Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Preparations
2.2. Characterizations
3. Results and Discussion
3.1. Phase Purity, Crystal Structure and Microstructure
3.2. Impedance Spectroscopy and Electrical Conductivity
- (1)
- x = 0.3, 60 K/s
- (2)
- x = 0.6, 60 K/s
3.3. Young’s Modulus and Hardness
4. Conclusions
- (1)
- The phase composition of the solidified LLTO depends on the nominal Li content (x in LixLa(2−x)/3TiO3) and the cooling rate during solidification. At the optimal conditions, the solidification product consists of LLTO with a tetragonal structure as the main phase, and a small amount of Li2Ti3O7 as the secondary phase.
- (2)
- The nominal Li content has a dramatic impact on the microstructure of the solidification product. With increasing x, the ceramic microstructure changes from a dendrite-like microstructure, to an irregular, ill-defined microstructure and to a maze-like microstructure.
- (3)
- Microstructure has a critical role on the total electrical conductivity of the solidified ceramics. LLTO ceramics with a dendrite-like microstructure show a high total conductivity of 2.5 × 10−4 S·cm−1 at room temperature, which is among the highest values reported in the literature.
- (4)
- The solidified ceramics also show excellent mechanical properties such as a high Young’s modulus of 240 GPa and a high hardness of 16.7 GPa.
- (5)
- Deep undercooling rapid solidification is an effective processing method to manipulate the microstructure of LLTO ceramics to minimize the GBs’ contribution to the total conductivity, and to enhance the modulus and hardness to benefit their applications as solid electrolytes in ASSLIBs. The processing method may expand to tune the microstructure of other lithium-ion conductors to improve their electrical and mechanical properties.
- (6)
- ADL provides a fast and powerful technique to obtain diverse microstructures for studying/establishing the microstructure–property relationship in a variety of ceramic materials for research purposes. The samples prepared by ADL are small but future large-scale production may be possible by upgrading the ADL facility to suspend bigger samples if technical challenges are solved. The important message from this work is that high conductivity can be obtained in LLTO (and may be other ceramics) with a dendrite-like microstructure. It might be possible to achieve such a microstructure using other rapid solidification methods such as 3D printing, and further investigations are in progress.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janek, J.; Zeier, W.G. A solid future for battery development. Nat. Energy 2016, 1, 16141. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Randau, S.; Weber, D.A.; Kotz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffee, E.; Adermann, T.; Kulisch, J.; Zeier, W.G.; et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 2020, 5, 259–270. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Vasylenko, A.; Daniels, L.M.; Collins, C.M.; Corti, L.; Chen, R.; Niu, H.; Manning, T.D.; Antypov, D.; Dyer, M.S.; et al. Superionic lithium transport via multiple coordination environments defined by two-anion packing. Science 2024, 383, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Balaish, M.; Gonzales-Rosillo, J.C.; Kim, K.J.; Zhu, Y.; Hood, Z.D.; Rupp, J.L.M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, W.; Feng, Z.; Guerfi, A.; Vijh, A.; Zaghib, K. Recent progresses in sulfide-based solid electrolytes for Li-ion batteries. Mater. Sci. Eng. B 2016, 213, 169–176. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Kim, J.T.; Sun, X. Prospects of halide-based all-solid-state batteries: From material design to practical application. Sci. Adv. 2022, 8, eadc9516. [Google Scholar] [CrossRef]
