Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca2+ Coordination
Abstract
1. Introduction
2. Results and Discussion
2.1. Dimensions and Density of the Samples
2.2. FTIR Analysis
2.3. Crystalline Structure
2.4. Morphological Observation
2.5. Flame-Retardant Performance
2.6. Mechanical Property Analysis
2.7. Thermal Stability
2.8. Mechanism Analysis
3. Conclusions
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Preparation of Cellulose Nanofibers (CNFs) and Phosphorylated Cellulose Nanofibers (PCNFs)
4.3. Preparation of Porous Flame-Retardant Aerogel Materials
4.4. Density Test
4.5. Flame-Retardant Test
4.6. Fourier Transform Infrared (FTIR)
4.7. X-Ray Diffraction (XRD)
4.8. Thermogravimetric Analysis (TGA)
4.9. Compression Test
4.10. Scanning Electron Microscopy (SEM)
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bendaoud, A.; Kehrbusch, R.; Baranov, A.; Duchemin, B.; Maigret, J.E.; Falourd, X.; Staiger, M.P.; Cathala, B.; Lourdin, D.; Leroy, E. Nanostructured cellulose-xyloglucan blends via ionic liquid/water processing. Carbohydr. Polym. 2017, 168, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, C.; Rosswurm, K.; Yao, T.; Janaswamy, S. A facile route to prepare cellulose-based films. Carbohydr. Polym. 2016, 149, 274–281. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, H.; Wang, Y. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef] [PubMed]
- Mohan, T.; Kargl, R.; Tradt, K.E.; Kulterer, M.R.; Braćić, M.; Hribernik, S.; Stana-Kleinschek, K.; Ribitsch, V. Antifouling coating of cellulose acetate thin films with polysaccharide multilayers. Carbohydr. Polym. 2015, 116, 149–158. [Google Scholar] [CrossRef]
- Shen, X.; Shamshina, J.L.; Berton, P.; Gurau, G.; Rogers, R.D. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications. Green Chem. 2016, 18, 53–75. [Google Scholar] [CrossRef]
- Ghamari, M.; Sun, D.Y.; Dai, Y.Q.; See, C.H.; Yu, H.N.; Edirisinghe, M.; Sundaram, S. Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review. Int. J. Biol. Macromol. 2024, 280, 136130. [Google Scholar] [CrossRef]
- Kondo, T. The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 717–723. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef]
- Ren, X.; Long, S.; Chen, X.; Wang, X.; Yang, X.; Yu, H. Accessible preparation of a novel nitrogen-phosphorus synergetic nanocellulose-based flame retardant with excellent char-forming ability for enhancing the anti-melting droplet property of PA66. Int. J. Biol. Macromol. 2025, 289, 138951. [Google Scholar] [CrossRef]
- Shi, R.; Tan, L.; Zong, L.; Ji, Q.; Li, X.; Zhang, K.; Cheng, L.; Xia, Y. Influence of Na+ and Ca2+ on flame retardancy; thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydr. Polym. 2017, 157, 1594–1603. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Y.; Han, Y.; Guo, Q.; Zhang, X.; Lu, C. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites. Carbohydr. Polym. 2017, 177, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Ali, S.W. Sustainable fire retardancy of textiles using bio-macromolecules. Polym. Degrad. Stab. 2016, 133, 47–64. [Google Scholar] [CrossRef]
