Toxicity Assessment of Gas, Solid and Liquid Emissions from Li-Ion Cells of Different Chemistry Subjected to Thermal Abuse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Li-Ion Cells
2.2. Methods
2.2.1. Thermal Abuse Tests
2.2.2. Emission Characterization Methods
Gas Emissions
Solid and Liquid Emissions
3. Results
3.1. Temperature and Pressure Profiles
3.2. Emission Characterization
3.2.1. Gas Emission Profiles
3.2.2. Liquid and Solid Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Kong, D.; Lv, H.; Ping, P.; Wang, G. A review of early warning methods of thermal runaway of lithium ion batteries. J. Energy Storage 2023, 64, 107073. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Nazri, G.A.; Pistoia, G. Lithium Batteries: Science and Technology; 1st softcover printing; Springer: New York, NY, USA, 2009; p. 708. [Google Scholar]
- Anderson, N.; Tran, M.; Darcy, E. 18650 Cell Bottom Vent: Preliminary Evaluation into its Merits for Preventing Side Wall Rupture. In Proceedings of the S&T Meeting, San Diego, CA, USA, 7 December 2016; Available online: https://ntrs.nasa.gov/api/citations/20160014008/downloads/20160014008.pdf (accessed on 23 December 2023).
- Xu, B.; Kong, L.; Wen, G.; Pecht, M.G. Protection Devices in Commercial 18650 Lithium-Ion Batteries. IEEE Access 2021, 9, 66687–66695. [Google Scholar] [CrossRef]
- Wu, X.; Song, K.; Zhang, X.; Hu, N.; Li, L.; Li, W.; Zhang, L.; Zhang, H. Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Front. Energy Res. 2019, 7, 65. [Google Scholar] [CrossRef]
- Ming, J.; Cao, Z.; Wu, Y.; Wahyudi, W.; Wang, W.; Guo, X.; Cavallo, L.; Hwang, J.-Y.; Shamim, A.; Li, L.-J.; et al. New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Lett. 2019, 4, 2613–2622. [Google Scholar] [CrossRef]
- Li, W.; Crompton, K.R.; Hacker, C.; Ostanek, J.K. Comparison of Current Interrupt Device and Vent Design for 18650 Format Lithium-ion Battery Caps. J. Energy Storage 2020, 32, 101890. [Google Scholar] [CrossRef]
- International Standard IEC 62133; Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes—Safety Requirements for Portable Sealed Secondary Cells, and for Batteries Made from Them, for Use in Portable Applications. IEC: Geneva, Switzerland. Available online: https://webstore.iec.ch/preview/info_iec62133%7Bed1.0%7Den_d.pdf (accessed on 13 November 2023).
- Qiu, Y.; Jiang, F. A review on passive and active strategies of enhancing the safety of lithium-ion batteries. Int. J. Heat Mass Transf. 2022, 184, 122288. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Lopez, C.F.; Jeevarajan, J.A.; Mukherjee, P.P. Characterization of Lithium-Ion Battery Thermal Abuse Behavior Using Experimental and Computational Analysis. J. Electrochem. Soc. 2015, 162, A2163–A2173. [Google Scholar] [CrossRef]
- Lai, X.; Yao, J.; Jin, C.; Feng, X.; Wang, H.; Xu, C.; Zheng, Y. A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions. Batteries 2022, 8, 248. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Zhou, T.; Yang, K.; Wei, S.; Tang, N.; Dang, N.; Li, H.; Qiu, X.; Chen, L. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 2016, 27, 313–319. [Google Scholar] [CrossRef]
- Bugryniec, P.J.; Resendiz, E.G.; Nwophoke, S.M.; Khanna, S.; James, C.; Brown, S.F. Review of gas emissions from lithium-ion battery thermal runaway failure—Considering toxic and flammable compounds. J. Energy Storage 2024, 87, 111288. [Google Scholar] [CrossRef]
- Willstrand, O.; Pushp, M.; Andersson, P.; Brandell, D. Impact of different Li-ion cell test conditions on thermal runaway characteristics and gas release measurements. J. Energy Storage 2023, 68, 107785. [Google Scholar] [CrossRef]
