Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases
Abstract
1. Introduction
2. Melatonin and Its Metabolites—Free Radical Scavengers
3. Melatonin and Its Metabolites—Regulators of Protein Expression or Activity
4. Melatonin and Its Metabolites—Improvement of Mitochondrial Function
5. Melatonin and Its Metabolites—Reduction of Metal Toxicity
6. Melatonin in Alzheimer’s Disease
7. Melatonin in Parkinson’s Disease
8. Melatonin in Huntington’s Disease
9. Therapeutic Efficacy of Melatonin in Neurodegenerative Diseases
10. Melatonin Effects by Domain
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
HD | Huntington’s disease |
PD | Parkinson’s disease |
ETC | Electron transport chain |
OXPHOS | Oxidative phosphorylation |
mtDNA | Mitochondrial DNA |
MEL | Melatonin (N-acetyl-5-methoxytryptamine) |
SCN | Suprachiasmatic nucleus |
GABA | Gamma-aminobutyric acid |
SCG | Superior cervical ganglion |
NO | Nitric oxide |
mPT | Mitochondrial permeability transition |
mPTP | Mitochondrial permeability transition pore |
PLC | Phospholipase C |
AC | Adenylate cyclase |
AADC | L-aromatic amino acid decarboxylase |
AA-NAT | Arylalkylamine N-acetyltransferase |
ASMT | N-acetylserotonin-O-methyltransferase |
TPH | Tryptophan-5-hydroxylase |
ROS/RNS | Reactive oxygen and nitrogen species |
AFMK | 1N-acetyl-2N-formyl-5-methoxy-nuramine |
AMK | 1N-acetyl-5-methoxy-nuramine |
c3-OHM | Cyclic 3-hydroxymelatonin |
ABTS | 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) |
6-OHM | 6-hydroxymelatonin |
O2•− | Superoxide anion |
•OH | Hydroxyl radical |
1O2 | Singlet oxygen |
H2O2 | Hydrogen peroxide |
HOCl | Hypochlorous acid |
ROO• | Perixyl radical |
ONOO− | Peroxynitrite anion |
NO+ | Nitrosonium ion |
CO3•− | Carbonate radical |
2-OHM | 2-Hydroxymelatonin |
4-OHM | 4-Hydroxymelatonin |
IDO | Indoleamine 2,3-dioxygenase |
MPO | Myeloperoxidase |
HRP | Hemoperoxidases |
AMMC | 3-acetamidomethyl-6-methoxycinnolinone |
AMNK | 1N-acetyl-5-methoxy-3-nitrokynuramine |
MQA | N-[2-(6-methoxyquinazolin-4-yl)-ethyl]-acetamide |
BBB | Blood–brain barrier |
GPx | Glutathione peroxidase |
CAT | Catalase |
SOD | Superoxide dismutase |
AKT | Protein kinase B |
BDNF | Brain-derived neurotrophic factor |
cAMP | Cyclic adenosine monophosphate |
CaM | Calmodulin |
CaMKII | Calcium/calmodulin-dependent protein kinase II |
CREB | cAMP response element-binding protein |
DAG | Diacylglycerol |
ERK 1/2 | Extracellular signal-regulated kinases |
IKK | IκB kinase |
IκB | Inhibitor of nuclear factor kappa B |
IP3 | Inositol trisphosphate |
MAPK | Mitogen-activated protein kinase |
MT1/MT2 | Melatonin receptor type 1 and type 2 |
NF-κB | Nuclear factor-kappa B |
AP-1 | Activator protein-1 |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
ARE | Antioxidant response element |
PI3K | Phosphoinositide 3-kinase |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
PIP3 | Phosphatidylinositol 3,4,5-trisphosphate |
PKA | Protein kinase A |
PKC | Protein kinase C |
SIRT1/3 | Sirtuin 1/3 (Silent mating type information regulation 2 homolog 1/3) |
Cyt C | Cytochrome C |
UQ | Ubiquinone |
PEPT1/2 | Human proton-coupled oligopeptide transporters |
Δψm | Mitochondrial membrane potential |
AMPK | 5′ Adenosine monophosphate-activated protein kinase |
PGC-1α | Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha |
ERRα | Estrogen-related receptor alpha |
Drp1 | Dynamin-related protein 1 |
Fis1 | Mitochondrial fission protein 1 |
OPA1 | Optic atrophy 1 |
RCR | Respiratory control ratio |
mHTT | Mutant huntingtin |
AMD | Age-related macular degeneration |
RPE | Retinal pigment epithelial |
nNOS | Neuronal nitric oxide synthase |
iNOS | Inducible nitric oxide synthase |
PDH | Pyruvate dehydrogenase |
PDK | Pyruvate dehydrogenase kinase |
GR | Glutathione reductase |
8-OHdG | 8-hydroxy-2′-deoxyguanosine |
HWR | Haber–Weiss reaction |
Aβ | β-amyloid |
APP | Amyloid precursor protein |
ADAM10 | Metalloproteinase domain-containing protein 10 |
BACE1 | β-secretase β-site APP cleaving enzyme 1 |
PS1 | Presenilin-1 |
REM | Rapid eye movement |
BMAL1 | Muscle ARNT-like 1 |
PER2 | Period circadian protein homolog 2 |
NADPH | Nicotinamide adenine dinucleotide phosphate oxidase |
IL-10 | Interleukin-10 |
mTOR | Mechanistic target of rapamycin reduction |
IRS-1 | Insulin receptor substrate-1 |
IGF-1 | Insulin-like growth factor 1 |
5-LOX | 5-lipoxygenase-activating protein |
LC3-II/p62 | Microtubule-associated protein 1A/1B-light chain 3 |
FOXO | Forkhead box protein O |
Wnt/β | Canonical Wnt/β-catenin signaling pathway |
NMDAR | N-methyl-D-aspartate receptor |
ChAT | Choline acetyltransferase |
CHT | High-affinity choline transporter |
VAChT | Vesicular acetylcholine transporter |
M1R | Muscarinic M1 receptor |
AChE | Acetylcholinesterase |
NGF | Nerve growth factor |
CNS | Central nervous system |
HO-1 | Heme oxygenase-1 |
TLR4 | Toll-like receptor 4 |
MyD88 | Myeloid differentiation primary response 88 |
COX-2 | Cyclooxygenase-2 |
IL-1β | Interleukin-1β |
IL-18 | Interleukin-18 |
PSQI | Pittsburgh Sleep Quality Index |
MSNs | Medium spiny neurons |
CAG | Cytosine–adenine–guanine |
Poly-Q | Polyglutamine tail |
References
- Cardinali, D.P.; Pagano, E.S.; Scacchi Bernasconi, P.A.; Reynoso, R.; Scacchi, P. Melatonin and Mitochondrial Dysfunction in the Central Nervous System. Horm. Behav. 2013, 63, 322–330. [Google Scholar] [CrossRef]
- Srinivasan, V.; Spence, D.W.; Pandi-Perumal, S.R.; Brown, G.M.; Cardinali, D.P. Melatonin in Mitochondrial Dysfunction and Related Disorders. Int. J. Alzheimers. Dis. 2011, 2011, 326320. [Google Scholar] [CrossRef]
- Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Protective Role of Melatonin in Mitochondrial Dysfunction and Related Disorders. Arch. Toxicol. 2015, 89, 923–939. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, T.; Lee, T.H. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020, 10, 1158. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an Antioxidant: Under Promises but over Delivers. J. Pineal Res. 2016, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.; Baidya, D.K.; Khanna, P. Melatonin in Perioperative Medicine: Current Perspective. Saudi J. Anaesth. 2013, 7, 315–321. [Google Scholar] [CrossRef]
- Pevet, P.; Challet, E. Melatonin: Both Master Clock Output and Internal Time-Giver in the Circadian Clocks Network. J. Physiol. Paris 2011, 105, 170–182. [Google Scholar] [CrossRef]
- Bedrosian, T.A.; Herring, K.L.; Walton, J.C.; Fonken, L.K.; Weil, Z.M.; Nelson, R.J. Evidence for Feedback Control of Pineal Melatonin Secretion. Neurosci. Lett. 2013, 542, 123–125. [Google Scholar] [CrossRef]
- Ahmad, S.B.; Ali, A.; Bilal, M.; Rashid, S.M.; Wani, A.B.; Bhat, R.R.; Rehman, M.U. Melatonin and Health: Insights of Melatonin Action, Biological Functions, and Associated Disorders. Cell. Mol. Neurobiol. 2023, 43, 2437–2458. [Google Scholar] [CrossRef]