- Wang, H.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 2020, 33, 188–215. [Google Scholar] [CrossRef]
- Chen, C.; Du, J. Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J. Am. Ceram. Soc. 2015, 98, 534–542. [Google Scholar] [CrossRef]
- Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993, 86, 689–693. [Google Scholar] [CrossRef]
- Okos, A.; Mocioiu, A.; Dragut, D.V.; Matei, A.C.; Bogdanescu, C. Hydrothermal synthesis of lithium lanthanum titanate. Crystals 2021, 15, 241. [Google Scholar] [CrossRef]
- Luo, C.; Shen, Y.; Zhang, S.; Han, C.; Chen, H. Smoothing Li transport via weak metal-O bonds for improved ionic mobility in lithium lanthanum titanium oxide. Mater. Today Phys. 2025, 53, 101704. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, X.; Yu, R.; Li, C.; Gao, X.; Yang, W.; Chao, D.; Chen, Y. Synergistic modulation of grain boundary and domain boundary enhances the ionic conductivity of Li0.33La0.56TiO3 solid electrolyte. ACS Nano 2025, 19, 10902–10911. [Google Scholar] [CrossRef]
- Araki, W.; Saito, K.; Arai, Y. First-principles study of the deformation and migration mechanisms of Li-La-Ti-O perovskite under uniaxial stress. Solid State Ion. 2025, 421, 116789. [Google Scholar] [CrossRef]
- Chambers, M.S.; Chen, J.; Sacci, R.L.; MaAuliffe, R.D.; Sun, W.; Veith, G.M. Memory effect on the synthesis of perovskite-type Li-ion conductor LixLa2/3-x/3TiO3 (LLTO). Chem. Mater. 2024, 36, 1197–1213. [Google Scholar] [CrossRef]
- Kou, W.; Zhang, J.; Wang, C.; Wu, W.; Zhang, J.; Yang, Z.; Dai, K.; Wang, J. Oriented crystal growth of Li0.33La0.557TiO3 nanowire induced by one-dimensional polymer sheath toward rapid lithium-ion transfer. ACS Nano 2024, 18, 27683–27693. [Google Scholar] [CrossRef]
- Dato, M.A.; Hu, L.; McElheny, D.; Cabana, J. One-step solvothermal synthesis of perovskite-type Li3xLa2/3−x□1/3−2xTiO3 nanomaterials. Chem. Mater. 2024, 36, 8349–8358. [Google Scholar] [CrossRef]
- Hasegawa, G.; Kuwata, N.; Hashi, K.; Tanaka, Y.; Takada, K. Lithium-ion diffusion in perovskite-type solid electrolyte lithium lanthanum titanate revealed by pulsed-filed gradient nuclear magnetic resonance. Chem. Mater. 2023, 35, 3815–3824. [Google Scholar] [CrossRef]
- Lu, X.; Duan, M.; Li, J. Increase of the ionic conductivity of peroskite-type lithium-ion conductor by bacteria cellulose templating. Ceram. Int. 2023, 49, 24981–24988. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, L.; Hu, Y.; Luo, L. Structural origin of low Li-ion conductivity in perovskite solid-state electrolyte. Nano Energy 2022, 92, 106758. [Google Scholar] [CrossRef]
- Ma, C.; Chen, K.; Liang, C.; Nan, C.; Ishikawa, R.; More, K.; Chi, M. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 2014, 7, 1638–1642. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67-xTiO3. Phys. Chem. Chem. Phys. 2017, 19, 5880–5887. [Google Scholar] [CrossRef] [PubMed]