- Andersson, P.; Blomqvist, P.; Lorén, A.; Larsson, F. Using Fourier transform infrared spectroscopy to determine toxic gases in fires with lithium-ion batteries: FTIR to Determine Toxic Gases. Fire Mater. 2016, 40, 999–1015. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, J.; Cong, B.; Cui, Y. Research Progress in Thermal Runaway Vent Gas Characteristics of Li-Ion Battery. Batteries 2023, 9, 411. [Google Scholar] [CrossRef]
- Diaz, F.; Wang, Y.; Weyhe, R.; Friedrich, B. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries. Waste Manag. 2019, 84, 102–111. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacjer, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes—Impact of state of charge and overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef]
- Yuan, L.; Dubaniewicz, T.; Zlochower, I.; Thomas, R.; Rayyan, N. Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Saf. Environ. Prot. 2020, 144, 186–192. [Google Scholar] [CrossRef]
- Barkholtz, H.M.; Preger, Y.; Ivanov, S.; Langendorf, J.; Torres-Castro, L.; Lamb, J.; Chalamala, B.; Ferreira, S.R. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J. Power Sources 2019, 435, 226777. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Mellander, B.E. Lithium-Ion Battery Aspects on Fires in Electrified Vehicles on the Basis of Experimental Abuse Tests. Batteries 2016, 2, 9. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, L.; Ju, X.; Liao, B.; Ye, K.; Li, L.; Cao, B.; Ni, Y. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J. Hazard. Mater. 2020, 381, 120916. [Google Scholar] [CrossRef]
- Essl, C.; Golubkov, A.W.; Gasser, E.; Nachtnebel, M.; Zankel, A.; Ewert, E.; Fuchs, A. Comprehensive Hazard Analysis of Failing Automotive Lithium-Ion Batteries in Overtemperature Experiments. Batteries 2020, 6, 30. [Google Scholar] [CrossRef]
- Table of IDLH Values|NIOSH|CDC. Available online: https://www.cdc.gov/niosh/idlh/intridl4.html (accessed on 4 September 2023).
- Ubaldi, S.; Russo, P. Comparison between 18650 Lithium-ion Cells of Different Composition Subjected to Thermal Abuse. Chem. Eng. Trans. 2023, 104, 49–54. [Google Scholar]
- CDC—NIOSH Pocket Guide to Chemical Hazards—Carbon Monoxide. Available online: https://www.cdc.gov/niosh/npg/npgd0105.html (accessed on 9 April 2024).
- CDC—NIOSH Pocket Guide to Chemical Hazards—Hydrogen Fluoride. Available online: https://www.cdc.gov/niosh/npg/npgd0334.html (accessed on 9 April 2024).
- Wang, G.; Kong, D.; Ping, P.; Wen, J.; He, X.; Zhao, H.; He, X.; Peng, R.; Zhang, Y.; Dai, X. Revealing particle venting of lithium-ion batteries during thermal runaway: A multi-scale model toward multiphase process. eTransportation 2023, 16, 100237. [Google Scholar] [CrossRef]
- Barone, T.L.; Dubaniewicz, T.H.; Friend, S.A.; Zlochower, I.A.; Bugarski, A.D.; Rayyan, N.S. Lithium-ion battery explosion aerosols: Morphology and elemental composition. Aerosol Sci. Technol. 2021, 55, 1183–1201. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; Yan, W. Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures. J. Hazard. Mater. 2020, 400, 123169. [Google Scholar] [CrossRef]
- Ubaldi, S.; Conti, M.; Marra, F.; Russo, P. Identification of Key Events and Emissions during Thermal Abuse Testing on NCA 18650 Cells. Energies 2023, 16, 3250. [Google Scholar] [CrossRef]
- Respiratory Protection—Overview|Occupational Safety and Health Administration. Available online: https://www.osha.gov/respiratory-protection (accessed on 24 October 2023).