- Carretero, V.J.; Ramos, E.; Segura-Chama, P.; Hernández, A.; Baraibar, A.M.; Álvarez-Merz, I.; Muñoz, F.L.; Egea, J.; Solís, J.M.; Romero, A.; et al. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants 2023, 12, 1844. [Google Scholar] [CrossRef]
- Purushothaman, A.; Sheeja, A.A.; Janardanan, D. Hydroxyl Radical Scavenging Activity of Melatonin and Its Related Indolamines. Free Radic. Res. 2020, 54, 373–383. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.; Osuna, C.; Gitto, E. Actions of Melatonin in the Reduction of Oxidative Stress. J. Biomed. Sci. 2000, 7, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef] [PubMed]
- Allegra, M.; Reiter, R.J.; Tan, D.X.; Gentile, C.; Tesoriere, L.; Livrea, M.A. The Chemistry of Melatonin’s Interaction with Reactive Species. J. Pineal Res. 2003, 34, 1–10. [Google Scholar] [CrossRef]
- Monteiro, K.K.A.C.; Shiroma, M.E.; Damous, L.L.; Simões, M.d.J.; Simões, R.d.S.; Cipolla-Neto, J.; Baracat, E.C.; Soares-Jr, J.M. Antioxidant Actions of Melatonin: A Systematic Review of Animal Studies. Antioxidants 2024, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Jozaki, M.; Tanabe, M.; Shirafuta, Y.; Mihara, Y.; Shinagawa, M.; Tamura, I.; Maekawa, R.; Sato, S.; Taketani, T.; et al. Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. Int. J. Mol. Sci. 2020, 21, 1135. [Google Scholar] [CrossRef]
- Manchester, L.C.; Coto-Montes, A.; Boga, J.A.; Andersen, L.P.H.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.X.; Reiter, R.J. Melatonin: An Ancient Molecule That Makes Oxygen Metabolically Tolerable. J. Pineal Res. 2015, 59, 403–419. [Google Scholar] [CrossRef]
- Tan, D.X.; Hardeland, R.; Manchester, L.C.; Poeggeler, B.; Lopez-Burillo, S.; Mayo, J.C.; Sainz, R.M.; Reiter, R.J. Mechanistic and Comparative Studies of Melatonin and Classic Antioxidants in Terms of Their Interactions with the ABTS Cation Radical. J. Pineal Res. 2003, 34, 249–259. [Google Scholar] [CrossRef]
- Turjanski, A.G.; Rosenstein, R.E.; Estrin, D.A. Reactions of Melatonin and Related Indoles with Free Radicals: A Computational Study. J. Med. Chem. 1998, 41, 3684–3689. [Google Scholar] [CrossRef]
- Reina, M.; Martínez, A. A New Free Radical Scavenging Cascade Involving Melatonin and Three of Its Metabolites (3OHM, AFMK and AMK). Comput. Theor. Chem. 2018, 1123, 111–118. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin Metabolism in the Central Nervous System. Curr. Neuropharmacol. 2010, 8, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Hacışevki, A.; Baba, B. An Overview of Melatonin as an Antioxidant Molecule: A Biochemical Approach; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One Molecule, Many Derivatives: A Never-Ending Interaction of Melatonin with Reactive Oxygen and Nitrogen Species? J. Pineal Res. 2007, 42, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, S.; Betul Yerer, M.; Goktas, A. Melatonin and Nitric Oxide. J. Endocrinol. Investig. 2006, 29, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Diduk, R.; Galano, A.; Tan, D.X.; Reiter, R.J. N-Acetylserotonin and 6-Hydroxymelatonin against Oxidative Stress: Implications for the Overall Protection Exerted by Melatonin. J. Phys. Chem. B 2015, 119, 8535–8543. [Google Scholar] [CrossRef]
- Pérez-González, A.; Galano, A.; Alvarez-Idaboy, J.R.; Tan, D.X.; Reiter, R.J. Radical-Trapping and Preventive Antioxidant Effects of 2-Hydroxymelatonin and 4-Hydroxymelatonin: Contributions to the Melatonin Protection against Oxidative Stress. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861, 2206–2217. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. Cyclic 3-Hydroxymelatonin, a Key Metabolite Enhancing the Peroxyl Radical Scavenging Activity of Melatonin. RSC Adv. 2014, 4, 5220–5227. [Google Scholar] [CrossRef]
- Singh, M.; Jadhav, H.R. Melatonin: Functions and Ligands. Drug Discov. Today 2014, 19, 1410–1418. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. On the Free Radical Scavenging Activities of Melatonin’s Metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257. [Google Scholar] [CrossRef]
- Semak, I.; Naumova, M.; Korik, E.; Terekhovich, V.; Wortsman, J.; Slominski, A. A Novel Metabolic Pathway of Melatonin: Oxidation by Cytochrome C. Biochemistry 2005, 44, 9300–9307. [Google Scholar] [CrossRef]
- Hardeland, R.; Tan, D.X.; Reiter, R.J. Kynuramines, Metabolites of Melatonin and Other Indoles: The Resurrection of an Almost Forgotten Class of Biogenic Amines. J. Pineal Res. 2009, 47, 109–126. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Reiter, R.J.; Qi, W.B.; Karbownik, M.; Calvoa, J.R. Significance of Melatonin in Antioxidative Defense System: Reactions and Products. NeuroSignals 2000, 9, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Than, N.N.; Heer, C.; Laatsch, H.; Hardeland, R. Reactions of the Melatonin Metabolite N1-Acetyl-5- Methoxykynuramine (AMK) with the ABTS Cation Radical: Identification of New Oxidation Products. Redox Rep. 2006, 11, 15–24. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Burkhardt, S.; Sainz, R.M.; Mayo, J.C.; Kohen, R.; Shohami, E.; Huo, Y.S.; Hardeland, R.; Reiter, R.J. N1-Acetyl-N2-Formyl-5-Methoxykynuramine, a Biogenic Amine and Melatonin Metabolite, Functions as a Potent Antioxidant. FASEB J. 2001, 15, 2294–2296. [Google Scholar] [CrossRef] [PubMed]
- Ressmeyer, A.R.; Mayo, J.C.; Zelosko, V.; Sáinz, R.M.; Tan, D.X.; Poeggeler, B.; Antolín, I.; Zsizsik, B.K.; Reiter, R.J.; Hardeland, R. Antioxidant Properties of the Melatonin Metabolite N1-Acetyl-5-Methoxykynuramine (AMK): Scavenging of Free Radicals and Prevention of Protein Destruction. Redox Rep. 2003, 8, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A.; Reiter, R.J.; Topal, T.; Manchester, L.C.; Oter, S.; Tan, D.X. Melatonin: An Established Antioxidant Worthy of Use in Clinical Trials. Mol. Med. 2009, 15, 43–50. [Google Scholar] [CrossRef]
- Blanchard, B.; Pompon, D.; Ducrocq, C. Nitrosation of Melatonin by Nitric Oxide and Peroxynitrite. J. Pineal Res. 2000, 29, 184–192. [Google Scholar] [CrossRef]
- Peyrot, F.; Houée-Levin, C.; Ducrocq, C. Melatonin Nitrosation Promoted by Radical; Comparison with the Peroxynitrite Reaction. Free Radic. Res. 2006, 40, 910–920. [Google Scholar] [CrossRef]
- Guenther, A.L.; Schmidt, S.I.; Laatsch, H.; Fotso, S.; Ness, H.; Ressmeyer, A.R.; Poeggeler, B.; Hardeland, R. Reactions of the Melatonin Metabolite AMK (N1-Acetyl-5- Methoxykynuramine) with Reactive Nitrogen Species: Formation of Novel Compounds, 3-Acetamidomethyl-6-Methoxycinnolinone and 3-Nitro-AMK. J. Pineal Res. 2005, 39, 251–260. [Google Scholar] [CrossRef]
- Brazão, V.; Colato, R.P.; Santello, F.H.; Duarte, A.; Goulart, A.; Sampaio, P.A.; Pacheco Silva, C.B.; Tirapelli, C.R.; Costa, R.M.; Tostes, R.C.; et al. Melatonin Regulates Antioxidant Defense and Inflammatory Response by Activating Nrf2–Dependent Mechanisms and Inhibiting NFkappaB Expression in Middle-Aged T. Cruzi Infected Rats. Exp. Gerontol. 2022, 167, 111895. [Google Scholar] [CrossRef]
- Hardeland R Antioxidative Protection by Melatonin. Endocrine 2005, 27, 119–130.