- Dhumal, P.; Shinde, T.; Lokhande, K.; Bondarde, M.; Bhakare, M.; Some, S. Green and Sustainable approach towards synthesis of Polymeric composite for transparent cellulosic flame retardant. Colloids Surf. A Physicochem. Eng. Asp. 2024, 696, 134334. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Song, W.; Liu, Y. Alkaline amino acid modification based on biological phytic acid for preparing flame-retardant and antibacterial cellulose-based fabrics. Int. J. Biol. Macromol. 2024, 276, 134002. [Google Scholar] [CrossRef]
- Ye, J.; Wang, J.; Li, J.; Li, Y.; Chen, P.; Wang, J.; Gao, Y.; Xu, Q.; Wu, Q.; Li, Q. P/N/S synergistic lignin nanoparticles enhance the excellent flame retardancy, flexibility, UV resistance, and full biodegradability holocellulose nanocomposite films. Carbohyd. Polym. 2025, 357, 123483. [Google Scholar] [CrossRef]
- Zhao, Y.; Moser, C.; Lindström, M.E.; Henriksson, G.; Li, J. Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation–Structure–Film Performance Interrelation. ACS Appl. Mater. Interfaces 2017, 9, 13508–13519. [Google Scholar] [CrossRef]
- Li, Y.; Grishkewich, N.; Liu, L.; Wang, C.; Tam, K.C.; Liu, S.; Mao, Z.; Sui, X. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem. Eng. J. 2019, 366, 531–538. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, L.; Zhao, L.; Dong, C.; Liu, Y.; Zhang, K.; Liimatainen, H. Fabrication of flame-retardant and water-resistant nanopapers through electrostatic complexation of phosphorylated cellulose nanofibers and chitin nanocrystals. J. Colloid Interface Sci. 2024, 676, 61–71. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Y.; Jiang, J.; Wang, L.; Song, M.; Bi, R.; Zhu, P.; Jiang, F. Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Ice-Templating Assembly. Adv. Funct. Mater. 2021, 31, 2106269. [Google Scholar] [CrossRef]
- Chen, S.; Ren, N.; Cui, M.; Huang, R.; Qi, W.; He, Z.; Su, R. Heat Soaking Pretreatment for Greener Production of Phosphorylated Cellulose Nanofibrils with Higher Charge Density. ACS Sustain. Chem. Eng. 2022, 10, 8876–8884. [Google Scholar] [CrossRef]
- Chen, K.; Arai, Y. X-ray Diffraction and X-ray Absorption Near-Edge Structure Spectroscopic Investigation of Hydroxyapatite Formation under Slightly Acidic and Neutral pH Conditions. ACS Earth Space Chem. 2019, 3, 2266–2275. [Google Scholar] [CrossRef]
- Cao, K.L.A.; Rahmatika, A.M.; Kitamoto, Y.; Nguyen, M.T.T.; Ogi, T. Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J. Colloid Interface Sci. 2021, 589, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Weng, Y.; Catchmark, J.M. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 2020, 27, 5563–5579. [Google Scholar] [CrossRef]
- Yang, R.; Deng, H.; Bao, L.; Tian, F.; Li, J.; Zhao, L.; Liu, L.; Zhao, Y. Non-covalent binding of cyanidin-3-O-glucoside onto peanut oil body for improved stability: Molecular interactions and properties. Food Chem. 2025, 484, 144384. [Google Scholar] [CrossRef]
- Meng, L.; Liu, H.; Yu, L.; Duan, Q.; Chen, L.; Liu, F.; Shao, Z.; Shi, K.; Lin, X. How water acting as both blowing agent and plasticizer affect on starch-based foam. Ind. Crops Prod. 2019, 134, 43–49. [Google Scholar] [CrossRef]