- Ubaldi, S.; Di Bari, C.; Russo, P. Fire risk evaluation of the internal components of the Li-ion batteries. Chem. Eng. Trans. 2024; accepted. [Google Scholar]
- U.S. EPA. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry. Available online: https://www.epa.gov/esam/epa-method-2008-determination-trace-elements-waters-and-wastes-inductively-coupled-plasma-mass (accessed on 13 January 2024).
- Larsson, F.; Andersson, P.; Blomqvist, P.; Mellander, B.-E. Toxic fluoride gas emissions from lithium-ion battery fires. Sci. Rep. 2017, 7, 10018. [Google Scholar] [CrossRef]
- Ribière, P.; Grugeon, S.; Morcrette, M.; Boyanov, S.; Laurelle, S.; Marlair, G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 2012, 5, 5271. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef]
- Bergeron, C.; Perrier, E.; Potier, A.; Delmas, G. A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements. Int. J. Spectrosc. 2012, 2012, 432046. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, D.; Sun, M.; Liu, L.; Hu, W.; Jiang, B.; Chu, L.; Li, M. Polyethylene Oxide as a Multifunctional Binder for High-Performance Ternary Layered Cathodes. Polymers 2021, 13, 3992. [Google Scholar] [CrossRef]
- Respiratory Protective Filters: Colour Code, Class, etc.|Be Atex. Available online: https://www.be-atex.com/en/respiratory-protective-filters-colour-code-class-etc (accessed on 24 October 2023).
Li-Ion Cell | Chemical Composition [37] | Electrical Specification | |
---|---|---|---|
NCA 18650 | Anode: Graphite (C); Cathode: Lithium nickel cobalt aluminum oxide (NCA); Electrolyte: DMC:DEC:EC (2:1:1 v/v); Separator: polyethylene (PE). | Parameter | Value |
Nominal Capacity | 3250 mAh minimum; 3350 mAh typical | ||
Nominal Voltage | 3.6 V | ||
Max. operating Voltage Range | 2.75 V to 4.2 V | ||
Standard Charge | 1625 mA and 4.20 V for 4.0 h | ||
LTO 18650 | Anode: Lithium titanium oxide (LTO); Cathode: Lithium nickel cobalt aluminum oxide (NCA); Electrolyte: DMC:DEC:EC (1:1.5:1.5 v/v); Separator: polypropylene (PP). | Parameter | Value |
Rated Capacity | 1300 mAh minimum; 1350 mAh typical | ||
Nominal Voltage | 2.4 V | ||
Watt-hour rating | 3.12 Wh | ||
Max. operating Voltage Range | 1.60 V ± 50 mV to 2.80 V ± 50 mV | ||
Standard Charge | 1.3 A/1 C | ||
Standard Discharge | 1.3 A/1 C | ||
LFP 18650 | Anode: Graphite (C); Cathode: Lithium iron Phosphate (LFP); Electrolyte: DMC:DEC:EC (1.5:2:1 v/v); Separator: PP. | Parameter | Value |
Rated Capacity | 1300 mAh minimum, 1320 mAh typical | ||
Nominal Voltage | 3.2 V | ||
Watt-Hour rating | 4.16 Wh | ||
Max. operating Voltage Range | 2.3 V ± 50 mV to 3.70 V ± 50 mV | ||
Standard Charge | 650 mA/0.5 C | ||
Standard Discharge | 1300 mA/1 C |
Species | Concentration Range (ppmv) | Wavenumber (cm−1) |
---|---|---|
EC | 31.72–277.55 | 1079; 1087; 1096; 1122; 1131; 1141; 1385; 1860; 1868; 1876; 3735 |