- Silva, S.D.O.; Carvalho, S.R.Q.; Ximenes, V.F.; Okada, S.S.; Campa, A. Melatonin and Its Kynurenin-like Oxidation Products Affect the Microbicidal Activity of Neutrophils. Microbes Infect. 2006, 8, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Gusti, A.M.T.; Qusti, S.Y.; Alshammari, E.M.; Toraih, E.A.; Fawzy, M.S. Antioxidants-Related Superoxide Dismutase (Sod), Catalase (Cat), Glutathione Peroxidase (Gpx), Glutathione-s-Transferase (Gst), and Nitric Oxide Synthase (Nos) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants 2021, 10, 595. [Google Scholar] [CrossRef]
- Papas, M.; Catalan, J.; Barranco, I.; Arroyo, L.; Bassols, A.; Yeste, M.; Miró, J. Total and Specific Activities of Superoxide Dismutase (SOD) in Seminal Plasma Are Related with the Cryotolerance of Jackass Spermatozoa. Cryobiology 2020, 92, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of Antioxidant Enzymes: A Significant Role for Melatonin. J. Pineal Res. 2004, 36, 1–9. [Google Scholar] [CrossRef]
- Giri, A.; Mehan, S.; Khan, Z.; Das Gupta, G.; Narula, A.S.; Kalfin, R. Modulation of Neural Circuits by Melatonin in Neurodegenerative and Neuropsychiatric Disorders. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 397, 3867–3895. [Google Scholar] [CrossRef] [PubMed]
- Negi, G.; Kumar, A.; Sharma, S.S. Melatonin Modulates Neuroinflammation and Oxidative Stress in Experimental Diabetic Neuropathy: Effects on NF-ΚB and Nrf2 Cascades. J. Pineal Res. 2011, 50, 124–131. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Raghani, N.; Chorawala, M.; Bhattacharya, S.; Prajapati, B.G.; Elossaily, G.M.; Chaiyasut, C. NF-ΚB Pathway and Its Inhibitors: A Promising Frontier in the Management of Alzheimer’s Disease. Biomedicines 2023, 11, 2587. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, S.; Rizvi, S.I. Therapeutic Potential of Melatonin and Its Derivatives in Aging and Neurodegenerative Diseases. Biogerontology 2023, 24, 183–206. [Google Scholar] [CrossRef]
- Ran, Y.; Ye, L.; Ding, Z.; Gao, F.; Yang, S.; Fang, B.; Liu, Z.; Xi, J. Melatonin Protects Against Ischemic Brain Injury by Modulating PI3K/AKT Signaling Pathway via Suppression of PTEN Activity. ASN Neuro 2021, 13, 17590914211022888. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Patel, K.K.; Dehari, D.; Agrawal, A.K.; Singh, S. Melatonin and Its Ubiquitous Anticancer Effects. Mol. Cell. Biochem. 2019, 462, 133–155. [Google Scholar] [CrossRef]
- Manda, K.; Ueno, M.; Anzai, K. AFMK, a Melatonin Metabolite, Attenuates X-Ray-Induced Oxidative Damage to DNA, Proteins and Lipids in Mice. J. Pineal Res. 2007, 42, 386–393. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021, 26, 4105. [Google Scholar] [CrossRef]
- Semak, I.; Korik, E.; Antonova, M.; Wortsman, J.; Slominski, A. Metabolism of Melatonin by Cytochrome P-450s in Rat Liver Mitochondria and Microsomes. J Pineal Res. 2008, 45, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Bocheva, G.; Bakalov, D.; Iliev, P.; Tafradjiiska-Hadjiolova, R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int. J. Mol. Sci. 2024, 25, 5122. [Google Scholar] [CrossRef]
- Mayo, J.C.; Sainz, R.M.; Tan, D.X.; Hardeland, R.; Leon, J.; Rodriguez, C.; Reiter, R.J. Anti-Inflammatory Actions of Melatonin and Its Metabolites, N1-Acetyl-N2-Formyl-5-Methoxykynuramine (AFMK) and N1-Acetyl-5-Methoxykynuramine (AMK), in Macrophages. J. Neuroimmunol. 2005, 165, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Idle, J.R.; Krausz, K.W.; Tan, D.-X.; Ceraulo, L.; Gonzalez, F.J. Urinary Metabolites and Antioxidant Products of Exogenous Melatonin in the Mouse. J Pineal Res 2006, 23, 343–349. [Google Scholar] [CrossRef]
- Wongprayoon, P.; Govitrapong, P. Melatonin as a Mitochondrial Protector in Neurodegenerative Diseases. Cell. Mol. Life Sci. 2017, 74, 3999–4014. [Google Scholar] [CrossRef]
- Morén, C.; deSouza, R.M.; Giraldo, D.M.; Uff, C. Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 9328. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Bernatoniene, J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics 2021, 13, 129. [Google Scholar] [CrossRef]
- Mehrzadi, S.; Hemati, K.; Reiter, R.J.; Hosseinzadeh, A. Mitochondrial Dysfunction in Age-Related Macular Degeneration: Melatonin as a Potential Treatment. Expert Opin. Ther. Targets 2020, 24, 359–378. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Rosales-Corral, S.; de Campos Zuccari, D.A.P.; de Almeida Chuffa, L.G. Melatonin: A Mitochondrial Resident with a Diverse Skill Set. Life Sci. 2022, 301, 120612. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Yan, L.; Tan, Y.; Chen, S.; Zhang, K.; Gong, Z.; Liu, W.; Zou, H.; Song, R.; Zhu, J.; et al. Melatonin Improves Mitochondrial Function by Preventing Mitochondrial Fission in Cadmium-Induced Rat Proximal Tubular Cell Injury via SIRT1–PGC-1α Pathway Activation. Ecotoxicol. Environ. Saf. 2022, 242, 113879. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Sharma, R.; Rosales-Corral, S.; Manucha, W.; Chuffa, L.G.d.A.; Zuccari, D.A.P.d.C. Melatonin and Pathological Cell Interactions: Mitochondrial Glucose Processing in Cancer Cells. Int. J. Mol. Sci. 2021, 22, 12494. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, D.; Wu, W.; Shah, S.Z.A.; Lai, M.; Yang, D.; Li, J.; Guan, Z.; Li, W.; Gao, H.; et al. Melatonin Regulates Mitochondrial Dynamics and Alleviates Neuron Damage in Prion Diseases. Aging 2020, 12, 11139–11151. [Google Scholar] [CrossRef]
- Delgado-Lara, D.L.; González-Enríquez, G.V.; Torres-Mendoza, B.M.; González-Usigli, H.; Cárdenas-Bedoya, J.; Macías-Islas, M.A.; de la Rosa, A.C.; Jiménez-Delgado, A.; Pacheco-Moisés, F.; Cruz-Serrano, J.A.; et al. Effect of Melatonin Administration on the PER1 and BMAL1 Clock Genes in Patients with Parkinson’s Disease. Biomed. Pharmacother. 2020, 129, 110485. [Google Scholar] [CrossRef]
- Wang, X.; Sirianni, A.; Pei, Z.; Cormier, K.; Smith, K.; Jiang, J.; Zhou, S.; Wang, H.; Zhao, R.; Yano, H.; et al. The Melatonin MT1 Receptor Axis Modulates Mutant Huntingtin-Mediated Toxicity. J. Neurosci. 2011, 31, 14496–14507. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, Z.; Yao, D.; Liu, X.; Liu, W.; Wang, N.; Li, X.; Diao, Y.; Zhang, Y.; Zhao, Q. An Integrated Multi-Omics Approach Revealed the Regulation of Melatonin on Age-Dependent Mitochondrial Function Impair and Lipid Dyshomeostasis in Mice Hippocampus. Pharmacol. Res. 2022, 179, 106210. [Google Scholar] [CrossRef]
- Galano, A.; Reiter, R.J. Melatonin and Its Metabolites vs Oxidative Stress: From Individual Actions to Collective Protection. J. Pineal Res. 2018, 65, e12514. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Ramos, E.; De Los Ríos, C.; Egea, J.; Del Pino, J.; Reiter, R.J. A Review of Metal-Catalyzed Molecular Damage: Protection by Melatonin. J. Pineal Res. 2014, 56, 343–370. [Google Scholar] [CrossRef]
- Sieminski, M.; Reimus, M.; Kałas, M.; Stępniewska, E. Antioxidant and Anti-Inflammatory Properties of Melatonin in Secondary Traumatic Brain Injury. Antioxidants 2025, 14, 25. [Google Scholar] [CrossRef]
- Smith, M.A.; Harris, P.L.R.; Sayre, L.M.; Perry, G. Iron Accumulation in Alzheimer Disease Is a Source of Redox-Generated Free Radicals. Proc. Natl. Acad. Sci. USA 1997, 94, 9866–9868. [Google Scholar] [CrossRef] [PubMed]
