Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (503)

Search Parameters:
Keywords = lignocellulosic source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2863 KiB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

19 pages, 1387 KiB  
Review
Enhancing Agricultural Sustainability by Improving the Efficiency of Lignocellulosic Biomass Utilization in the Ruminant Diet via Solid-State Fermentation with White-Rot Fungi: A Review
by Qi Yan, Osmond Datsomor, Wenhao Zhao, Wenjie Chen, Caixiang Wei, Deshuang Wei, Xin Gao, Chenghuan Qin, Qichao Gu, Caixia Zou and Bo Lin
Microorganisms 2025, 13(7), 1708; https://doi.org/10.3390/microorganisms13071708 - 21 Jul 2025
Viewed by 253
Abstract
Against the backdrop of the green circular economy, the exploration of reliable and sustainable applications of lignocellulosic biomass (LCBM) has emerged as a critical research frontier. The utilization of LCBM as a ruminant roughage source offers a promising strategy to address two pressing [...] Read more.
Against the backdrop of the green circular economy, the exploration of reliable and sustainable applications of lignocellulosic biomass (LCBM) has emerged as a critical research frontier. The utilization of LCBM as a ruminant roughage source offers a promising strategy to address two pressing issues: the “human-animal competition for food” dilemma and the environmental degradation resulting from improper LCBM disposal. However, the high degree of lignification in LCBM significantly restricts its utilization efficiency in ruminant diets. In recent years, microbial pretreatment has gained considerable attention as a viable approach to reduce lignification prior to LCBM application as ruminant feed. White-rot fungi (WRF) have emerged as particularly noteworthy among various microbial agents due to their environmentally benign characteristics and unique lignin degradation selectivity. WRF demonstrates remarkable efficacy in enzymatically breaking down the rigid lignocellulosic matrix (comprising lignin, cellulose, and hemicellulose) within LCBM cell walls, thereby reducing lignin content—a largely indigestible component for ruminants—while simultaneously enhancing the nutritional profile through increased protein availability and improved digestibility. Solid-state fermentation mediated by WRF enhances LCBM utilization rates and optimizes its nutritional value for ruminant consumption, thereby contributing to the advancement of sustainable livestock production, agroforestry systems, and global environmental conservation efforts. This review systematically examines recent technological advancements in WRF-mediated solid-state fermentation of LCBM, evaluates its outcomes of nutritional enhancement and animal utilization efficiency, and critically assesses current limitations and future prospects of this innovative approach within the framework of circular bioeconomy principles. Full article
Show Figures

Figure 1

16 pages, 3161 KiB  
Article
Screening, Characterization and Comparison of Endoglucanases/Xylanases from Thermophilic Fungi: A Thielavia terrestris Xylanase with High Activity-Stability Properties
by Shaohua Xu, Kexuan Ma, Zixiang Chen, Jian Zhao, Xin Song and Yuqi Qin
Int. J. Mol. Sci. 2025, 26(14), 6849; https://doi.org/10.3390/ijms26146849 - 17 Jul 2025
Viewed by 140
Abstract
Thermostable cellulases and xylanases have broad acceptance in food, feed, paper and pulp, and bioconversion of lignocellulosics. Thermophilic fungi serve as an excellent source of thermostable enzymes. This study characterized four endo-β-1,4-glucanases (two glycoside hydrolase (GH) family 5 and two GH7 members) and [...] Read more.
Thermostable cellulases and xylanases have broad acceptance in food, feed, paper and pulp, and bioconversion of lignocellulosics. Thermophilic fungi serve as an excellent source of thermostable enzymes. This study characterized four endo-β-1,4-glucanases (two glycoside hydrolase (GH) family 5 and two GH7 members) and four endo-β-1,4-xylanases (two GH10 and two GH11 members) from thermophilic fungus Thielavia terrestris, along with one GH10 endo-β-1,4-xylanase each from thermophilic fungus Chaetomium thermophilum and mesophilic fungus Chaetomium globosum. Comparative analysis was conducted against three previously reported GH10 endoxylanases: two thermostable enzymes from the thermophilic fungus Humicola insolens and thermophilic bacterium Halalkalibacterium halodurans, and one mesophilic enzyme from model fungus Neurospora crassa. The GH10 xylanase TtXyn10C (Thite_2118148; UniProt G2R8T7) from T. terrestris demonstrated high thermostability and activity, with an optimal temperature of 80–85 °C. It retained over 60% of its activity after 2 h at 70 °C, maintained approximately 30% activity after 15 min at 80 °C, and showed nearly complete stability following 1 min of exposure to 95 °C. TtXyn10C exhibited specific activity toward beechwood xylan (1130 ± 15 U/mg) that exceeded xylanases from H. insolens and H. halodurans while being comparable to N. crassa xylanase activity. Furthermore, TtXyn10C maintained stability across a pH range of 3–9 and resisted trypsin digestion, indicating its broad applicability. The study expands understanding of enzymes from thermophilic fungi. The discovery of the TtXyn10C offers a new model for investigating the high activity-stability trade-off and structure-activity relationships critical for industrial enzymes. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 269
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