DMC | 23.25–271.25 | 917; 925; 985; 990; 996; 1295; 1455; 1463; 1768; 1780; 2199 |
DEC | 15.6–364.0 | 791; 862; 1021; 1093; 1258; 1302; 1374; 1409; 1448; 1746; 1742 |
HF | 29.0–811.0 | 4172-4175 (4110); 4202–4203 |
CO | 1000–900,000 | 2115; 2173 |
Phase | Parameters | NCA | LTO | LFP |
---|---|---|---|---|
Venting | t (s) | 2192 ± 154 | 2461 ± 33 | 2580 ± 130 |
T (°C) | 154 ± 4 | 184 ± 11 | 205 ± 10 | |
P (barg) | 0.127 ± 0.002 | 0.106 ± 0.024 | 0.444 ± 0.383 | |
TROnset | t (s) | 2666 ± 93 | 2741 ± 88 | 2725 ± 94 |
T (°C) | 206 ± 3 | 221 ± 14 | 242 ± 13 | |
P (barg) | 0.037 ± 0.001 | 0.886 ± 0.605 | 1.180 ± 0.282 | |
Max | t (s) | 2702 ± 76 | 2772 ± 48 | 2806 ± 16 |
T (°C) | 562 ± 96 | 359 ± 81 | 358 ± 70 | |
P (barg) | 4.305 ± 1.083 | 2.050 ± 0.854 | 1.655 ± 0.774 |
Li-Ion Cell | SoC (%) | CO (g/kWh) | HF (g/kWh) | Reference |
---|---|---|---|---|
NCA | 100 | 11 | 0.06 | this study |
LTO | 100 | 51 | 0.38 | this study |
LFP | 100 | 25 | 0.30 | this study |
LCO | 100 | n.r. | 20 | [39] |
LFP | 100 | n.r. | 170 | [39] |
LFP | 100 | n.r. | 55 | [39] |
LFP | 100 | n.r. | 25 | [39] |
LFP | 100 | n.r. | 55 | [39] |
NCA | 100 | n.r. | 55 | [39] |
LFP | 100 | 10–65 | 40–145 | [16] |
NMC | 100 | 110–210 | 5–30 | [16] |
LMO | 100 | 161 | 37 | [40] |
Li-Ion Cell | DMC (ppm) | EC (ppm) | HF (ppm) | CO (ppm) |
---|---|---|---|---|
NCA | 48 ± 37 | 222 ± 88 | 49 ± 1 | 7564 ± 705 |
LTO | 99 ± 3 | 235 ± 25 | 101 ± 12 | 9018 ± 131 |
LFP | 47 ± 7 | 56 ± 12 | 110 ± 23 | 6060 ± 826 |
IDLH | n.a. | n.a. | 30 [31] | 1200 [30] |
Li-Ion Cell | Δcell (g) | Condensate Phase Weight (g) | Solid Weight (g) | Liquid Weight (g) |
---|---|---|---|---|
NCA | 17.39 ± 1.38 | n.p. | 4.010 ± 0.000 | n.p. |
LTO | 8.80 ± 0.00 | 0.131 ± 0.000 | n.p. | n.p. |
LFP | 8.88 ± 4.94 | 0.076 ± 0.014 | 0.045 ± 0.000 | 0.034 ± 0.016 |
LTO—Condensate Phase | Identification | LFP—Liquid | Identification | ||||
---|---|---|---|---|---|---|---|
2950.77 | s | PP | s | 3530.05 | vw | EC | vw |
2918.11 | vs | PP | vs | 2998.09 | w | EC | vw |
2867.48 | m | PP | m | 2925.92 | w | EC | vw |
2839.13 | m | PP | m | 1960.02 | w | EC | w |
1452.26 | m | PP | s | 1797.05 | vs | EC | vs |
1375.71 | s | PP | vs | 1771.57 | vs | EC | vs |
1166.96 | m | PP | m | 1554.11 | w | EC | w |
997.40 | m | PP | m | 1481.90 | m | EC | m |
972.10 | m | PP | m | 1455.47 | w | EC | w |
841.20 | m | PP | m | 1390.23 | m | EC | m |
LFP—Condensate Phase | Identification | 1260.76 | w | EC | w | ||
2952.36 | m | Paraffin oil | s | 1158.80 | vs | EC | s |
2922.26 | m | PTFE Filter | m | 1069.86 | vs | EC | vs |
2853.87 | w | Paraffin oil—PEO | vs | 971.76 | m | EC | s |
2552.80 | w | Paraffin oil—PEO | vs | 893.60 | m | EC | m |
1719.98 | w | Paraffin oil | vw | 845.69 | m | EC | m |
1682.76 | vw | Paraffin oil | w | 773.14 | s | EC | s |
1376.78 | s | Paraffin oil—PEO | m | 716.12 | s | EC | s |
1111.39 | w | PEO | w | 558.54 | w | EC | m |