- Limson, J.; Nyokong, T.; Daya, S. The Interaction of Melatonin and Its Precursors with Aluminium, Cadmium, Copper, Iron, Lead, and Zinc: An Adsorptive Voltammetric Study. J. Pineal Res. 1998, 24, 15–21. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, T.; Cheng, Y.; Wu, Y.; Zhu, L.; Ovcjak, A.; Harracksingh, A.N.; Gu, Z.; Wu, Y.; Cai, L.; et al. Melatonin Ameliorates Neurological Deficits through MT2/IL-33/Ferritin H Signaling-Mediated Inhibition of Neuroinflammation and Ferroptosis after Traumatic Brain Injury. Free Radic. Biol. Med. 2023, 199, 97–112. [Google Scholar] [CrossRef]
- Maharaj, D.S.; Maharaj, H.; Daya, S.; Glass, B.D. Melatonin and 6-Hydroxymelatonin Protect against Iron-Induced Neurotoxicity. J. Neurochem. 2006, 96, 78–81. [Google Scholar] [CrossRef]
- Sofic, E.; Paulus, W.; Jellinger, K.; Riederer, P.; Youdim, M.B.H. Selective Increase of Iron in Substantia Nigra Zona Compacta of Parkinsonian Brains. J. Neurochem. 1991, 56, 978–982. [Google Scholar] [CrossRef]
- Ozcankaya, R.; Delibas, N. Malondialdehyde, Superoxide Dismutase, Melatonin, Iron, Copper, and Zinc Blood Concentrations in Patients with Alzheimer Disease: Cross-Sectional Study. Croat. Med. J. 2002, 43, 28–32. [Google Scholar] [PubMed]
- Hayter, C.L.; Bishop, G.M.; Robinson, S.R. Pharmacological but Not Physiological Concentrations of Melatonin Reduce Iron-Induced Neuronal Death in Rat Cerebral Cortex. Neurosci. Lett. 2004, 362, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Castañeda-Arriaga, R.; Pérez-González, A.; Tan, D.X.; Reiter, R.J. Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016, 21, 1442. [Google Scholar] [CrossRef]
- Crichton, R.R.; Dexter, D.T.; Ward, R.J. Metal Based Neurodegenerative Diseases-From Molecular Mechanisms to Therapeutic Strategies. Coord. Chem. Rev. 2008, 252, 1189–1199. [Google Scholar] [CrossRef]
- Brewen, G.J. The Risks of Free Copper in the Body and the Development of Useful Anticopper Drugs. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 727–732. [Google Scholar] [CrossRef]
- Hung, Y.H.; Bush, A.I.; Cherny, R.A. Copper in the Brain and Alzheimer’s Disease. J. Biol. Inorg. Chem. 2010, 15, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev. 2006, 106, 1995–2044. [Google Scholar] [CrossRef]
- Fox, J.H.; Kama, J.A.; Lieberman, G.; Chopra, R.; Dorsey, K.; Chopra, V.; Volitakis, I.; Cherny, R.A.; Bush, A.I.; Hersch, S. Mechanisms of Copper Ion Mediated Huntington’s Disease Progression. PLoS ONE 2007, 2, e334. [Google Scholar] [CrossRef]
- Galano, A.; Medina, M.E.; Tan, D.X.; Reiter, R.J. Melatonin and Its Metabolites as Copper Chelating Agents and Their Role in Inhibiting Oxidative Stress: A Physicochemical Analysis. J. Pineal Res. 2015, 58, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018, 23, 530. [Google Scholar] [CrossRef] [PubMed]
- Poliandri, A.H.B.; Esquifino, A.I.; Cano, P.; Jiménez, V.; Lafuente, A.; Cardinali, D.P.; Duvilanski, B.H. In Vivo Protective Effect of Melatonin on Cadmium-Induced Changes in Redox Balance and Gene Expression in Rat Hypothalamus and Anterior Pituitary. J. Pineal Res. 2006, 41, 238–246. [Google Scholar] [CrossRef]
- Rao, M.V.; Purohit, A.R. Neuroprotection by Melatonin on Mercury Induced Toxicity in the Rat Brain. Pharmacol. Pharm. 2011, 02, 375–385. [Google Scholar] [CrossRef]
- Lin, A.M.Y.; Feng, S.F.; Chao, P.L.; Yang, C.H. Melatonin Inhibits Arsenite-Induced Peripheral Neurotoxicity. J. Pineal Res. 2009, 46, 64–70. [Google Scholar] [CrossRef]
- Suresh, C.; Dennis, A.O.; Heinz, J.; Vemuri, M.C.; Chetty, C.S. Melatonin Protection against Lead-Induced Changes in Human Neuroblastoma Cell Cultures. Int. J. Toxicol. 2006, 25, 459–464. [Google Scholar] [CrossRef]
- Xu, S.C.; He, M.D.; Zhong, M.; Zhang, Y.W.; Wang, Y.; Yang, L.; Yang, J.; Yu, Z.P.; Zhou, Z. Melatonin Protects against Nickel-Induced Neurotoxicity in Vitro by Reducing Oxidative Stress and Maintaining Mitochondrial Function. J. Pineal Res. 2010, 49, 86–94. [Google Scholar] [CrossRef]
- Olivieri, G.; Hess, C.; Savaskan, E.; Ly, C.; Meier, F.; Baysang, G.; Brockhaus, M.; Müller-Spahn, F. Melatonin Protects SHSY5Y Neuroblastoma Cells from Cobalt-Induced Oxidative Stress, Neurotoxicity and Increased β-Amyloid Secretion. J. Pineal Res. 2001, 31, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, G.; Brack, C.; Müller-Spahn, F.; Stähelin, H.B.; Herrmann, M.; Renard, P.; Brockhaus, M.; Hock, C. Mercury Induces Cell Cytotoxicity and Oxidative Stress and Increases β- Amyloid Secretion and Tau Phosphorylation in SHSY5Y Neuroblastoma Cells. J. Neurochem. 2000, 74, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front. Aging Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pandi-Perumal, S.R.; Cardinali, D.P.; Poeggeler, B.; Hardeland, R. Melatonin in Alzheimer’s Disease and Other Neurodegenerative Disorders. Behav. Brain Funct. 2006, 2, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Spinedi, E.; Cardinali, D.P. Neuroendocrine-Metabolic Dysfunction and Sleep Disturbances in Neurodegenerative Disorders: Focus on Alzheimer’s Disease and Melatonin. Neuroendocrinology 2019, 108, 354–364. [Google Scholar] [CrossRef]
- Steinbach, M.J.; Denburg, N.L. Melatonin in Alzheimer’s Disease: Literature Review and Therapeutic Trials. J. Alzheimer’s Dis. 2024, 101, S193–S204. [Google Scholar] [CrossRef]
- Zhang, Z.; Xue, P.; Bendlin, B.B.; Zetterberg, H.; De Felice, F.; Tan, X.; Benedict, C. Melatonin: A Potential Nighttime Guardian against Alzheimer’s. Mol. Psychiatry 2024, 30, 237–250. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, H.; Yue, L.; Zhang, J.; Li, X.; Wang, B.; Lin, Y.; Qu, Y. Melatonin Attenuates Early Brain Injury via the Melatonin Receptor/Sirt1/NF-ΚB Signaling Pathway Following Subarachnoid Hemorrhage in Mice. Mol. Neurobiol. 2017, 54, 1612–1621. [Google Scholar] [CrossRef]
- Yang, S.; Chen, X.; Li, S.; Sun, B.; Hang, C. Melatonin Treatment Regulates Sirt3 Expression in Early Brain Injury (EBI) Due to Reactive Oxygen Species (ROS) in a Mouse Model of Subarachnoid Hemorrhage (SAH). Med. Sci. Monit. 2018, 24, 3804–3814. [Google Scholar] [CrossRef]
- Shukla, M.; Govitrapong, P.; Boontem, P.; Reiter, R.J.; Satayavivad, J. Mechanisms of Melatonin in Alleviating Alzheimer’s Disease. Curr. Neuropharmacol. 2017, 15, 1010–1031. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Vigo, D.E.; Olivar, N.; Vidal, M.F.; Brusco, L.I. Melatonin Therapy in Patients with Alzheimer’s Disease. Antioxidants 2014, 3, 245–277. [Google Scholar] [CrossRef] [PubMed]
- Cordone, S.; Scarpelli, S.; Alfonsi, V.; De Gennaro, L.; Gorgoni, M. Sleep-Based Interventions in Alzheimer’s Disease: Promising Approaches from Prevention to Treatment along the Disease Trajectory. Pharmaceuticals 2021, 14, 383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.-y.; Su, S.-w.; Jia, Q.-z.; Ding, T.; Zhu, Z.-n.; Zhang, T. Exogenous Melatonin for Sleep Disorders in Neurodegenerative Diseases: A Meta-Analysis of Randomized Clinical Trials. Neurol. Sci. 2016, 37, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Nous, A.; Wittens, M.M.J.; Vermeiren, Y.; De Deyn, P.P.; Van Broeckhoven, C.; Nagels, G.; Smolders, I.; Engelborghs, S.; Lewczuk, P. Serum Daytime Melatonin Levels Reflect Cerebrospinal Fluid Melatonin Levels in Alzheimer’s Disease but Are Not Correlated with Cognitive Decline. J. Alzheimer’s Dis. 2021, 83, 693–704. [Google Scholar] [CrossRef]
