Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = lipid neuroprotection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 744 KiB  
Review
Chrysin: A Comprehensive Review of Its Pharmacological Properties and Therapeutic Potential
by Magdalena Kurkiewicz, Aleksandra Moździerz, Anna Rzepecka-Stojko and Jerzy Stojko
Pharmaceuticals 2025, 18(8), 1162; https://doi.org/10.3390/ph18081162 - 5 Aug 2025
Abstract
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic [...] Read more.
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic ring (C). One representative flavonoid is chrysin, a compound found in honey, propolis, and passionflower (Passiflora spp.). Chrysin exhibits a range of biological activities, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and anxiolytic effects. Its biological activity is primarily attributed to the presence of hydroxyl groups, which facilitate the neutralization of free radicals and the modulation of intracellular signaling pathways. Cellular uptake of chrysin and other flavonoids occurs mainly through passive diffusion; however, certain forms may be transported via specific membrane-associated carrier proteins. Despite its therapeutic potential, chrysin’s bioavailability is significantly limited due to poor aqueous solubility and rapid metabolism in the gastrointestinal tract and liver, which reduces its systemic efficacy. Ongoing research aims to enhance chrysin’s bioavailability through the development of delivery systems such as lipid-based carriers and nanoparticles. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

59 pages, 1351 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 - 3 Aug 2025
Viewed by 173
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

18 pages, 2312 KiB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 - 1 Aug 2025
Viewed by 192
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
Show Figures

Figure 1

20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 - 1 Aug 2025
Viewed by 186
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Graphical abstract

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

23 pages, 1084 KiB  
Review
Unraveling the Translational Relevance of β-Hydroxybutyrate as an Intermediate Metabolite and Signaling Molecule
by Dwifrista Vani Pali, Sujin Kim, Keren Esther Kristina Mantik, Ju-Bi Lee, Chan-Young So, Sohee Moon, Dong-Ho Park, Hyo-Bum Kwak and Ju-Hee Kang
Int. J. Mol. Sci. 2025, 26(15), 7362; https://doi.org/10.3390/ijms26157362 - 30 Jul 2025
Viewed by 467
Abstract
β-hydroxybutyrate (BHB) is the most abundant ketone body produced during ketosis, a process initiated by glucose depletion and the β-oxidation of fatty acids in hepatocytes. Traditionally recognized as an alternative energy substrate during fasting, caloric restriction, and starvation, BHB has gained attention for [...] Read more.
β-hydroxybutyrate (BHB) is the most abundant ketone body produced during ketosis, a process initiated by glucose depletion and the β-oxidation of fatty acids in hepatocytes. Traditionally recognized as an alternative energy substrate during fasting, caloric restriction, and starvation, BHB has gained attention for its diverse signaling roles in various physiological processes. This review explores the emerging therapeutic potential of BHB in the context of sarcopenia, metabolic disorders, and neurodegenerative diseases. BHB influences gene expression, lipid metabolism, and inflammation through its inhibition of Class I Histone deacetylases (HDACs) and activation of G-protein-coupled receptors (GPCRs), specifically HCAR2 and FFAR3. These actions lead to enhanced mitochondrial function, reduced oxidative stress, and regulation of inflammatory pathways, with implication for muscle maintenance, neuroprotection, and metabolic regulation. Moreover, BHB’s ability to modulate adipose tissue lipolysis and immune responses highlight its broader potential in managing chronic metabolic conditions and aging. While these findings show BHB as a promising therapeutic agent, further research is required to determine optimal dosing strategies, long-term effects, and its translational potential in clinical settings. Understanding BHB’s mechanisms will facilitate its development as a novel therapeutic strategy for multiple organ systems affected by aging and disease. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies in Skeletal Muscle Diseases)
Show Figures