- Sasano, S.; Ishikawa, R.; Sanchez-Santolino, G.; Ohta, H.; Shibata, N.; Ikuhara, Y. Atomistic origin of Li-ion conductivity reduction at (Li3xLa2/3-x)TiO3 grain boundary. Nano Lett. 2021, 21, 6282–6288. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Chen, Y.; Zhou, X.; Tang, M.; Wang, J.; Wang, H.; Guo, L.; Huang, L.; Yang, W.; Gao, X. Atomistic origin of high grain boundary resistance in solid electrolyte lanthanum lithium titanate. J. Mater. 2024, 10, 1214–1221. [Google Scholar] [CrossRef]
- Sasano, S.; Ishikawa, R.; Kawahara, K.; Kimura, T.; Ikuhara, Y.H.; Shibata, N.; Ikuhara, Y. Grain boundary Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal. Appl. Phys. Lett. 2020, 116, 043901. [Google Scholar] [CrossRef]
- Geng, H.; Lan, J.; Mei, A.; Lin, Y.; Nan, C.W. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3-xTiO3 with different lithium contents. Electrochim. Acta 2011, 56, 3406–3414. [Google Scholar] [CrossRef]
- Inaguma, Y.; Chen, L.; Itoh, M.; Nakamura, T. Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ion. 1994, 70–71 Pt 1, 196–202. [Google Scholar] [CrossRef]
- Huang, Y.; He, L.; Zhu, X. Low temperature synthesis of Li0.33La0.55TiO3 solid electrolyte with Al3+ doping by a modified Pechini method. Ionics 2022, 28, 1739–1751. [Google Scholar] [CrossRef]
- Mahfuz, M.N.; Nura, A.F.; Islam, M.S.; Saha, T.; Chowdhury, K.R.; Hoque, S.M.; Gafur, M.A.; Ahmed, A.N.; Sharif, A. Ga-doped in Li0.33La0.56TiO3: A promising approach to boost ionic conductivity in solid electrolytes for high-performance all-solid-state lithium-ion batteries. RSC Adv. 2025, 15, 1060–1071. [Google Scholar] [CrossRef]
- Jiang, B.; Li, Y.; Li, K.; Guo, X.; Yuan, J.; Kwame, Y.E. Research on optimizing the crystal structure and enhancing the performance of LLTO solid electrolyte through doping with high-electronegativity Fe3+. J. Eur. Ceram. Soc. 2025, 45, 117368. [Google Scholar] [CrossRef]
- Jonderian, A.; Peng, R.; Davies, D.; MaCalla, E. Benefits and limitations of 226 substitutions into Li-La-Ti-O perovskites. Chem. Mater. 2023, 35, 6227–6234. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Z.; Wang, Z.; Peng, Y.; Li, Z.; Huang, Z.; Mei, W.; Liu, D.; Li, M.; Zhou, W.; et al. Effect of Bi2O3 on the ion migration and interfacial properties of Li0.33La0.557TiO3 solid electrolytes. Corros. Sci. 2023, 224, 111473. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Z.; Feng, X.; Zhang, J.; Hu, G.; Zhang, H.; Han, Q.; Zhang, Q. Boosting electrochemical properties of Li0.33La0.55TiO3-based electrolytes with Ag incorporation. J. Alloys Compd. 2024, 981, 173720. [Google Scholar] [CrossRef]
- Lv, R.; Kou, W.; Guo, S.; Wu, W.; Zhang, Y.; Wang, Y.; Wang, J. Preparing two-dimensional ordered Li0.33La0.557TiO3 crystal in interlayer channel of thin laminar inorganic solid-state electrolyte towards ultrafast Li+ transfer. Angew. Chem. Int. Ed. 2022, 134, e202114220. [Google Scholar] [CrossRef]
- Stramare, S.; Thangadurai, V.; Weppner, W. Lithium lanthanum titanates: A review. Chem. Mater. 2003, 15, 3974–3990. [Google Scholar] [CrossRef]
- Leyet, Y.; Guerrero, F.; Anglada-Rivera, J.; Martinez, I.; Amorin, H.; Romaguera-Barcelay, Y.; Poyato, R.; Gallardo-Lopez, A. Obtention of Li3xLa2/3-xTiO3 ceramics from amorphous nanopowders by spark plasma sintering. Ferroelectrics 2016, 498, 62–66. [Google Scholar] [CrossRef]