6 pages, 657 KiB  
Proceeding Paper
Extraction of Lignin from Sawdust (Chlorophora excelsa)
by Abraham Thomas, Fadimatu N. Dabai, Benjamin O. Aderemi and Yahaya M. Sani
Chem. Proc. 2025, 17(1), 2; https://doi.org/10.3390/chemproc2025017002 - 16 Jul 2025
Viewed by 150
Abstract
Sawdust is an abundant source of lignocellulosic biomass, presenting a sustainable alternative to fossil fuels for producing aromatics, fuels, and chemicals. Lignin, a crucial component, can be depolymerized into valuable aromatics or used for polymer synthesis due to its multiple hydroxyl groups. This [...] Read more.
Sawdust is an abundant source of lignocellulosic biomass, presenting a sustainable alternative to fossil fuels for producing aromatics, fuels, and chemicals. Lignin, a crucial component, can be depolymerized into valuable aromatics or used for polymer synthesis due to its multiple hydroxyl groups. This study focuses on extracting lignin from Chlorophora excelsa sawdust via organosolv technology. The characterization of sawdust revealed 41.15% cellulose, 28.63% hemicellulose, and 26.13% lignin. The extraction process involved treating sawdust at varying temperatures (100–200 °C) with an ethanol–water solution and sulfuric acid. The optimal yield of 49.81% lignin occurred at 160 °C, confirming the chemical properties and composition of the extracted lignin. Full article
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 575
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 5761 KiB  
Article
Estimation of Several Wood Biomass Calorific Values from Their Proximate Analysis Based on Artificial Neural Networks
by I Ketut Gary Devara, Windy Ayu Lestari, Uma Maheshwera Reddy Paturi, Jun Hong Park and Nagireddy Gari Subba Reddy
Materials 2025, 18(14), 3264; https://doi.org/10.3390/ma18143264 - 10 Jul 2025
Viewed by 245
Abstract
The accurate estimation of the higher heating value (HHV) of wood biomass is essential to evaluating the latter’s energy potential as a renewable energy material. This study proposes an Artificial Neural Network (ANN) model to predict the HHV by using proximate analysis parameters—moisture, [...] Read more.
The accurate estimation of the higher heating value (HHV) of wood biomass is essential to evaluating the latter’s energy potential as a renewable energy material. This study proposes an Artificial Neural Network (ANN) model to predict the HHV by using proximate analysis parameters—moisture, volatile matter, ash, and fixed carbon. A dataset of 252 samples (177 for training and 75 for testing), sourced from the Phyllis database, which compiles the physicochemical properties of lignocellulosic biomass and related feedstocks, was used for model development. Various ANN architectures were explored, including one to three hidden layers with 1 to 20 neurons per layer. The best performance was achieved with the 4–11–11–11–1 architecture trained using the backpropagation algorithm, yielding an adjusted R2 of 0.967 with low mean absolute error (MAE) and root mean squared error (RMSE) values. A graphical user interface (GUI) was developed for real-time HHV prediction across diverse wood types. Furthermore, the model’s performance was benchmarked against 26 existing empirical and statistical models, and it outperformed them in terms of accuracy and generalization. This ANN-based tool offers a robust and accessible solution for carbon utilization strategies and the development of new energy storage material. Full article
(This article belongs to the Special Issue Low-Carbon Technology and Green Development Forum)
Show Figures