Figure 1

26 pages, 10645 KiB  
Article
Classical Paal-Knorr Cyclization for Synthesis of Pyrrole-Based Aryl Hydrazones and In Vitro/In Vivo Evaluation on Pharmacological Models of Parkinson’s Disease
by Maya Georgieva, Martin Sharkov, Emilio Mateev, Diana Tzankova, Georgi Popov, Vasil Manov, Alexander Zlatkov, Rumyana Simeonova and Magdalena Kondeva-Burdina
Molecules 2025, 30(15), 3154; https://doi.org/10.3390/molecules30153154 - 28 Jul 2025
Viewed by 222
Abstract
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is [...] Read more.
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is applied to synthesize the basic hydrazine used for the formation of the designed series of hydrazones (15a15g). The potential neurotoxic and neuroprotective effects of the newly synthesized derivatives were investigated in vitro using different models of induced oxidative stress at three subcellular levels (rat brain synaptosomes, mitochondria, and microsomes). The results identified as the least neurotoxic molecules, 15a, 15d, and 15f applied at a concentration of 100 µM to the isolated fractions. In addition, the highest statistically significant neuroprotection was observed for 15a and 15d at a concentration of 100 µM using three different injury models on subcellular fractions, including 6-hydroxydopamine in rat brain synaptosomes, tert-butyl hydroperoxide in brain mitochondria, and non-enzyme-induced lipid peroxidation in brain microsomes. The hMAOA/MAOB inhibitory activity of the new compounds was studied at a concentration of 1 µM. The lack of a statistically significant hMAOA inhibitory effect was observed for all tested compounds, except for 15f, which showed 40% inhibitory activity. The most prominent statistically significant hMAOB inhibitory effect was determined for 15a, 15d, and 15f, comparable to that of selegiline. The corresponding selectivity index defined 15f as a non-selective MAO inhibitor and all other new hydrazones as selective hMAOB inhibitors, with 15d indicating the highest selectivity index of >471. The most active and least toxic representative (15d) was evaluated in vivo on Rotenone based model of Parkinson’s disease. The results revealed no microscopically visible alterations in the ganglion and glial cells in the animals treated with rotenone in combination with 15d. Full article
(This article belongs to the Special Issue Small-Molecule Targeted Drugs)
Show Figures

Figure 1

29 pages, 3008 KiB  
Review
Small Extracellular Vesicles in Neurodegenerative Disease: Emerging Roles in Pathogenesis, Biomarker Discovery, and Therapy
by Mousumi Ghosh, Amir-Hossein Bayat and Damien D. Pearse
Int. J. Mol. Sci. 2025, 26(15), 7246; https://doi.org/10.3390/ijms26157246 - 26 Jul 2025
Viewed by 298
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer’s, Parkinson’s, ALS, and Huntington’s pose a growing global challenge due to their complex pathobiology and aging demographics. Once considered as cellular debris, small extracellular vesicles (sEVs) are now recognized as active mediators of intercellular signaling in NDD [...] Read more.
Neurodegenerative diseases (NDDs) such as Alzheimer’s, Parkinson’s, ALS, and Huntington’s pose a growing global challenge due to their complex pathobiology and aging demographics. Once considered as cellular debris, small extracellular vesicles (sEVs) are now recognized as active mediators of intercellular signaling in NDD progression. These nanovesicles (~30–150 nm), capable of crossing the blood–brain barrier, carry pathological proteins, RNAs, and lipids, facilitating the spread of toxic species like Aβ, tau, TDP-43, and α-synuclein. sEVs are increasingly recognized as valuable diagnostic tools, outperforming traditional CSF biomarkers in early detection and disease monitoring. On the therapeutic front, engineered sEVs offer a promising platform for CNS-targeted delivery of siRNAs, CRISPR tools, and neuroprotective agents, demonstrating efficacy in preclinical models. However, translational hurdles persist, including standardization, scalability, and regulatory alignment. Promising solutions are emerging, such as CRISPR-based barcoding, which enables high-resolution tracking of vesicle biodistribution; AI-guided analytics to enhance quality control; and coordinated regulatory efforts by the FDA, EMA, and ISEV aimed at unifying identity and purity criteria under forthcoming Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines. This review critically examines the mechanistic roles, diagnostic potential, and therapeutic applications of sEVs in NDDs, and outlines key strategies for clinical translation. Full article
(This article belongs to the Special Issue Molecular Advances in Neurologic and Neurodegenerative Disorders)
Show Figures