- Pereira, J.S.; Guerrero, F.; Romaguera-Barcelay, Y.; Anglada-Rivera, J.; Sales, J.C.C., Jr.; Silva, R.S.; Zulueta, Y.; Poyato, R.; Gallardo, A.; Almeida, A.J. Agostinho Moreira and Y. Leyet. La0.59Li0.24TiO3 ceramics obtained by spark plasma sintering: Electric behavior analysis. Mater. Res. Express 2019, 6, 015504. [Google Scholar] [CrossRef]
- Avila, V.; Yoon, B.; Neto, R.R.I.; Silva, R.S.; Ghose, S.; Raj, R.; Jesus, L.M. Reactive flash sintering of the complex oxide Li0.5La0.5TiO3 starting from an amorphous precursor powder. Scr. Mater. 2020, 176, 78–82. [Google Scholar] [CrossRef]
- Lin, C.; Ihrig, M.; Kung, K.; Chen, H.; Scheld, W.S.; Ye, R.; Finsterbusch, M.; Guillon, O.; Lin, S. Low-temperature sintering of Li0.33La0.55TiO3 electrolyte for all-solid-state Li batteries. J. Eur. Ceram. Soc. 2023, 43, 7543–7552. [Google Scholar] [CrossRef]
- Romero, M.; Faccio, R.; Vazquez, S.; Davyt, S.; Mombru, A.W. Experimental and theoretical Raman study on the structure and microstructure of Li0.30La0.57TiO3 electrolyte prepared by the sol-gel method in acetic medium. Ceram. Int. 2016, 42, 15414–15422. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Gurusamy, R.; Ramani, A.; Srinivasan, N.; Venkatachalam, A. Densification effect of perovskite-type Li3xLa2/3-xTiO3 solid-state electrolytes for energy storage applications. Ceram. Int. 2024, 50, 30240–30251. [Google Scholar] [CrossRef]
- Mei, A.; Wang, X.; Feng, Y.; Zhao, S.; Li, G.; Geng, H.; Lin, Y.; Nan, C. Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica. Solid State Ion. 2008, 179, 2255–2259. [Google Scholar] [CrossRef]
- Trong, L.D.; Thao, T.T.; Dinh, N.N. Characterization of the Li-ionic conductivity of La(2/3-x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ion. 2015, 278, 228–232. [Google Scholar] [CrossRef]
- Guo, X.; Maram, P.S.; Navrotsky, A. A correlation between formation enthalpy and ionic conductivity in perovskite-structured Li3xLa0.67-xTiO3 solid lithium ion conductors. J. Mater. Chem. A 2017, 5, 12951–12957. [Google Scholar] [CrossRef]
- Varez, A.; Sanjuan, M.L.; Laguna, M.A.; Pena, J.I.; Sanz, J.; de la Fuente, G.F. Microstructural development of the Li0.5Li0.5TiO3 lithium ion conductor processed by the laser floating zone (LFZ) method. J. Mater. Chem. 2001, 11, 125–130. [Google Scholar] [CrossRef]
- Le, H.T.T.; Kalubarme, R.S.; Ngo, D.T.; Yang, S.; Jung, K.; Shin, K.; Park, C. Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium-oxygen batteries. J. Power Sources 2015, 274, 1188–1199. [Google Scholar] [CrossRef]
- Qi, Q.; Wang, J.; Xiang, M.; Zhang, Y.; Gu, S.; Luo, G. Mechanism of vacuum-annealing defects and its effect on release behavior of hydrogen isotopes in Li2TiO3. Int. J. Hydrogen Energy 2018, 43, 11295–12301. [Google Scholar] [CrossRef]
- Heath, J.P.; Harding, J.H.; Sinclair, D.C.; Dean, J.S. The analysis of impedance spectra for core-shell microstructures: Why a multiformalism approach is essential. Adv. Funct. Mater. 2019, 29, 1904036. [Google Scholar] [CrossRef]
- Irvine, J.T.S.; Sinclair, D.C.; West, A.R. Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 1990, 2, 132–138. [Google Scholar] [CrossRef]
- Dong, B.; Yan, J.; Walkley, B.; Inglis, K.K.; Blanc, F.; Hull, S.; West, A.R. Synthesis and characterisation of the new oxyfluoride Li+ ion conductor, Li5SiO4F. Solid State Ion. 2018, 327, 64–70. [Google Scholar] [CrossRef]
- Dong, B.; Jarkaneh, R.; Hull, S.; Reeves-McLaren, N.; Biendicho, J.J.; West, A.R. Synthesis, structure and electrical properties of N-doped Li3VO4. J. Mater. Chem. A 2016, 4, 1408–1413. [Google Scholar] [CrossRef]