Figure 1

21 pages, 1321 KiB  
Review
Exploration of Multi-Source Lignocellulose-Degrading Microbial Resources and Bioaugmentation Strategies: Implications for Rumen Efficiency
by Xiaokang Lv, Zhanhong Qiao, Chao Chen, Jinling Hua and Chuanshe Zhou
Animals 2025, 15(13), 1920; https://doi.org/10.3390/ani15131920 - 29 Jun 2025
Viewed by 246
Abstract
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive [...] Read more.
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive tracts, forest soil, and microbial populations in papermaking processes. The rumen of ruminants harbors a diverse range of microbial species, making it a promising source of lignocellulose-degrading microorganisms. Exploring alternative systems like insect intestines and forest soil is essential for future research. Current studies primarily rely on traditional microbial isolation techniques to identify lignocellulose-degrading strains, underscoring the necessity to transition to utilizing microbial culturomics and genome-editing technologies for discovering and manipulating cellulose-degrading microbes. This review provides an overview of lignocellulose-degrading microbial communities from diverse environments, encompassing bacterial and fungal populations. It also delves into the use of metagenomic, metatranscriptomic, and metaproteomic approaches to pinpoint highly efficient cellulase genes, along with the application of genome-editing tools for engineering lignocellulose-degrading microorganisms. The primary objective of this review is to offer insights for further exploration of potential lignocellulose-degrading microbial resources and high-performance cellulase genes to enhance roughage utilization in ruminant rumen ecosystems. Full article
Show Figures

Figure 1

20 pages, 2613 KiB  
Review
A Systematic Review of Mechanical Pretreatment Techniques of Wood Biomass for Bioenergy
by Giorgia Di Domenico, Elisa Cioccolo, Leonardo Bianchini, Rachele Venanzi, Andrea Colantoni, Rodolfo Picchio, Luca Cozzolino and Valerio Di Stefano
Energies 2025, 18(13), 3294; https://doi.org/10.3390/en18133294 - 24 Jun 2025
Viewed by 343
Abstract
Lignocellulosic biomass is an exciting renewable resource for producing sustainable biofuels, thanks to its abundance and low environmental impact. However, its intricate structure makes it tough for enzymes to break it down effectively. Only efficient pretreatment methods can solve these problems. Among these, [...] Read more.
Lignocellulosic biomass is an exciting renewable resource for producing sustainable biofuels, thanks to its abundance and low environmental impact. However, its intricate structure makes it tough for enzymes to break it down effectively. Only efficient pretreatment methods can solve these problems. Among these, mechanical pretreatment methods are particularly good for industry because they are easy to use, do not require chemicals, and make it easier to achieve biomass. This systematic review adhered to the PRISMA protocols and used text analysis with VOSviewer to examine 33 academic articles published between 2005 and 2025. It highlighted two main types of mechanical pretreatment: size reduction (which includes grinding, crushing, and shredding) and densification (like pelletizing and briquetting). The results show that mechanical pretreatment can significantly boost biofuel yields by increasing surface area, lowering crystallinity, and allowing better enzyme penetration. Energy consumption remains a major hurdle for the overall sustainability of biomass conversion processes. This research provides a comprehensive review of current mechanical techniques, detailing their operational settings and performance metrics while also offering suggestions for optimizing biomass conversion processes. By promoting the use of mechanical pretreatment in biofuel production systems, the findings align with the principles of a circular economy and contribute to the development of greener energy sources. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