Graphical abstract

28 pages, 1763 KiB  
Review
Interaction Between Konjac Glucomannan and Gut Microbiota and Its Impact on Health
by Yufen Yu, Shuo Jin, Yi Yang, Xiaodong Han, Rongfa Guan and Hao Zhong
Biology 2025, 14(8), 923; https://doi.org/10.3390/biology14080923 - 23 Jul 2025
Viewed by 671
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide polymer. It is degraded by gut microbiota-derived β-mannanase into small-molecule nutrients, which exert diverse physiological regulatory effects. As a prebiotic, KGM modulates gut microbiota composition. It selectively fosters the proliferation of beneficial commensals and suppresses potential [...] Read more.
Konjac glucomannan (KGM) is a natural polysaccharide polymer. It is degraded by gut microbiota-derived β-mannanase into small-molecule nutrients, which exert diverse physiological regulatory effects. As a prebiotic, KGM modulates gut microbiota composition. It selectively fosters the proliferation of beneficial commensals and suppresses potential pathogens, thereby alleviating microbiota-related disorders. Moreover, microbiota fermentation of KGM produces metabolites. Short-chain fatty acids (SCFAs) are particularly notable among these metabolites. They exert multifaceted beneficial effects, including metabolic regulation, intestinal barrier strengthening, and neuroprotective functions. These effects are mediated through inhibition of inflammatory pathways (e.g., NF-κB, MAPK), modulation of lipid metabolism genes (e.g., CD36), and regulation of neurotransmitters (e.g., GABA, 5-HT). This highlights KGM’s therapeutic potential for metabolic, inflammatory, and neurodegenerative diseases. Current clinical use is limited by dose-dependent adverse effects and interindividual response variability, which stem from different microbial communities. This necessitates personalized dosage strategies. Despite these limitations, KGM as a prebiotic polysaccharide exhibits multifaceted bioactivity. Current evidence suggests its potential to synergistically modulate metabolic pathways, gut microbiota composition, immune cell signaling, and neuroendocrine interactions. This highlights its promise for developing novel therapeutic interventions. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Figure 1

42 pages, 2555 KiB  
Review
Prosaposin: A Multifaceted Protein Orchestrating Biological Processes and Diseases
by Xin Li and Liang Guo
Cells 2025, 14(15), 1131; https://doi.org/10.3390/cells14151131 - 22 Jul 2025
Viewed by 447
Abstract
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In [...] Read more.
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In neurological disorders, PSAP acts as a neurotrophic factor influencing nerve cell survival and synapse growth, and its dysfunction is associated with a variety of diseases. It modulates immune responses and macrophage functions, affecting inflammation and immune cell activities. The role of PSAP in cancers is complex, because it promotes or inhibits tumor growth depending on the context and it serves as a potential biomarker for various malignancies. This review examines current research on the functional and pathological roles of PSAP, emphasizing the importance of PSAP in Gaucher disease, neurodegenerative diseases, cardiovascular diseases, and cancer. In order to develop targeted therapies for various diseases, it is essential to understand the mechanisms of action of PSAP in different biological processes. Full article
Show Figures

Figure 1

17 pages, 1471 KiB  
Article
American Basil, Ocimum americanum, Has Neuroprotective Properties in the Aging Process
by Ionara Rodrigues Siqueira, Cláudia Vanzella, Gisele Agustini Lovatel, Karine Bertoldi, Christiano Spindler, Felipe dos Santos Moysés, Adriana Vizuete, Gilsane Lino von Poser and Carlos Alexandre Netto
Nutrients 2025, 17(14), 2368; https://doi.org/10.3390/nu17142368 - 19 Jul 2025
Viewed by 713
Abstract
Background/Objectives: There is evidence concerning herbal medicines and plant-based compounds, including Lamiaceae species, as putative senolytic agents; however, there are only a few reports on Ocimum americanum properties using rat models. The aim of this study was to investigate the neuroprotective effects [...] Read more.
Background/Objectives: There is evidence concerning herbal medicines and plant-based compounds, including Lamiaceae species, as putative senolytic agents; however, there are only a few reports on Ocimum americanum properties using rat models. The aim of this study was to investigate the neuroprotective effects and potential modes of action of Ocimum americanum L. using ex vivo and in vivo assays to assess the effects of OAEE on hippocampal tissue from young adult and late middle-aged Wistar rats, with a focus on oxidative stress, cholinesterase activity, and neuroinflammatory markers. Methods: Ocimum americanum ethanol extract (OAEE) was incubated with hippocampal slices of young adult and late middle-aged male Wistar rats exposed to H2O2; an acute treatment with OAEE was evaluated in aversive memory performance and neurochemical parameters, such as hippocampal cellular oxidative state, and anticholinesterase activity, and a diet supplementation of OAEE were evaluated on several hippocampal biochemical parameters, such as oxidative state, anticholinesterase activity, and neuroinflammatory parameters in young adult and late middle-aged male rats. Results: OAEE reversed the H2O2-induced impaired cellular viability in hippocampal slices from young adult rats, as well as protected hippocampal slices against H2O2-induced damage in both young adult and late middle-aged Wistar rats, indicating its neuroprotective action. Chronic dietary OAEE supplementation reduced aging-induced increases in reactive species and lipid peroxidation levels in the hippocampus. Indeed, this supplementation reduced the TNF-α content in hippocampus from both ages, and IL-1β levels in young adult rats. Conclusions: The antioxidant actions of OAEE here observed, preventing the lipoperoxidation, as well as its anti-neuroinflammatory effect, might be related to neuroprotective effect. Our findings add evidence to support the idea of the potential use of Ocimum americanum as a nutraceutical or functional food in the aging process. Full article
(This article belongs to the Special Issue Functional Foods and Sustainable Health (2nd Edition))
Show Figures

