Conversion of Cellulose to γ-Valerolactone over Raney Ni Catalyst Using H2O as a Hydrogen Source
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conversion of Cellulose to GVL by One-Step Process
2.2. Conversion of Cellulose to GVL by Two-Step Process
2.2.1. Hydrolysis of Cellulose to LA
2.2.2. Hydrogenation of LA to GVL Without Additional Catalyst
2.2.3. Hydrogenation of LA to GVL with Catalyst
2.3. Proposed Pathway of GVL Synthesis from Cellulose
2.4. Conversion of Wheat Straw to GVL by Two-Step Process
3. Experimental Section
3.1. Materials
3.2. Experimental Procedure
3.3. Analysis Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Yan, K.; Rukkijakan, T.; Liang, J.; Liu, Y.; Wang, Z.; Nie, H.; Muangmeesri, S.; Castiella-Ona, G.; Pan, X.; et al. Selective lignin arylation for biomass fractionation and benign bisphenols. Nature 2024, 630, 381. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2023, 8, 10–114. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, J.; Shan, R.; Yuan, H.; Chen, Y. Advances in thermochemical valorization of biomass towards carbon neutrality. Resour. Conserv. Recycl. 2025, 212, 107905. [Google Scholar] [CrossRef]
- Zhang, B.; Biswal, B.K.; Zhang, J.; Balasubramanian, R. Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chem. Rev. 2023, 123, 7193–7294. [Google Scholar] [CrossRef]
- Cormos, C.-C. Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis. Energy 2023, 270, 126926. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- Horváth, I.T.; Mehdi, H.; Fabos, V.; Boda, L.; Mika, L.T. gamma-Valerolactone - a sustainable liquid for energy and carbon-based chemicals. Green Chem. 2008, 10, 238–242. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Chen, J.; Chen, L. Hydrogenation of levulinic acid into γ-valerolactone over ruthenium catalysts supported on metal–organic frameworks in aqueous medium. Catal. Lett. 2016, 146, 2041–2052. [Google Scholar] [CrossRef]
- Chia, M.; Dumesic, J.A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to gamma-valerolactone over metal oxide catalysts. Chem. Commun. 2011, 47, 12233–12235. [Google Scholar] [CrossRef]
- Sen, S.M.; Henao, C.A.; Braden, D.J.; Dumesic, J.A.; Maravelias, C.T. Catalytic conversion of lignocellulosic biomass to fuels: Process development and technoeconomic evaluation. Chem. Eng. Sci. 2012, 67, 57–67. [Google Scholar]
- Sun, W.; Li, H.; Wang, X.; Liu, A. Cascade upgrading of biomass-derived furfural to γ-valerolactone over Zr/Hf-based catalysts. Front. Chem. 2022, 10, 863674. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Y.; Zhang, X.; Liu, J.; Zhang, Q.; Ma, L. Catalytic production of long-chain hydrocarbons suitable for aviation turbine fuel from biomass-derived levulinic acid and furfural. Fuel 2023, 334, 126665. [Google Scholar] [CrossRef]
- Figueredo, K.G.M.; Martinez, F.A.; Segobia, D.J.; Bertero, N.M. Valeric Biofuels from Biomass-Derived γ-Valerolactone: A Critical Overview of Production Processes. Chempluschem 2023, 88, e202300381. [Google Scholar] [CrossRef]
- Pothu, R.; Gundeboyina, R.; Boddula, R.; Perugopu, V.; Ma, J. Recent advances in biomass-derived platform chemicals to valeric acid synthesis. New J. Chem. 2022, 46, 5907–5921. [Google Scholar] [CrossRef]
- Marckwordt, A.; El Ouahabi, F.; Amani, H.; Tin, S.; Kalevaru, N.V.; Kamer, P.C.J.; Wohlrab, S.; de Vries, J.G. Nylon intermediates from bio-based levulinic acid. Angew. Chem.-Int. Ed. 2019, 58, 3486–3490. [Google Scholar] [CrossRef]
- Lang, M.; Li, H. Sustainable routes for the synthesis of renewable adipic acid from biomass derivatives. Chemsuschem 2022, 15, e202101531. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Farooq, U.; Bary, G.; Azim, M.M.; Zhao, X. Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: Progress, challenges, and prospects. Green Chem. 2021, 23, 9198–9238. [Google Scholar] [CrossRef]
- Chu, D.; Ma, J.; Liu, Q.; Fu, J.; Yin, H. Effects of zeolite porosity and acidity on catalytic conversion of carbohydrates to bio-based chemicals: A review. Catal. Sci. Technol. 2024, 14, 6980–7001. [Google Scholar] [CrossRef]
- Braca, G.; Galletti, A.R.; Sbrana, G. Anionic ruthenium iodocarbonyl complexes as selective dehydroxylation catalysts in aqueous solution. J. Organomet. Chem. 1991, 417, 41–49. [Google Scholar] [CrossRef]