15 pages, 3493 KiB  
Article
A Pathway for Sugar Production from Agricultural Waste Catalyzed by Sulfonated Magnetic Carbon Microspheres
by Maoru Xu, Yanfeng Duan, Hongfu Li, Shoulin He, Xingyu Zi, Yanting Zhao, Cheng Jiao and Xiaoyun Li
Molecules 2025, 30(13), 2675; https://doi.org/10.3390/molecules30132675 - 20 Jun 2025
Viewed by 256
Abstract
Lignocellulose is an important renewable biomass resource. However, at present, there is a lack of efficient and environmentally friendly catalytic systems that can selectively convert lignocellulose components into high-value sugars, and the value realization of agricultural waste (such as straw) remains challenging. Carbon-based [...] Read more.
Lignocellulose is an important renewable biomass resource. However, at present, there is a lack of efficient and environmentally friendly catalytic systems that can selectively convert lignocellulose components into high-value sugars, and the value realization of agricultural waste (such as straw) remains challenging. Carbon-based solid acids are used in the valorization of biomass due to their simple preparation and excellent catalytic performance. In this study, the magnetic carbon microspheres catalyst was prepared using concentrated sulfuric acid and hydroxyethyl sulfonic acid as sulfonating agents. Two sulfonation catalysts were applied to the hydrolysis of typical agricultural waste (rice straw). The performance of catalyst conversion to reducing sugar was compared, and the glucose yield was lower than 30%. The sulfonation catalyst of hydroxyethyl sulfonic acid obtained a higher yield of pentose (76.67%) than that of concentrated sulfuric acid (74.25%) in 110 min. The optimal reaction conditions were found: substrate was 0.04 g straw, catalyst was 0.04 g, H2O/γ-valerolactone ratio was 8:2 in the solvent, and the reaction time was 110 min at 140 °C. Under these conditions, the sulfonation properties of hydroxyethyl sulfonic acid as a green sulfonating agent are similar to those of concentrated sulfuric acid. Its excellent catalytic performance is attributed to the medium B/L acid density ratio on the catalyst surface. In addition, the prepared catalyst can be effectively separated from the reaction residue in the catalytic system. This work provides a green catalytic system for the high-value utilization of agricultural waste from renewable carbon sources. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

23 pages, 10568 KiB  
Article
Bio-Based Flame-Retardant Systems for Polymers Obtained via Michael 1,4-Addition
by Kamila Salasinska, Mateusz Barczewski, Mikelis Kirpluks, Ralfs Pomilovskis, Paweł Sulima, Sławomir Michałowski, Patryk Mietliński, Jerzy Andrzej Przyborowski and Anna Boczkowska
Molecules 2025, 30(12), 2556; https://doi.org/10.3390/molecules30122556 - 11 Jun 2025
Viewed by 615
Abstract
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) [...] Read more.
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) and modified with developed intumescent flame retardant systems (FRs), in which lignocellulose components, such as sunflower husk (SH) and peanut shells (PS), replaced a part of the synthetic ones. The thermal and thermomechanical properties of the rP, with 20 wt.% each from six FRs, were determined by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Moreover, the flammability and evolved gas were studied with pyrolysis combustion flow calorimetry (PCFC) and thermogravimetric analysis connected with Fourier transform infrared spectroscopy tests (TGA/FT-IR). The effects were compared to those achieved for unmodified rP and a polymer with a commercially available intumescent flame retardant (IFR). The notable improvement, especially in terms of the heat release rate and heat release capacity, indicates that the system with melamine phosphate (MP) and peanut shells (PS) can be used to decrease the flammability of new polymers. An extensive analysis of the composition and geometry of the ground shells and husk particles preceded the research. Full article
Show Figures