Figure 1

29 pages, 1685 KiB  
Review
Translating Basic Science to Clinical Applications: A Narrative Review of Repurposed Pharmacological Agents in Preclinical Models of Diabetic Neuropathy
by Corina Andrei, Oana Cristina Șeremet, Ciprian Pușcașu and Anca Zanfirescu
Biomedicines 2025, 13(7), 1709; https://doi.org/10.3390/biomedicines13071709 - 13 Jul 2025
Viewed by 506
Abstract
Diabetic neuropathy (DN) remains a major clinical burden, characterized by progressive sensory dysfunction, pain, and impaired quality of life. Despite the available symptomatic treatments, there is a pressing need for disease-modifying therapies. In recent years, preclinical research has highlighted the potential of repurposed [...] Read more.
Diabetic neuropathy (DN) remains a major clinical burden, characterized by progressive sensory dysfunction, pain, and impaired quality of life. Despite the available symptomatic treatments, there is a pressing need for disease-modifying therapies. In recent years, preclinical research has highlighted the potential of repurposed pharmacological agents, originally developed for other indications, to target key mechanisms of DN. This narrative review examines the main pathophysiological pathways involved in DN, including metabolic imbalance, oxidative stress, neuroinflammation, ion channel dysfunction, and mitochondrial impairment. A wide array of repurposed drugs—including antidiabetics (metformin, empagliflozin, gliclazide, semaglutide, and pioglitazone), antihypertensives (amlodipine, telmisartan, aliskiren, and rilmenidine), lipid-lowering agents (atorvastatin and alirocumab), anticonvulsants (topiramate and retigabine), antioxidant and neuroprotective agents (melatonin), and muscarinic receptor antagonists (pirenzepine, oxybutynin, and atropine)—have shown promising results in rodent models, reducing neuropathic pain behaviors and modulating underlying disease mechanisms. By bridging basic mechanistic insights with pharmacological interventions, this review aims to support translational progress toward mechanism-based therapies for DN. Full article
(This article belongs to the Special Issue Novel Biomarker and Treatments for Diabetic Neuropathy)
Show Figures

Figure 1

21 pages, 27301 KiB  
Article
Folic Acid Ameliorates Neuronal Ferroptosis in Aging by Up-Regulating SLC7A11-GSH-GPX4 Antioxidant Pathway and Increasing Cystine Levels
by Yue Wang, Jingwen Zhang, Zehao Wang, Qinghan Ren, Zhenshu Li, Guowei Huang and Wen Li
Int. J. Mol. Sci. 2025, 26(14), 6669; https://doi.org/10.3390/ijms26146669 - 11 Jul 2025
Viewed by 375
Abstract
Age-related neurodegeneration is characterized by oxidative stress and iron-dependent cell death, yet the neuroprotective mechanisms of folic acid in modulating ferroptosis remain unclear. This study systematically investigated the role of folic acid in inhibiting ferroptosis and attenuating neuronal damage in aging, with a [...] Read more.
Age-related neurodegeneration is characterized by oxidative stress and iron-dependent cell death, yet the neuroprotective mechanisms of folic acid in modulating ferroptosis remain unclear. This study systematically investigated the role of folic acid in inhibiting ferroptosis and attenuating neuronal damage in aging, with a focus on the solute carrier family 7 member 11 (SLC7A11)-glutathione (GSH)-glutathione peroxidase 4 (GPX4) antioxidant pathway, using aged rats supplemented with folic acid (<0.1, 2.0, and 4.0 mg/kg·diet) for 22 months, with young adult rats as controls. Brain iron accumulation and ferroptosis-related proteins (SLC7A11, GPX4, Ferritin heavy chain 1 (FTH1)) were evaluated. In vitro, HT-22 hippocampal neuronal cells were pre-treated with folic acid (0, 10, 20 μmol/L) for 72 h before combining with Erastin (10 μmol/L)-induced ferroptosis for an additional 24 h. Intracellular Fe2+, lipid peroxidation (LPO), malondialdehyde (MDA), reactive oxygen species (ROS), along with cystine, GSH, and ferroptosis-related protein levels were quantified. Stable sh-SLC7A11 knockdown and control (sh-NC) cell lines were used to validate the dependency of folic acid’s protective effects on SLC7A11 expression. Folic acid supplementation in aged rats dose-dependently reduced aging-related brain iron accumulation and enhanced the expression of SLC7A11, GPX4, and FTH1. In Erastin-induced HT-22 cells, folic acid significantly mitigated ferroptosis hallmarks. Mechanistically, folic acid increased extracellular cystine uptake and intracellular GSH synthesis, thereby activating the SLC7A11-GSH-GPX4 antioxidant pathway. Notably, molecular docking technique suggested that compared to GPX4, folic acid stabilized SLC7A11’s active conformation. sh-SLC7A11 knockdown completely abolished folic acid-mediated protection against ferroptosis, as evidenced by restored loss of cystine, GSH and GPX4 production. This study innovatively emphasized the critical role of folic acid supplementation in inhibiting ferroptosis by up-regulating the SLC7A11-GSH-GPX4 antioxidant pathway, primarily through enhancing cystine availability and SLC7A11 expression. These findings established folic acid as a potential dietary intervention for aging-related neurodegenerative diseases characterized by neuronal ferroptosis, providing preclinical evidence for folic acid based neuroprotection. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