- Deng, L.; Li, J.; Lai, D.; Fu, Y.; Guo, Q.X. Catalytic conversion of biomass-derived carbohydrates into gamma-valerolactone without using an external H2 supply. Angew. Chem. Int. Ed. 2009, 48, 6529–6532. [Google Scholar] [CrossRef]
- Upare, P.P.; Lee, J.M.; Hwang, D.W.; Halligudi, S.B.; Hwang, Y.K.; Chang, J.-S. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts. J. Ind. Eng. Chem. 2011, 17, 287–292. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, J.B.; Li, S.M.; Yin, J.M.; Sun, X.D.; Guo, X.W.; Song, C.S.; Zhou, J.X. Hydrogenation of levulinic acid into γ-valerolactone over in situ reduced CuAg bimetallic catalyst: Strategy and mechanism of preventing Cu leaching. Appl. Catal. B Environ. 2018, 232, 1–10. [Google Scholar] [CrossRef]
- Jin, F.; Zhou, Z.; Moriya, T.; Kishida, H.; Higashijima, H.; Enomoto, H. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ. Sci. Technol. 2005, 39, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Heeres, H.; Handana, R.; Chunai, D.; Rasrendra, C.B.; Girisuta, B.; Heeres, H.J. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts. Green Chem. 2009, 11, 1247–1255. [Google Scholar] [CrossRef]
- Cai, B.; Zhou, X.C.; Miao, Y.C.; Luo, J.Y.; Pan, H.; Huang, Y.B. Enhanced catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a robust Cu–Ni bimetallic catalyst. ACS Sustain. Chem. Eng. 2016, 5, 1322–1331. [Google Scholar] [CrossRef]
- Jin, F.M.; Gao, Y.; Jin, Y.; Zhang, Y.; Cao, J.; Wei, Z.; Smith, R.L., Jr. High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. Energy Environ. Sci. 2011, 4, 881–884. [Google Scholar] [CrossRef]
- Jin, F.M.; Zeng, X.; Liu, J.; Jin, Y.; Wang, L.; Zhong, H.; Yao, G.; Huo, Z.B. Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc. Sci. Rep. 2014, 4, 4503. [Google Scholar] [CrossRef]
- Lyu, L.; Zeng, X.; Yun, J.; Wei, F.; Jin, F. No Catalyst Addition and highly efficient dissociation of H2O for the reduction of CO2 to formic acid with Mn. Environ. Sci. Technol. 2014, 48, 6003–6009. [Google Scholar] [CrossRef]
- Zhong, H.; Li, Q.; Liu, J.; Yao, G.; Wang, J.; Zeng, X.; Huo, Z.; Jin, F. New method for highly efficient conversion of biomass-derived levulinic acid to gamma-valerolactone in water without precious metal catalysts. ACS Sustain. Chem. Eng. 2017, 5, 6517–6523. [Google Scholar] [CrossRef]
- Llatance-Guevara, L.; Flores, N.E.; Barrionuevo, G.O.; Casillas, J.L.M. Waste biomass selective and sustainable photooxidation to high-added-value products: A review. Catalysts 2022, 12, 1091. [Google Scholar] [CrossRef]
- Ren, H.F.; Zhu, D.; Li, J.F.; Liu, C.L.; Yang, R.Z.; Dong, W.S. One-pot conversion of carbohydrates into gamma-valerolactone under the coordination of heteropoly acid based ionic liquid and Ru/ZrO2 in water media. J. Chem. Technol. Biotechnol. 2019, 94, 2355–2363. [Google Scholar] [CrossRef]
- Ding, D.; Wang, J.; Xi, J.; Liu, X.; Lu, G.; Wang, Y. High-yield production of levulinic acid from cellulose and its upgrading to gamma-valerolactone. Green Chem. 2014, 16, 3846–3853. [Google Scholar] [CrossRef]
- De Vos, Y.; Jacobs, M.; Van Der Voort, P.; Van Driessche, I.; Snijkers, F.; Verberckmoes, A. Development of stable oxygen carrier materials for chemical looping processes—A review. Catalysts 2020, 10, 926. [Google Scholar] [CrossRef]
- Jin, F.; Enomoto, H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: Chemistry of acid/base-catalysed and oxidation reactions. Energy Environ. Sci. 2011, 4, 382–397. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Ma, Z.; Jin, B.; Ma, L.; Yao, G. Conversion of Cellulose to γ-Valerolactone over Raney Ni Catalyst Using H2O as a Hydrogen Source. Catalysts 2025, 15, 530. https://doi.org/10.3390/catal15060530
Guo Y, Ma Z, Jin B, Ma L, Yao G. Conversion of Cellulose to γ-Valerolactone over Raney Ni Catalyst Using H2O as a Hydrogen Source. Catalysts. 2025; 15(6):530. https://doi.org/10.3390/catal15060530
Chicago/Turabian StyleGuo, Yalin, Zhuang Ma, Binbin Jin, Limin Ma, and Guodong Yao. 2025. "Conversion of Cellulose to γ-Valerolactone over Raney Ni Catalyst Using H2O as a Hydrogen Source" Catalysts 15, no. 6: 530. https://doi.org/10.3390/catal15060530
APA StyleGuo, Y., Ma, Z., Jin, B., Ma, L., & Yao, G. (2025). Conversion of Cellulose to γ-Valerolactone over Raney Ni Catalyst Using H2O as a Hydrogen Source. Catalysts, 15(6), 530. https://doi.org/10.3390/catal15060530