- Fan, R.; Peng, X.; Xie, L.; Dong, K.; Ma, D.; Xu, W.; Shi, X.; Zhang, S.; Chen, J.; Yu, X.; et al. Importance of Bmal1 in Alzheimer’s Disease and Associated Aging-Related Diseases: Mechanisms and Interventions. Aging Cell 2022, 21, e13704. [Google Scholar] [CrossRef]
- Furtado, A.; Astaburuaga, R.; Costa, A.; Duarte, A.C.; Gonçalves, I.; Cipolla-Neto, J.; Lemos, M.C.; Carro, E.; Relógio, A.; Santos, C.R.A.; et al. The Rhythmicity of Clock Genes Is Disrupted in the Choroid Plexus of the APP/PS1 Mouse Model of Alzheimer’s Disease. J. Alzheimers. Dis. 2020, 77, 795–806. [Google Scholar] [CrossRef]
- Perdomo, J.; Cabrera, J.; Estévez, F.; Loro, J.; Reiter, R.J.; Quintana, J. Melatonin Induces Apoptosis through a Caspase-Dependent but Reactive Oxygen Species-Independent Mechanism in Human Leukemia Molt-3 Cells. J. Pineal Res. 2013, 55, 195–206. [Google Scholar] [CrossRef]
- Thangwong, P.; Jearjaroen, P.; Tocharus, C.; Govitrapong, P.; Tocharus, J. Melatonin Suppresses Inflammation and Blood-brain Barrier Disruption in Rats with Vascular Dementia Possibly by Activating the SIRT1/PGC-1α/PPARγ Signaling Pathway. Inflammopharmacology 2023, 31, 1481–1493. [Google Scholar] [CrossRef]
- Chen, S.J.; Huang, S.H.; Chen, J.W.; Wang, K.C.; Yang, Y.R.; Liu, P.F.; Lin, G.J.; Sytwu, H.K. Melatonin Enhances Interleukin-10 Expression and Suppresses Chemotaxis to Inhibit Inflammation in Situ and Reduce the Severity of Experimental Autoimmune Encephalomyelitis. Int. Immunopharmacol. 2016, 31, 169–177. [Google Scholar] [CrossRef]
- Alghamdi, B.S. The Neuroprotective Role of Melatonin in Neurological Disorders. J. Neurosci. Res. 2018, 96, 1136–1149. [Google Scholar] [CrossRef]
- Michailidis, M.; Moraitou, D.; Tata, D.A.; Kalinderi, K.; Papamitsou, T.; Papaliagkas, V. Alzheimer’s Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms between Alzheimer’s Disease and Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 2687. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, S.; Liu, C.; Guo, T.; Huang, Z.; Li, L. The Protective Effects of Melatonin in High Glucose Environment by Alleviating Autophagy and Apoptosis on Primary Cortical Neurons. Mol. Cell. Biochem. 2023, 478, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Burillo, J.; Marqués, P.; Jiménez, B.; González-Blanco, C.; Benito, M.; Guillén, C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Whitcomb, D.J.; Kim, B.C. The Role of Melatonin in the Onset and Progression of Type 3 Diabetes. Mol. Brain 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Firuzi, O.; Zhuo, J.; Chinnici, C.M.; Wisniewski, T.; Praticò, D. 5-Lipoxygenase Gene Disruption Reduces Amyloid-β Pathology in a Mouse Model of Alzheimer’s Disease. FASEB J. 2008, 23, 1169. [Google Scholar] [CrossRef]
- Shekhar, S.; Yadav, S.K.; Rai, N.; Kumar, R.; Yadav, Y.; Tripathi, M.; Dey, A.B.; Dey, S. 5-LOX in Alzheimer’s Disease: Potential Serum Marker and In Vitro Evidences for Rescue of Neurotoxicity by Its Inhibitor YWCS. Mol. Neurobiol. 2018, 55, 2754–2762. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, J.; Hillier, J.; Jones, M.; Lu, W.; Jones, E.Y. Structural Characterization of Melatonin as an Inhibitor of the Wnt Deacylase Notum. J. Pineal Res. 2020, 68, e12630. [Google Scholar] [CrossRef]
- Keskin-Aktan, A.; Akbulut, K.G.; Yazici-Mutlu, Ç.; Sonugur, G.; Ocal, M.; Akbulut, H. The Effects of Melatonin and Curcumin on the Expression of SIRT2, Bcl-2 and Bax in the Hippocampus of Adult Rats. Brain Res. Bull. 2018, 137, 306–310. [Google Scholar] [CrossRef]
- Furuta, T.; Nakagawa, I.; Yokoyama, S.; Morisaki, Y.; Saito, Y.; Nakase, H. Melatonin-Induced Postconditioning Suppresses NMDA Receptor through Opening of the Mitochondrial Permeability Transition Pore via Melatonin Receptor in Mouse Neurons. Int. J. Mol. Sci. 2022, 23, 3822. [Google Scholar] [CrossRef]
- Chen, B.H.; Park, J.H.; Kim, D.W.; Park, J.; Choi, S.Y.; Kim, I.H.; Cho, J.H.; Lee, T.K.; Lee, J.C.; Lee, C.H.; et al. Melatonin Improves Cognitive Deficits via Restoration of Cholinergic Dysfunction in a Mouse Model of Scopolamine-Induced Amnesia. ACS Chem. Neurosci. 2018, 9, 2016–2024. [Google Scholar] [CrossRef]
- Tyagi, E.; Agrawal, R.; Nath, C.; Shukla, R. Effect of Melatonin on Neuroinflammation and Acetylcholinesterase Activity Induced by LPS in Rat Brain. Eur. J. Pharmacol. 2010, 640, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Cachán-Vega, C.; Vega-Naredo, I.; Potes, Y.; Bermejo-Millo, J.C.; Rubio-González, A.; García-González, C.; Antuña, E.; Bermúdez, M.; Gutiérrez-Rodríguez, J.; Boga, J.A.; et al. Chronic Treatment with Melatonin Improves Hippocampal Neurogenesis in the Aged Brain and Under Neurodegeneration. Molecules 2022, 27, 5543. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.A.; Liu, G.; Al Kury, L.T.; Zeb, A.; Abbas, M.; Li, T.; Yang, X.; Liu, F.; Jiang, Y.; Li, S. Melatonin Protects MCAO-Induced Neuronal Loss via NR2A Mediated Prosurvival Pathways. Front. Pharmacol. 2019, 10, 297. [Google Scholar] [CrossRef]
- Zanif, U.; Lai, A.S.; Parks, J.; Roenningen, A.; McLeod, C.B.; Ayas, N.; Wang, X.; Lin, Y.; Zhang, J.; Bhatti, P. Melatonin Supplementation and Oxidative DNA Damage Repair Capacity among Night Shift Workers: A Randomised Placebo-Controlled Trial. Occup. Environ. Med. 2025, 82, 1–6. [Google Scholar] [CrossRef]
- Shokri-Mashhadi, N.; Darand, M.; Rouhani, M.H.; Yahay, M.; Feltham, B.A.; Saraf-Bank, S. Effects of Melatonin Supplementation on BDNF Concentrations and Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Behav. Brain Res. 2023, 436, 114083. [Google Scholar] [CrossRef]
- Chen, D.; Lan, G.; Li, R.; Mei, Y.; Shui, X.; Gu, X.; Wang, L.; Zhang, T.; Gan, C.L.; Xia, Y.; et al. Melatonin Ameliorates Tau-Related Pathology via the MiR-504-3p and CDK5 Axis in Alzheimer’s Disease. Transl. Neurodegener. 2022, 11, 27. [Google Scholar] [CrossRef]
- Ali, T.; Kim, M.O. Melatonin Ameliorates Amyloid Beta-Induced Memory Deficits, Tau Hyperphosphorylation and Neurodegeneration via PI3/Akt/GSk3β Pathway in the Mouse Hippocampus. J. Pineal Res. 2015, 59, 47–59. [Google Scholar] [CrossRef]
- Gáll, Z.; Boros, B.; Kelemen, K.; Urkon, M.; Zolcseak, I.; Márton, K.; Kolcsar, M. Melatonin Improves Cognitive Dysfunction and Decreases Gliosis in the Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease. Front. Pharmacol. 2024, 15, 1447757. [Google Scholar] [CrossRef]
- Merlo, S.; Caruso, G.I.; Korde, D.S.; Khodorovska, A.; Humpel, C.; Sortino, M.A. Melatonin Activates Anti-Inflammatory Features in Microglia in a Multicellular Context: Evidence from Organotypic Brain Slices and HMC3 Cells. Biomolecules 2023, 13, 373. [Google Scholar] [CrossRef]