Graphical abstract

15 pages, 4246 KiB  
Article
Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca2+ Coordination
by Yadong Zhao, Chengcheng Peng, Zheng Yang, Zhengjie Liu, Heng Yen Khong, Soottawat Benjakul, Bin Zhang and Ruizhi Yang
Gels 2025, 11(6), 408; https://doi.org/10.3390/gels11060408 - 29 May 2025
Viewed by 623
Abstract
Cellulose-based aerogel is an environmentally friendly multifunctional material that is renewable, biodegradable, and easily surface-modified. However, due to its flammability, cellulose serves as an ignition source in fire incidents, leading to the combustion of building materials and resulting in significant economic losses and [...] Read more.
Cellulose-based aerogel is an environmentally friendly multifunctional material that is renewable, biodegradable, and easily surface-modified. However, due to its flammability, cellulose serves as an ignition source in fire incidents, leading to the combustion of building materials and resulting in significant economic losses and safety risks. Consequently, it is essential to develop cellulose-based building materials with flame-retardant properties. Initially, a porous cellulose-based flame-retardant aerogel was successfully synthesized through freeze-drying, utilizing lignocellulose as the raw material. Subsequently, phosphorylation of cellulose was coupled with Ca2+ cross-linking via self-assembly and surface deposition effects to enhance its flame-retardant properties. Finally, the synthesized materials were characterized using infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, mechanical compression testing, and scanning electron microscopy. The aerogel of the phosphorylated cellulose nanofibrils cross-linked via 1.5% CaCl2 exhibited the most effective flame-retardant properties and the best mechanical characteristics, achieving a UL-94 test rating of V-0 and a maximum flame-retardant rate of 90.6%. Additionally, its compressive strength and elastic modulus were recorded at 0.39 and 0.98 MPa, respectively. The preparation process is environmentally friendly, yielding products that demonstrate significant flame-retardant effects and are non-toxic. This product is anticipated to replace polymer-based commercial aerogel materials, representing a sustainable solution to the issue of “white pollution”. Full article
Show Figures

Graphical abstract

12 pages, 1467 KiB  
Article
Conversion of Cellulose to γ-Valerolactone over Raney Ni Catalyst Using H2O as a Hydrogen Source
by Yalin Guo, Zhuang Ma, Binbin Jin, Limin Ma and Guodong Yao
Catalysts 2025, 15(6), 530; https://doi.org/10.3390/catal15060530 - 27 May 2025
Viewed by 529
Abstract
The sustainable valorization of lignocellulosic biomass into high-value platform chemicals presents a crucial pathway for reducing reliance on fossil resources. Gamma (γ)-valerolactone (GVL) has gained recognition as a versatile bio-derived compound with broad applications in renewable energy systems and green chemical synthesis. While [...] Read more.
The sustainable valorization of lignocellulosic biomass into high-value platform chemicals presents a crucial pathway for reducing reliance on fossil resources. Gamma (γ)-valerolactone (GVL) has gained recognition as a versatile bio-derived compound with broad applications in renewable energy systems and green chemical synthesis. While conventional GVL production strategies from carbohydrate biomass typically depend on noble metal catalysts paired with high-pressure hydrogen gas, these approaches face substantial technical barriers including catalyst costs, hydrogen storage requirements, and operational safety concerns in large-scale applications. This work develops an innovative catalytic system utilizing earth-abundant iron for in situ hydrogen generation through water splitting, integrated with Raney Ni as the hydrogenation catalyst. The designed two-stage process enables direct conversion of cellulose—first through acid hydrolysis to levulinic acid (LA) followed by catalytic hydrogenation to GVL without intermediate purification. Through systematic parameter optimization, a remarkable 61.9% overall GVL yield from cellulose feedstock was achieved. Furthermore, the methodology’s versatility was demonstrated through wheat straw conversion experiments, yielding 24.6% GVL. This integrated methodology explores a technically feasible pathway for direct cellulose-to-GVL conversion utilizing abundant water as the hydrogen source, effectively overcoming the critical limitations associated with conventional hydrogenation technologies regarding hydrogen infrastructure and process safety. Full article
(This article belongs to the Collection Catalytic Conversion of Biomass to Bioenergy)
Show Figures