- Jonscher, A.K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Boyce, J.B.; Mikkelsen, J.C., Jr. Anisotropic conductivity in a channel-structured superionic conductor: Li2Ti3O7. Solid State Commun. 1979, 31, 741–745. [Google Scholar] [CrossRef]
- Dash, U.; Sahoo, S.; Chaudhuri, P.; Parashar, S.K.S.; Parashar, K. Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study. J. Adv. Ceram. 2014, 3, 89–97. [Google Scholar] [CrossRef]
- Bradha, M.; Hussain, S.; Chakravarty, S.; Amarendra, G.; Ashok, A. Total conductivity in Sc-doped LaTiO3+δ perovskites. Ionics 2014, 20, 1343–1350. [Google Scholar] [CrossRef]
- Shoko, E.; Dang, Y.; Han, G.; Duff, B.B.; Dyer, M.S.; Daniels, L.M.; Chen, R.; Blanc, F.; Claridge, J.B.; Rosseinsky, M. Polymorph of LiAlP2O7: Combined computational, synthetic, crystallographic, and ionic conductivity study. Inorg. Chem. 2021, 60, 14083–14095. [Google Scholar] [CrossRef]
- Cho, Y.; Wolfenstine, J.; Rangasamy, E.; Kim, H.; Choe, H.; Sakamoto, J. Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3. J. Mater. Sci. 2012, 47, 5970–5977. [Google Scholar] [CrossRef]
- Schell, K.G.; Lemke, F.; Bucharsky, E.C.; Hintennach, A.; Hoffmann, M.J. Microstructure and mechanical properties of Li0.33La0.567TiO3. J. Mater. Sci. 2017, 52, 2232–2240. [Google Scholar] [CrossRef]
- Cooper, C.; Sutorik, A.C.; Wright, J.; Arthur Luoto, E., III; Gilde, G.; Wolfenstine, J. Mechanical properties of hot isostatically pressed Li0.33La0.55TiO3. Adv. Eng. Mater. 2014, 16, 755–759. [Google Scholar] [CrossRef]
x | Cooling Rate/K/s | Phase Fraction/wt.% | |||
---|---|---|---|---|---|
LLTO | Li2Ti3O7 | TiO2 | Li2TiO3 | ||
0.3 | 10 | 90.0 | 5.5 | 4.5 | / |
0.3 | 30 | 93.2 | 3.9 | 2.9 | / |
0.3 | 60 | 95.0 | 4.8 | 0.2 | / |
0.4 | 60 | 93.8 | 6.2 | / | / |
0.5 | 60 | 90.3 | 6.2 | / | 3.5 |
0.6 | 60 | 89.9 | / | / | 10.1 |
x | Chemical Composition | ||
---|---|---|---|
Li | La | Ti | |
0.3 | 0.29 | 0.57 | 1.02 |
0.4 | 0.38 | 0.53 | 1.03 |
0.5 | 0.51 | 0.50 | 1.05 |
0.6 | 0.52 | 0.47 | 1.05 |
Preparation Method | E/GPa | Method | H/GPa | Method | Ref. |
---|---|---|---|---|---|
Sol–gel, hot pressing | 186 ± 4 | Nano-indentation | 9.7 ± 0.70 | Microhardness testing | [58] |
Solid-state reaction, hot pressing | 200 ± 3 | 9.2 ± 0.20 | |||
Sintering, 1100 °C | 143 | Ultrasonic | 8.1 ± 0.54 | Microhardness testing | [59] |
Sintering, 1200 °C | 199 | 9.5 ± 0.63 | |||
Sintering, 1250 °C | 203 | 8.4 ± 0.48 | |||
Hot isostatically pressing | 222.6 | Ultrasonic | 7.18 | Knoop hardness indentation | [60] |
Rapid solidification, 60 K/s | 246 ± 4 | Nano-indentation | 16.7 ± 0.1 | Nano-indentation | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yang, F.; Li, J.; Hu, Q. Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification. Crystals 2025, 15, 707. https://doi.org/10.3390/cryst15080707
Hu Y, Yang F, Li J, Hu Q. Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification. Crystals. 2025; 15(8):707. https://doi.org/10.3390/cryst15080707
Chicago/Turabian StyleHu, Yidong, Fan Yang, Jianguo Li, and Qiaodan Hu. 2025. "Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification" Crystals 15, no. 8: 707. https://doi.org/10.3390/cryst15080707
APA StyleHu, Y., Yang, F., Li, J., & Hu, Q. (2025). Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification. Crystals, 15(8), 707. https://doi.org/10.3390/cryst15080707