- Lujan, L.; Chiacchiarelli, L.M.; Martini, R.E.; Goñi, M.L. Polylactic acid coating of cellulose/chitosan insulating foams as a strategy for enhancing mechanical properties and hydrophobicity. Prog. Org. Coat. 2024, 189, 108288. [Google Scholar] [CrossRef]
- Khalaf, Y.; Sonnier, R.; Brosse, N.; El Hage, R. An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic Miscanthus x giganteus Particles and Their Application in Flame-Retardant Panels. Polymers 2025, 17, 241. [Google Scholar] [CrossRef]
- Huang, T.; Ning, K.; Zhao, B. Two birds, one stone: Enhancement of flame retardancy and antibacterial property of viscose fabric using an aminoazole-based cyclotriphosphazene. Int. J. Biol. Macromol. 2023, 253, 126875. [Google Scholar] [CrossRef]
- Ghanadpour, M.; Wicklein, B.; Carosio, F.; Wågberg, L. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale 2018, 10, 4085–4095. [Google Scholar] [CrossRef]
- Yue, X.; Deng, W.; Zhou, Z.; Xu, Y.; He, J.; Wang, Z. Reinforced and Flame Retarded Cellulose Nanofibril/Sodium Alginate Compound Aerogel Fabricated via Boric Acid/Ca2+ Double Cross-Linking. J. Polym. Environ. 2023, 31, 1038–1050. [Google Scholar] [CrossRef]
- Gu, Y.; Shen, Y.; Wu, T.; Hu, F.; Wang, T. Comprehensive enhancement of flame retardant starch/cellulose/diatomite composite foams via metal-organic coordination. Int. J. Biol. Macromol. 2024, 266, 131313. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, Y.; Park, J.; Rie, D. A Study on the Evaluation of Thermal Insulation Performance of Cellulose-Based Silica Aerogel Composite Building Materials. Polymers 2024, 16, 1848. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, M.; Mazela, B.; Grzeskowiak, W.; Proch, J.; Mleczek, M.; Perdoch, W. The Strength and Fire Properties of Paper Sheets Made of Phosphorylated Cellulose Fibers. Molecules 2024, 29, 133. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Zhao, X.; Li, N.; Guo, X.; Zhao, L.; Yin, Y. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid. Int. J. Biol. Macromol. 2024, 267, 131450. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Holt, G.; Stark, N.; Bajwa, S.G.; Chanda, S.; Quadir, M. Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene). Polymers 2023, 16, 36. [Google Scholar] [CrossRef]
- Asadullah; Ngiwngam, K.; Han, J.; Rachtanapun, P.; Auras, R.; Karbowiak, T.; Noiwan, D.; Thongngam, M.; Tongdeesoontorn, W. Creation of Composite Aerogels Consisting of Activated Carbon and Nanocellulose Blended with Cross-Linked Biopolymers: Application as Ethylene Scavengers. Polymers 2024, 16, 3081. [Google Scholar] [CrossRef]
- Khanjani, P.; Ristolainen, M.; Kosonen, H.; Virtanen, P.; Ceccherini, S.; Maloney, T.; Vuorinen, T. Time-triggered calcium ion bridging in preparation of films of oxidized microfibrillated cellulose and pulp. Carbohydr. Polym. 2019, 218, 63–67. [Google Scholar] [CrossRef]
- Niu, Y.; Han, S.; Hu, Y.; Yang, M.; Han, F. Non-isothermal and isothermal co-pyrolysis characteristics of coal gangue/coal slime and pine sawdust: Thermogravimetric analyzer and fixed bed pyrolysis reactor study. Int. J. Hydrogen Energy 2024, 59, 1230–1243. [Google Scholar] [CrossRef]