35 pages, 3582 KiB  
Review
Polyphenols in the Central Nervous System: Cellular Effects and Liposomal Delivery Approaches
by Mateusz Kaluza, Dominika Ksiazek-Winiarek, Piotr Szpakowski, Joanna Czpakowska, Julia Fijalkowska and Andrzej Glabinski
Int. J. Mol. Sci. 2025, 26(13), 6477; https://doi.org/10.3390/ijms26136477 - 4 Jul 2025
Viewed by 827
Abstract
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and [...] Read more.
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and CREB, and the regulation of neurogenesis and microglial activation. This review focuses on the cell-specific actions of selected polyphenols in neurons, astrocytes, microglia, and oligodendrocytes within the context of Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. A major limitation to the therapeutic use of polyphenols is their poor bioavailability, due to instability, low solubility, and limited blood–brain barrier penetration. Liposomal nanocarriers are explored as promising delivery systems to overcome these barriers. Both conventional and functionalized liposomes (e.g., PEGylated, receptor-targeted) are discussed, alongside in vitro and in vivo studies demonstrating enhanced efficacy compared to free compounds. Intranasal delivery is also presented as a viable alternative to oral administration. Overall, polyphenols offer great potential as neuroprotective agents, and liposome-based delivery platforms have the potential to significantly enhance their clinical potential, provided that key formulation and targeting issues are addressed. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

36 pages, 3407 KiB  
Review
Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases
by Renata Kołodziejska, Alina Woźniak, Rafał Bilski, Roland Wesołowski, Daria Kupczyk, Marta Porzych, Weronika Wróblewska and Hanna Pawluk
Antioxidants 2025, 14(7), 819; https://doi.org/10.3390/antiox14070819 - 3 Jul 2025
Cited by 1 | Viewed by 1565
Abstract
Melatonin (MEL)is an endogenous hormone with antioxidant potential that plays an important role in maintaining redox homeostasis. MEL and its derivatives directly scavenge free oxygen and nitrogen radicals. Melatonin inhibits lipid peroxidation, stimulates antioxidant enzymes, and reduces metal toxicity. It stabilizes mitochondrial activity [...] Read more.
Melatonin (MEL)is an endogenous hormone with antioxidant potential that plays an important role in maintaining redox homeostasis. MEL and its derivatives directly scavenge free oxygen and nitrogen radicals. Melatonin inhibits lipid peroxidation, stimulates antioxidant enzymes, and reduces metal toxicity. It stabilizes mitochondrial activity and suppresses inflammatory signaling. It takes part in neurogenesis, neuroprotection, and modulation of the cardiovascular system. It prevents many diseases of free radical etiology, i.e., neurodegenerative and circulatory system diseases and ischemic stroke. Supplementation with this antioxidant can slow down the aging process and provide protection against diseases of the central nervous system and support the body’s natural antioxidant system. This study uses current reports from the literature and meta-analyses of the antioxidant mechanisms of melatonin and its importance in neurodegenerative diseases. Full article
(This article belongs to the Special Issue Antioxidant Actions of Melatonin)
Show Figures

Scheme 1

Back to TopTop