- Balestrino, R.; Schapira, A.H.V. Parkinson Disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Zarezadeh, M.; Barzegari, M.; Aghapour, B.; Adeli, S.; Khademi, F.; Musazadeh, V.; Jamilian, P.; Jamilian, P.; Fakhr, L.; Chehregosha, F.; et al. Melatonin Effectiveness in Amelioration of Oxidative Stress and Strengthening of Antioxidant Defense System: Findings from a Systematic Review and Dose–Response Meta-Analysis of Controlled Clinical Trials. Clin. Nutr. ESPEN 2022, 48, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Parkinsons Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Gómez, J.; Mota-Martorell, N.; Jové, M.; Pamplona, R.; Barja, G. Mitochondrial ROS Production, Oxidative Stress and Aging within and between Species: Evidences and Recent Advances on This Aging Effector. Exp. Gerontol. 2023, 174, 112134. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Choi, H.; Oh, E. Melatonin Attenuates MPP+-Induced Apoptosis via Heat Shock Protein in a Parkinson’s Disease Model. Biochem. Biophys. Res. Commun. 2022, 621, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Yan, W.Y.; Lei, Y.H.; Wan, Z.; Hou, Y.Y.; Sun, L.K.; Zhou, J.P. SIRT3 Regulation of Mitochondrial Quality Control in Neurodegenerative Diseases. Front. Aging Neurosci. 2019, 11, 131. [Google Scholar] [CrossRef]
- Sevgin, K.; Erguven, P. SIRT1 Overexpression by Melatonin and Resveratrol Combined Treatment Attenuates Premature Ovarian Failure through Activation of SIRT1/FOXO3a/BCL2 Pathway. Biochem. Biophys. Res. Commun. 2024, 696, 149506. [Google Scholar] [CrossRef]
- Hunt, J.; Coulson, E.J.; Rajnarayanan, R.; Oster, H.; Videnovic, A.; Rawashdeh, O. Sleep and Circadian Rhythms in Parkinson’s Disease and Preclinical Models. Mol. Neurodegener. 2022, 17, 1–21. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Reiter, R.J.; Alipoor, R.; Dadgostar, E.; Kouchaki, E.; Asemi, Z. Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms. Cell. Mol. Neurobiol. 2020, 40, 15–23. [Google Scholar] [CrossRef]
- Nechushtai, L.; Frenkel, D.; Pinkas-kramarski, R. Autophagy in Parkinson’s Disease. Biomolecules 2023, 13, 1435. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, P.; Chen, W.; Luo, K.; Shi, X.J.; Zhai, W. Melatonin Inhibits Proliferation, Migration, and Invasion by Inducing ROS-Mediated Apoptosis via Suppression of the PI3K/Akt/MTOR Signaling Pathway in Gallbladder Cancer Cells. Aging 2021, 13, 22502–22515. [Google Scholar] [CrossRef]
- Shen, X.; Tang, C.; Wei, C.; Zhu, Y.; Xu, R. Melatonin Induces Autophagy in Amyotrophic Lateral Sclerosis Mice via Upregulation of SIRT1. Mol. Neurobiol. 2022, 59, 4747–4760. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Guo, B.; Yang, J.; Yu, R.; Chen, W.; Zhai, M.; Cao, Y.; Liu, Y.; Hong, Q.; et al. Melatonin Attenuates Hepatic Oxidative Stress by Regulating the P62/LC3 Autophagy Pathway in PCOS. Endocr. Connect. 2024, 13, x240303. [Google Scholar] [CrossRef]
- Wang, J.; Gao, S.; Lenahan, C.; Gu, Y.; Wang, X.; Fang, Y.; Xu, W.; Wu, H.; Pan, Y.; Shao, A.; et al. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis. 2022, 13, 1823–1844. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Sun, X.; Li, M.; Peng, J.; Gu, X.; Xiong, J. Exogenous Melatonin Activating Nuclear Factor E2-Related Factor 2 (Nrf2) Pathway via Melatonin Receptor to Reduce Oxidative Stress and Apoptosis in Antler Mesenchymal Stem Cells. Molecules 2022, 27, 2515. [Google Scholar] [CrossRef]
- Li, T.; Cheng, C.; Jia, C.; Leng, Y.; Qian, J.; Yu, H.; Liu, Y.; Wang, N.; Yang, Y.; Al-Nusaif, M.; et al. Peripheral Clock System Abnormalities in Patients With Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 736026. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Su, S.; He, P.; Yang, H.; Huang, Z.; Lu, D.; Luo, Z. Role of Endoplasmic Reticulum Stress in Melatonin-Induced Apoptosis and Inhibition of Invasion and Migration in Adrenocortical Carcinoma Cells. Discov. Med. 2024, 36, 2214–2223. [Google Scholar] [CrossRef]
- Ono, K.; Mochizuki, H.; Ikeda, T.; Nihira, T.; Takasaki, J. Effect of Melatonin on α-Synuclein Self-Assembly and Cytotoxicity. NBA 2012, 33, 2172–2185. [Google Scholar] [CrossRef]
- Yao, X.-Y.; Cao, B.-E.; Liu, J.-Y.; Lv, Q.-K.; Zhang, J.R.; Cheng, X.-Y.; Mao, C.-J.; Ma, Q.-H.; Wang, F.; Liu, C.-F. Microglial Melatonin Receptor 1 Degrades Pathological Synuclein Through Activating LC3 Associated Phagocytosis In Vitro. CNS Neurosci. Ther. 2024, 30, e70088. [Google Scholar] [CrossRef]
- Luo, F.; Sandhu, A.F.; Rungratanawanich, W.; Williams, G.E.; Akbar, M.; Zhou, S.; Song, B.; Wang, X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 7174. [Google Scholar] [CrossRef]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-Synuclein in Parkinson’s Disease and Other Synucleinopathies: From Overt Neurodegeneration Back to Early Synaptic Dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef]
- Forloni, G. Alpha Synuclein: Neurodegeneration and Inflammation. Int. J. Mol. Sci. 2023, 24, 5914. [Google Scholar] [CrossRef] [PubMed]
- Yehia, A.; Abulseoud, O.A. Melatonin: A Ferroptosis Inhibitor with Potential Therapeutic Efficacy for the Post-COVID-19 Trajectory of Accelerated Brain Aging and Neurodegeneration. Mol. Neurodegener. 2024, 19, 1–31. [Google Scholar] [CrossRef]
- Mi, Y.; Wei, C.; Sun, L.; Liu, H.; Zhang, J.; Luo, J. Melatonin Inhibits Ferroptosis and Delays Age-Related Cataract by Regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 Pathways. Biomed Pharmacother. 2023, 157, 114048. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jin, H.; Lai, J.; Liu, X. Melatonin Alleviates Ischemic Stroke by Inhibiting Ferroptosis through the CYP1B1 / ACSL4 Pathway. Environ. Toxicol. 2024, 39, 2623–2633. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and Microglia. Int. J. Mol. Sci. 2021, 22, 8296. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, S.; Ozkan, A.; Aytac, G.; Agar, A.; Tanriover, G. Role of Melatonin in TLR4-Mediated Inflammatory Pathway in the MTPT-Induced Mouse Model. Neurotoxicology 2022, 88, 168–177. [Google Scholar] [CrossRef]
- Pajares, M.; Rojo, A.I.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson ’ s Disease: Mechanisms and Therapeutic Implications. Cells 2020, 9, 1687. [Google Scholar] [CrossRef]
- Arioz, B.I.; Tarakcioglu, E.; Olcum, M.; Genc, S. The Role of Melatonin on NLRP3 Inflammasome Activation in Diseases. Antioxidants 2021, 10, 1020. [Google Scholar] [CrossRef]
- Farré-Alins, V.; Narros-Fernández, P.; Palomino-Antolín, A.; Decouty-Pérez, C.; Lopez-Rodriguez, A.B.; Parada, E.; Muñoz-Montero, A.; Gómez-Rangel, V.; López-Muñoz, F.; Ramos, E. Melatonin Reduces NLRP3 Inflammasome Activation by Increasing α 7 NAChR-Mediated Autophagic Flux. Antioxidants 2020, 9, 1299. [Google Scholar] [CrossRef]
- Ma, H.; Yan, J.; Sun, W.; Jiang, M.; Zhang, Y. Melatonin Treatment for Sleep Disorders in Parkinson ’ s Disease: A Meta-Analysis and Systematic Review. Front. Aging Neurosci. 2022, 14, 784314. [Google Scholar] [CrossRef]
- Zhou, Q.; Lin, L.; Li, H.; Wang, H.; Jiang, S.; Huang, P.; Lin, Q. Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1 / M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide. Mol. Neurobiol. 2021, 58, 6552–6576. [Google Scholar] [CrossRef] [PubMed]
- Schütz, L.; Sixel-Döring, F.H. Management of Sleep Disturbances in Parkinson’s Disease. J. Park. Dis. 2022, 12, 2029–2058. [Google Scholar] [CrossRef]
- Sugumaran, R.; Shiva, K.; Krishna, S.; Saibaba, J.; Narayan, S.K.; Sandhiya, S.; Rajeswari, M. Melatonin on Sleep in Parkinson’s Disease: A Randomized Double Blind Placebo Controlled Trial. Sleep Med. 2024, 124, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Bonmat, Á. Melatonin as a Mediator of the Gut Microbiota–Host Interaction: Implications for Health and Disease. Antioxidants 2024, 13, 34. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb. Perspect Med. 2017, 7, a024240. [Google Scholar] [CrossRef] [PubMed]