Graphical abstract

15 pages, 1619 KiB  
Article
Production of Lactate by Metabolically Engineered Scheffersomyces stipitis
by Angela Matanović, Nenad Marđetko, Ana Slišković, Blanka Didak, Karla Hanousek Čiča, Bojan Žunar, Anamarija Štafa, Božidar Šantek, Marina Svetec Miklenić and Ivan-Krešimir Svetec
J. Fungi 2025, 11(6), 413; https://doi.org/10.3390/jof11060413 - 27 May 2025
Viewed by 704
Abstract
Lactate is a valuable compound used in food, chemical, and pharmaceutical industries. High-value, optically pure L- or D-lactate can be synthesized microbially via specific dehydrogenases. The non-conventional yeast Scheffersomyces stipitis, which is known for fermenting both hexoses and pentoses, is a promising [...] Read more.
Lactate is a valuable compound used in food, chemical, and pharmaceutical industries. High-value, optically pure L- or D-lactate can be synthesized microbially via specific dehydrogenases. The non-conventional yeast Scheffersomyces stipitis, which is known for fermenting both hexoses and pentoses, is a promising host for biochemical production from lignocellulosic biomass but does not naturally produce lactate. In this study, we engineered S. stipitis to produce lactate by expressing two codon-optimized bacterial L-lactate dehydrogenase genes under the control of strong native promoters. The engineered strain produced 7.42 g/L (0.46 g/g yield) and 11.67 g/L (0.58 g/g yield) lactate from glucose and xylose, respectively. The highest titer, 19.27 g/L (0.52 g/g yield), was achieved from 50 g/L xylose after 74 h. Increasing the fermentation temperature from 28 °C to 32 °C improved yield by 30%, while a neutralizing agent further enhanced yield by 25% and prevented lactate degradation following carbon depletion. Although the wildtype strain produced a significant amount of ethanol on both glucose and xylose, the engineered strain produced ethanol as a side product exclusively on glucose and not on xylose. This phenomenon could be advantageous for biotechnological applications and may reflect shifts in gene expression depending on the carbon source or even on the presence of lactate. Full article
(This article belongs to the Special Issue Yeasts Genetics and Biotechnology)
Show Figures

Figure 1

19 pages, 1406 KiB  
Review
Lignin-Based Thin Films in Emerging Organic Transistor Devices: Challenges, Strategies, and Applications
by Laura Tronci and Assunta Marrocchi
Coatings 2025, 15(6), 642; https://doi.org/10.3390/coatings15060642 - 26 May 2025
Viewed by 632
Abstract
Lignocellulosic biomass, a rich and underutilized source of lignin, presents considerable potential for advancing sustainable electronic materials. This review explores the lignin’s role in organic transistor-based devices, considering its integration into various components. It highlights lignin’s structural and chemical characteristics that influence its [...] Read more.
Lignocellulosic biomass, a rich and underutilized source of lignin, presents considerable potential for advancing sustainable electronic materials. This review explores the lignin’s role in organic transistor-based devices, considering its integration into various components. It highlights lignin’s structural and chemical characteristics that influence its performance in such devices, along with key factors affecting its processability, interfacial behavior, and compatibility with existing organic electronic materials. By outlining current research directions and emerging applications, this work aims to provide a foundation for further exploration of lignin-based thin films in next-generation, green organic electronics. Full article
(This article belongs to the Special Issue Semiconductor Thin Films and Coatings)
Show Figures

Graphical abstract

Back to TopTop