Venting and thermal runaway (TR) were recorded in terms of temperature and pressure, while the emitted products (gas, solid, and liquid) were subjected to analysis by FT-IR and ICP-OES. The concentrations of the toxic gases (HF, CO) are significantly in excess of the Immediate Danger to Life or Health Limit (IDLH). Furthermore, it is observed that the solid particles are the result of electrode degradation (metallic nature), whereas the liquid aerosol is derived from the electrolyte solvent. It is therefore evident that in the event of a LIB fire, in order to enhance the safety of the emergency responders, it is necessary to use appropriate personal protective equipment (PPE) in order to minimize exposure to toxic substances, i.e., particles and aerosol. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

Back to TopTop