- Rikani, A.A.; Choudhry, Z.; Choudhry, A.M.; Rizvi, N.; Ikram, H.; Mobassarah, N.J.; Tulli, S. The Mechanism of Degeeeration of Striatal Neuronal Subtypes in Huntington Disease. Ann. Neurosci. 2014, 21, 112–114. [Google Scholar] [CrossRef]
- Ajitkumar, A.; Lui, F.; De Jesus, O. Huntington Disease; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Damiano, M.; Diguet, E.; Malgorn, C.; D’Aurelio, M.; Galvan, L.; Petit, F.; Benhaim, L.; Guillermier, M.; Houitte, D.; Dufour, N.; et al. A Role of Mitochondrial Complex II Defects in Genetic Models of Huntington’s Disease Expressing N-Terminal Fragments of Mutant Huntingtin. Hum. Mol. Genet. 2013, 22, 3869–3882. [Google Scholar] [CrossRef] [PubMed]
- Mochel, F.; Haller, R.G. Energy Deficit in Huntington Disease: Why It Matters. J. Clin. Investig. 2011, 121, 493–499. [Google Scholar] [CrossRef]
- Bano, D.; Zanetti, F.; Mende, Y.; Nicotera, P. Neurodegenerative Processes in Huntington’s Disease. Cell Death Dis. 2011, 2, e228. [Google Scholar] [CrossRef]
- Cherubini, M.; Ginés, S. Mitochondrial Fragmentation in Neuronal Degeneration: Toward an Understanding of HD Striatal Susceptibility. Biochem. Biophys. Res. Commun. 2017, 483, 1063–1068. [Google Scholar] [CrossRef]
- Tasset, I.; Espínola, C.; Medina, F.J.; Feijóo, M.; Ruiz, C.; Moreno, E.; Gómez, M.M.; Collado, J.A.; Muñoz, C.; Muntané, J.; et al. Neuroprotective Effect of Carvedilol and Melatonin on 3-Nitropropionic Acid-Induced Neurotoxicity in Neuroblastoma. J. Physiol. Biochem. 2009, 65, 291–296. [Google Scholar] [CrossRef]
- Mu, S.; Ouyang, L.; Liu, B.; Zhu, Y.; Li, K.; Zhan, M.; Liu, Z.; Jia, Y.; Lei, W. Protective Effect of Melatonin on 3-NP Induced Striatal Interneuron Injury in Rats. Neurochem. Int. 2011, 59, 224–234. [Google Scholar] [CrossRef]
- Nam, E.; Seung, M.L.; Seong, E.K.; Wan, S.J.; Maeng, S.; Heh, I.I.; Yong, S.K. Melatonin Protects against Neuronal Damage Induced by 3-Nitropropionic Acid in Rat Striatum. Brain Res. 2005, 1046, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Matute, C.; Alberdi, E. Intracellular Ca2+ Release through Ryanodine Receptors Contributes to AMPA Receptor-Mediated Mitochondrial Dysfunction and ER Stress in Oligodendrocytes. Cell Death Dis. 2010, 1, e54–e59. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.A.; Sayeed, I.; Siemen, D.; Wolf, G.; Horn, T.F.W. Direct Inhibition of the Mitochondrial Permeability Transition Pore: A Possible Mechanism Responsible for Anti-Apoptotic Effects of Melatonin. FASEB J. 2004, 18, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. The Antiapoptotic Activity of Melatonin in Neurodegenerative Diseases. CNS Neurosci. Ther. 2009, 15, 345–357. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, S.; Pei, Z.; Drozda, M.; Stavrovskaya, I.G.; Del Signore, S.J.; Cormier, K.; Shimony, E.M.; Wang, H.; Ferrante, R.J.; et al. Inhibitors of Cytochrome c Release with Therapeutic Potential for Huntington’s Disease. J. Neurosci. 2008, 28, 9473–9485. [Google Scholar] [CrossRef]
- Luo, F.; Deng, Y.; Angelov, B.; Angelova, A. Melatonin and the Nervous System: Nanomedicine Perspectives. Biomater. Sci. 2025, 13, 3421–3446. [Google Scholar] [CrossRef]
- Kikwai, L.; Kanikkannan, N.; Babu, R.J.; Singh, M. Effect of Vehicles on the Transdermal Delivery of Melatonin across Porcine Skin in Vitro. J. Control. Release 2002, 83, 307–311. [Google Scholar] [CrossRef]
- Akhter, M.H.; Rizwanullah, M.; Ahmad, J.; Amin, S.; Ahmad, M.Z.; Minhaj, M.A.; Mujtaba, M.A.; Ali, J. Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Res. 2021, 71, 122–137. [Google Scholar] [CrossRef]
- Molska, A.; Nyman, A.K.G.; Sofias, A.M.; Kristiansen, K.A.; Hak, S.; Widerøe, M. In Vitro and in Vivo Evaluation of Organic Solvent-Free Injectable Melatonin Nanoformulations. Eur. J. Pharm. Biopharm. 2020, 152, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Bseiso, E.A.; Abd El-Aal, S.A.; Nasr, M.; Sammour, O.A.; Abd El Gawad, N.A. Intranasally Administered Melatonin Core-Shell Polymeric Nanocapsules: A Promising Treatment Modality for Cerebral Ischemia. Life Sci. 2022, 306, 120797. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Liu, H.; Zhang, H.; Han, Y.; Yuan, J.; Wang, T.; Gao, Y.; Li, Z. Ameliorating Mitochondrial Dysfunction of Neurons by Biomimetic Targeting Nanoparticles Mediated Mitochondrial Biogenesis to Boost the Therapy of Parkinson’s Disease. Adv. Sci. 2023, 10, 2300758. [Google Scholar] [CrossRef]
- Biswal, L.; Sardoiwala, M.N.; Kushwaha, A.C.; Mukherjee, S.; Karmakar, S. Melatonin-Loaded Nanoparticles Augment Mitophagy to Retard Parkinson’s Disease. ACS Appl. Mater. Interfaces 2024, 16, 8417–8429. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Cheng, M.; Guo, J.; Cao, D.; Luo, J.; Wan, Y.; Fang, Y.; Jin, Y.; Xie, S.S.; Liu, J. Dual Functional Antioxidant and Butyrylcholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Design, Synthesis and Evaluation of Novel Melatonin-Alkylbenzylamine Hybrids. Bioorganic Med. Chem. 2023, 78, 117146. [Google Scholar] [CrossRef]
- Mohammad, Y.; Prentice, R.N.; Boyd, B.J.; Rizwan, S.B. Comparison of Cubosomes and Hexosomes for the Delivery of Phenytoin to the Brain. J. Colloid Interface Sci. 2022, 605, 146–154. [Google Scholar] [CrossRef]
Biological Role of MEL and Its Metabolites | Mechanism of Action | References | |
---|---|---|---|
Antioxidant | MEL and its metabolites neutralize a wide range of ROS and RNS, including superoxide anions, hydroxyl radicals, singlet oxygen, the oxoferryl radical of hemoglobin, peroxyl radicals, the carbonate radical, nitric oxide, and peroxynitrite anions. They also act against non-radical oxidants such as hydrogen peroxide and hypochlorous acid. Furthermore, MEL, AFMK, AMK, and c3-OHM are capable of scavenging the cationic radical 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). | [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,31,32,34,35,36,37,38,39] | |
MEL increases the production of important antioxidant enzymes in various tissues, such as GPx, CAT and SOD. MEL enhances the production of key antioxidant enzymes, including GPx, CAT, and SOD, across various tissues. | [43,44,45] | ||
MEL activates PKA, which in turn stimulates the transcription factor CREB. Activation of CREB leads to the upregulation of BDNF and Nrf2, further increasing the activity of SOD and GPx. | [14,41,46,47] | ||
MEL activates PI3K, which subsequently triggers the AKT and MAPK signaling pathways. Activation of the AKT pathway promotes SIRT3 activity, leading to increased glycolysis and reduced oxidative phosphorylation. Meanwhile, activation of the MAPK pathway contributes to the reduction of oxidative stress. | [46,49] | ||
MEL activates PLC, leading to an increase in intracellular calcium concentrations. Additionally, MEL binds to calmodulin, thereby modulating the synthesis of nitric oxide. | [49] | ||
Mitochondrial Function | MEL and its metabolites (AFMK, AMK) stimulate mitochondrial biogenesis (via SIRT1/PGC-1α pathway), enhance mitochondrial fusion and membrane potential, suppress excessive mitochondrial fission, and increase ATP production. | [61,63,66,68] | |