- Maddalena, L.; Indias, J.M.; Bettotti, P.; Scarpa, M.; Carosio, F. Cellulose nanocrystals polyelectrolyte complexes as flame retardant treatment for cotton fabrics. Polym. Degrad. Stab. 2024, 220, 110646. [Google Scholar] [CrossRef]
- Basheer, J.; Gopakumar, D.A.; Pasquini, D.; George, J.J. A Computational Study on Acoustic Absorbance of Hydrophilic Cellulose Nanofiber Based Aerogel with Excellent Flame Retardant and Acoustic Insulation Property for Structural Building Applications. J. Polym. Environ. 2025, 33, 2319–2333. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Jiang, G.; Wang, J.; Wang, D. Construction of chelation structure between Ca2+ and starch via reactive extrusion for improving the performances of thermoplastic starch. Compos. Sci. Technol. 2018, 159, 59–69. [Google Scholar] [CrossRef]
- Patoary, M.K.; Islam, S.R.; Farooq, A.; Rashid, M.A.; Sarker, S.; Hossain, Y.; Rakib, M.A.N.; Amin, A.; Liu, L. Phosphorylation of nanocellulose: State of the art and prospects. Ind. Crops Prod. 2023, 201, 116965. [Google Scholar] [CrossRef]
- Stark, F.W.; Thue, P.S.; Missio, A.L.; Machado, F.M.; Delucis, R.A.; Andreazza, R. Cellulose-Based Aerogels for Environmentally Sustainable Applications: A Review of the Production, Modification, and Sorption of Environmental Contaminants. Polymers 2025, 17, 236. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Duan, K.; Wang, R. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials 2004, 26, 1623–1632. [Google Scholar] [CrossRef]
- Ahmed, S.; Janaswamy, S.; Yadav, M.P. Biodegradable films from the lignocellulosic fibers of wheat straw biomass and the effect of calcium ions. Int. J. Biol. Macromol. 2024, 264, 130601. [Google Scholar] [CrossRef]
- Ye, Z.; Zeng, Y.; Xiong, X.; Qian, T.; Lun, H.; Wang, Y.; Sun, W.; Chen, Z.; Zhang, L.; Xiao, P. New insight into the formation and oxygen barrier mechanism of carbonaceous oxide interlayer in a multicomponent carbide. J. Am. Ceram. Soc. 2020, 103, 6978–6990. [Google Scholar] [CrossRef]
- Stroescu, M.; Stoica-Guzun, A.; Jinga, S.I.; Dobre, T.; Jipa, I.M.; Dobre, L.M. Influence of sodium dodecyl sulfate and cetyl trimethylammonium bromide upon calcium carbonate precipitation on bacterial cellulose. Korean J. Chem. Eng. 2012, 29, 1216–1223. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; Zhou, Y.; Fan, C.; Zhou, P.; Gong, J. Pyrolysis and combustion behaviors of densified wood. Proc. Combust. Inst. 2023, 39, 4175–4184. [Google Scholar] [CrossRef]
- ASTM D3801-19; Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position. ASTM International: West Conshohocken, PA, USA, 2019.
- Lu, X.; Zhu, X.; Dai, P.; Robin, H.M.; Guo, H.; Que, H.; Wang, D.; Liang, D.; He, T.; Xu, C.; et al. Thermal performance and thermal decomposition kinetics of a novel lignin-based epoxy resin containing phosphorus and nitrogen elements. J. Therm. Anal. Calorim. 2022, 147, 5237–5253. [Google Scholar] [CrossRef]
- Piao, X.; Li, J.; Zhao, Y.; Guo, L.; Zheng, B.; Zhou, R.; Ostrikov, K. Oxidized cellulose nanofibrils-based surimi gel enhancing additives: Interactions, performance and mechanisms. Food Hydrocoll. 2022, 133, 107893. [Google Scholar] [CrossRef]