729.74 | m | Paraffin oil | m | 449.05 | vw | EC | w |
Li-Ion Cell | Al | Co | Cu | Fe | Li | Mn | Ni | P | Ti |
---|---|---|---|---|---|---|---|---|---|
NCA | 324.1 | 266.9 | 480.2 | n.p. | 172.1 | 0.08 | <LOD | <LOD | n.p. |
LTO | 3.327 | <LOD | 0.5370 | n.p. | 0.6418 | 0.0223 | <LOD | <LOD | 0.3013 |
LFP | 0.780 | n.p. | 0.065 | 0.440 | 0.016 | n.p. | n.p. | 0.135 | n.p. |
Filter Color | Filter Type | Filtered Contaminant | Terms of Use Filter Capacity or Efficiency | |
---|---|---|---|---|
Dark brown | AX | Gases and vapors organic compounds with boiling point < 65 °C such as methyl acetate, acetone, butane, chloroform, methanol, freons, etc. | Use immediately after opening, for single use only. Group 1: 100 ppm max 40 min, 500 ppm max 20 min. Group 2: 1000 ppm max 60 min, 5000 ppm max 20 min. | |
Light brown | A | Gases and vapor of organic compounds with boiling point < 65 °C, mainly solvents and hydrocarbons such as acetates, acetic acid, acrylics, alcohols, benzene, phenols, styrene, etc. | Class 1: 1000 ppm Class 2: 5000 ppm Class 3: 10,000 ppm With a ventilated system: Class 1: 500 ppm Class 2: 1000 ppm | |
Grey | B | Inorganic gases and vapor except CO: bromine, cyanide, chlorine, hydrogen sulfide, fluorine, isocyanates, formol, hydrocyanic acid… | ||
Yellow | E | Acid gases and vapors: sulphuric anhydride, sulphur dioxide, hydrochloric acid, hydrofluoric acid, formic acid, etc. | ||
Green | K | Ammonia and organic ammonia derivates: hydrazine, methylamine, aziridine, etc. | ||
Black | CO | Carbon monoxide | Single use (max. 10,000 ppm) | |
Red | Hg | Mercury vapors | Maximum operating time: 50 h | |
Blue | NO | Nitrous vapors and nitrogen oxides | Maximum use time: 20 min single use | |
Orange | Reactor | Radioactive iodine, including radioactive methane iodine | Depending on the level of radioactivity | |
White | P | Particles | P1: filter efficiency > 80% P2: filter efficiency > 94% P3: filter efficiency > 99.95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubaldi, S.; Russo, P. Toxicity Assessment of Gas, Solid and Liquid Emissions from Li-Ion Cells of Different Chemistry Subjected to Thermal Abuse. Energies 2024, 17, 4402. https://doi.org/10.3390/en17174402
Ubaldi S, Russo P. Toxicity Assessment of Gas, Solid and Liquid Emissions from Li-Ion Cells of Different Chemistry Subjected to Thermal Abuse. Energies. 2024; 17(17):4402. https://doi.org/10.3390/en17174402
Chicago/Turabian StyleUbaldi, Sofia, and Paola Russo. 2024. "Toxicity Assessment of Gas, Solid and Liquid Emissions from Li-Ion Cells of Different Chemistry Subjected to Thermal Abuse" Energies 17, no. 17: 4402. https://doi.org/10.3390/en17174402
APA StyleUbaldi, S., & Russo, P. (2024). Toxicity Assessment of Gas, Solid and Liquid Emissions from Li-Ion Cells of Different Chemistry Subjected to Thermal Abuse. Energies, 17(17), 4402. https://doi.org/10.3390/en17174402