MEL preserves mitochondrial membrane potential (Δψm), inhibits the opening of the mitochondrial permeability transition pore (mPTP), and limits electron leakage, thereby reducing ROS formation and improving mitochondrial efficiency. | [1,3,60,62,66] | ||
MEL upregulates mitochondrial sirtuins (SIRT1, SIRT3) and activates the AMPK–PGC-1α–ERRα signaling pathway, leading to improved mitochondrial function and antioxidant defense | [1,5,61,63,68] | ||
MEL and its metabolites protect mitochondrial DNA from oxidative damage and preserve mitochondrial protein homeostasis, supporting genome stability and bioenergetics during stress and aging. | [61,68] | ||
MEL inhibits Drp1 and Fis1, key mediators of mitochondrial fission, maintaining a balance in mitochondrial dynamics. | [61,63] | ||
Metal Toxicity | MEL chelates free Fe(III), preventing its reduction to Fe(II) and thereby inhibiting the Fenton reaction and subsequent free radical generation. Additionally, MEL forms complexes with aluminum, cadmium, and lead. | [73] | |
MEL inhibits ferroptosis, a process that leads to cell membrane damage and disorganization. Mechanistically, MEL suppresses inflammatory responses and ferroptosis through activation of the MT2 and IL-33 pathways. | [74] | ||
MEL and 6-OHM have been shown to attenuate Fe2+-induced lipid peroxidation and necrotic cell damage in the rat hippocampus in vivo. A unilateral intrahippocampal infusion of a mixture containing 1 μL of iron citrate solution (Fe2+, 3.4 mmol/L) and 0.25 mL of either melatonin or 6-OHM at a dose of 10 mg/kg/day effectively alleviates Fe2-induced neurotoxicity in this brain region. | [75] | ||
Systemic administration of MEL (5 mg/kg body weight daily) resulted in a 40% reduction (p = 0.019) in neuronal death following intraventricular injection of 1.0 μL of 1.0 mM ferric ammonium citrate in rats. These findings indicate that pharmacological concentrations of melatonin effectively protect neurons against iron-induced damage. | [78] | ||
MEL and its metabolites (AFMK, AMK, c3-OHM) effectively inhibit oxidative stress induced by Cu(II)-ascorbate mixtures through chelation of Cu(II). Similarly, melatonin, AFMK, and 3-OHM can block the initial step of the Haber–Weiss reaction, thereby preventing hydroxyl radical formation via the Fenton reaction. | [85] | ||
MEL at a dose of 5 mg/kg body weight administered intraperitoneally exhibited neuroprotective effects in rats exposed to mercuric chloride. It significantly attenuated mercury-induced oxidative stress and structural brain damage caused by both low (2 mg/kg) and high (4 mg/kg) doses of mercuric chloride over a 60-day period. | [88] | ||
MEL at 4 or 20 mM protects against sodium arsenite (30 μM)-induced neurotoxicity in dorsal root ganglion explants. It prevents oxidative damage and arsenic-induced apoptosis by suppressing endoplasmic reticulum stress and enhancing mitochondrial function. MEL may represent a potential therapeutic option for arsenite-induced peripheral neuropathy. | [89] | ||
MEL at 1 mM, following a 2 h pre-incubation, protects cortical neurons exposed to various concentrations of NiCl2 for 12 h. MEL reduces reactive oxygen species production, improves mitochondrial function and cell viability, preserves mitochondrial membrane potential, and maintains mtDNA content in nickel-treated neurons. | [91] | ||
Preincubation with a 1 μM melatonin solution for 12 h effectively protected cells from cobalt (300 μM)-induced cytotoxicity and oxidative stress. Exposure of SH-SY5Y cells to cobalt significantly increased β-amyloid release; however, melatonin treatment attenuated these deleterious effects, highlighting its neuroprotective potential. | [92] | ||
MEL at a concentration of 1 mM provided significant neuroprotection against mercury-induced toxicity in SH-SY5Y neuroblastoma cells. A 12 h preincubation with this dose effectively attenuated oxidative stress, reduced β-amyloid release, and prevented tau hyperphosphorylation induced by 180 nM HgCl2. | [93] | ||
Neurogenesis | Alzheimer’s disease | MEL demonstrates strong neuroprotective effects in preclinical studies, particularly in inhibiting β-amyloid aggregation and tau phosphorylation. In clinical studies, lower doses (3–6 mg) improve sleep quality and may slow symptom progression; however, achieving neuroprotective effects is thought to require significantly higher doses (50–100 mg/day), which necessitates further clinical research in this area. | [102] |
MEL, through the upregulation of Bcl-2 expression and its antioxidant effects, may counteract neurodegeneration in Alzheimer’s disease, making it a promising candidate for further clinical investigation. These effects were observed at doses of 10 mg/kg/day administered orally in rats for 30 days—doses that translate to high equivalents in humans, falling within the neuroprotective rather than merely sleep-regulating range. | [119] | ||
Parkinson’s disease | MEL improves sleep and quality of life in patients with Parkinson’s disease in clinical studies at doses of 3–5 mg/day. These effects include reduced daytime sleepiness, shortened sleep latency, and increased total sleep time. | [164] | |
In animal models, neuroprotective effects of MEL have been observed through inhibition of ferroptosis and regulation of circadian rhythms. These actions require higher doses (e.g., 10 mg/kg), which may be relevant for future translational research. | [155] | ||
Huntington’s disease | MEL at a 10−5 M concentration prevents lipid peroxidation, total LDH activity, GSH depletion, and reduced antioxidant enzyme activity in N1E-115 cells incubated with 100 mM 3-nitropropionic acid. | [173] | |
Melatonin at a dose of 10 mg/kg administered intraperitoneally 30 min and 60 min after 3-nitropropionic acid injection reduces lipid peroxidation and oxidative protein damage in rats. | [175] | ||
MEL administered intraperitoneally at a dose of 30 mg/kg delays disease onset and mortality in a transgenic mouse model of HD (and extends survival by 21%). Its interaction with the mitochondrial receptor MT1 is crucial for neuroprotection. | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołodziejska, R.; Woźniak, A.; Bilski, R.; Wesołowski, R.; Kupczyk, D.; Porzych, M.; Wróblewska, W.; Pawluk, H. Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases. Antioxidants 2025, 14, 819. https://doi.org/10.3390/antiox14070819
Kołodziejska R, Woźniak A, Bilski R, Wesołowski R, Kupczyk D, Porzych M, Wróblewska W, Pawluk H. Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases. Antioxidants. 2025; 14(7):819. https://doi.org/10.3390/antiox14070819
Chicago/Turabian StyleKołodziejska, Renata, Alina Woźniak, Rafał Bilski, Roland Wesołowski, Daria Kupczyk, Marta Porzych, Weronika Wróblewska, and Hanna Pawluk. 2025. "Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases" Antioxidants 14, no. 7: 819. https://doi.org/10.3390/antiox14070819
APA StyleKołodziejska, R., Woźniak, A., Bilski, R., Wesołowski, R., Kupczyk, D., Porzych, M., Wróblewska, W., & Pawluk, H. (2025). Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases. Antioxidants, 14(7), 819. https://doi.org/10.3390/antiox14070819