- French, A.D.; Cintrón, M.S. Cellulose polymorphy; crystallite size, and the Segal Crystallinity Index. Cellulose 2013, 20, 583–588. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, F.; Chen, M.; Liu, F.; Zheng, B.; Miao, W.; Gao, H.; Zhou, R. Cellulose nanofibrils-stabilized food-grade Pickering emulsions: Clarifying surface charge’s contribution and advancing stabilization mechanism understanding. Food Hydrocoll. 2024, 152, 109920. [Google Scholar] [CrossRef]
- ASTM D1621-22; Standard Test Method for Compressive Properties of Rigid Cellular Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- Zhao, Y.; Li, J.; Yu, Q.; Li, K.D.; Li, Q.; Zhou, R.; Zhou, R.; Ek, M.; Ostrikov, K.K. Fabrication of multidimensional bio-nanomaterials from nanocellulose oxalate. Cellulose 2023, 30, 2147–2163. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Zhao, Y.; Ma, M.; Song, Y.; Zheng, B.; Zhou, R.; Ostrikov, K. Nisin electroadsorption-enabled multifunctional bacterial cellulose membranes for highly efficient removal of organic and microbial pollutants in water. Chem. Eng. J. 2022, 440, 135922. [Google Scholar] [CrossRef]
Samples | Diameter (mm) | Thickness (mm) | Weight (g) | Density (g/cm3) |
---|---|---|---|---|
CNF | 53.870 ± 1.280 | 8.900 ± 0.880 | 0.390 ± 0.090 | 0.019 ± 0.001 |
0.5PCNF | 54.000 ± 1.110 | 9.700 ± 0.970 | 0.200 ± 0.090 | 0.009 ± 0.003 |
1.0PCNF | 54.400 ± 1.250 | 9.500 ± 0.450 | 0.290 ± 0.050 | 0.013 ± 0.002 |
1.5PCNF | 54.270 ± 0.960 | 10.30 ± 0.890 | 0.520 ± 0.070 | 0.022 ± 0.003 |
0.5PCNF-Ca0.5 | 52.430 ± 0.910 | 7.470 ± 0.830 | 0.590 ± 0.040 | 0.037 ± 0.004 |
1.0PCNF-Ca0.5 | 52.570 ± 1.010 | 7.170 ± 0.850 | 0.670 ± 0.040 | 0.043 ± 0.003 |
1.5PCNF-Ca0.5 | 52.400 ± 0.980 | 8.800 ± 0.790 | 0.840 ± 0.060 | 0.044 ± 0.006 |
0.5PCNF-Ca1.0 | 51.670 ± 0.950 | 6.430 ± 0.970 | 0.880 ± 0.070 | 0.065 ± 0.005 |
1.0PCNF-Ca1.0 | 51.530 ± 0.860 | 6.230 ± 0.990 | 0.970 ± 0.050 | 0.075 ± 0.002 |
1.5PCNF-Ca1.0 | 51.570 ± 0.890 | 7.330 ± 0.730 | 1.100 ± 0.050 | 0.072 ± 0.001 |
0.5PCNF-Ca1.5 | 49.400 ± 0.940 | 5.770 ± 0.870 | 1.200 ± 0.060 | 0.103 ± 0.008 |
1.0PCNF-Ca1.5 | 50.030 ± 0.820 | 5.800 ± 0.570 | 1.310 ± 0.040 | 0.110 ± 0.001 |
1.5PCNF-Ca1.5 | 50.930 ± 1.130 | 7.000 ± 0.740 | 1.410 ± 0.080 | 0.099 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Peng, C.; Yang, Z.; Liu, Z.; Khong, H.Y.; Benjakul, S.; Zhang, B.; Yang, R. Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca2+ Coordination. Gels 2025, 11, 408. https://doi.org/10.3390/gels11060408
Zhao Y, Peng C, Yang Z, Liu Z, Khong HY, Benjakul S, Zhang B, Yang R. Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca2+ Coordination. Gels. 2025; 11(6):408. https://doi.org/10.3390/gels11060408
Chicago/Turabian StyleZhao, Yadong, Chengcheng Peng, Zheng Yang, Zhengjie Liu, Heng Yen Khong, Soottawat Benjakul, Bin Zhang, and Ruizhi Yang. 2025. "Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca2+ Coordination" Gels 11, no. 6: 408. https://doi.org/10.3390/gels11060408
APA StyleZhao, Y., Peng, C., Yang, Z., Liu, Z., Khong, H. Y., Benjakul, S., Zhang, B., & Yang, R. (2025). Mechanically Strong and Flame-Retardant Cellulose-Based Aerogel Prepared via Phosphorylation-Coupled Ca2+ Coordination. Gels, 11(6), 408. https://doi.org/10.3390/gels11060408