Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = lignocellulosic agricultural wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 - 4 Aug 2025
Viewed by 130
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

17 pages, 7151 KiB  
Article
A Recycling-Oriented Approach to Rare Earth Element Recovery Using Low-Cost Agricultural Waste
by Nicole Ferreira, Daniela S. Tavares, Inês Baptista, Thainara Viana, Jéssica Jacinto, Thiago S. C. Silva, Eduarda Pereira and Bruno Henriques
Metals 2025, 15(8), 842; https://doi.org/10.3390/met15080842 - 28 Jul 2025
Viewed by 188
Abstract
The exponential increase in electronic waste (e-waste) from end-of-life electrical and electronic equipment presents a growing environmental challenge. E-waste contains high concentrations of rare earth elements (REEs), which are classified as critical raw materials (CRMs). Their removal and recovery from contaminated systems not [...] Read more.
The exponential increase in electronic waste (e-waste) from end-of-life electrical and electronic equipment presents a growing environmental challenge. E-waste contains high concentrations of rare earth elements (REEs), which are classified as critical raw materials (CRMs). Their removal and recovery from contaminated systems not only mitigate pollution but also support resource sustainability within a circular economy framework. The present study proposed the use of hazelnut shells as a biosorbent to reduce water contamination and recover REEs. The sorption capabilities of this lignocellulosic material were assessed and optimized using the response surface methodology (RSM) combined with a Box–Behnken Design (three factors, three levels). Factors such as pH (4 to 8), salinity (0 to 30), and biosorbent dose (0.25 to 0.75 g/L) were evaluated in a complex mixture containing 9 REEs (Y, La, Ce, Pr, Nd, Eu, Gd, Tb and Dy; equimolar concentration of 1 µmol/L). Salinity was found to be the factor with greater significance for REEs sorption efficiency, followed by water pH and biosorbent dose. At a pH of 7, salinity of 0, biosorbent dose of 0.75 g/L, and a contact time of 48 h, optimal conditions were observed, achieving removals of 100% for Gd and Eu and between 81 and 99% for other REEs. Optimized conditions were also predicted to maximize the REEs concentration in the biosorbent, which allowed us to obtain values (total REEs content of 2.69 mg/g) higher than those in some ores. These results underscore the high potential of this agricultural waste with no relevant commercial value to improve water quality while providing an alternative source of elements of interest for reuse (circular economy). Full article
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 381
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

20 pages, 2421 KiB  
Article
Selective Microwave Pretreatment of Biomass Mixtures for Sustainable Energy Production
by Raimonds Valdmanis and Maija Zake
Energies 2025, 18(14), 3677; https://doi.org/10.3390/en18143677 - 11 Jul 2025
Viewed by 221
Abstract
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device [...] Read more.
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device was used to provide the thermochemical conversion of biomass blends of different compositions, analyzing the synergy of the effects of thermal and chemical interaction between the components on the yield and thermochemical conversion of volatiles, responsible for producing heat energy at various stages of flame formation. To control the thermal decomposition of the biomass, improving the flame characteristics and the produced heat, a selective pretreatment of blends using microwaves (2.45 GHz) was achieved by varying the temperature of microwave pretreatment. Assessing correlations between changes in the main characteristics of pretreated blends (elemental composition and heating value) on the produced heat and composition of products suggests that selective MW pretreatment of biomass blends activates synergistic effects of thermal and chemical interaction, enhancing the yield and combustion of volatiles with a correlating increase in produced heat energy, thus promoting the wider use of renewable biomass resources for sustainable energy production by limiting the use of fossil fuels for heat-energy production and the formation of GHG emissions. Full article
(This article belongs to the Special Issue Wood-Based Bioenergy: 2nd Edition)
Show Figures

Figure 1

26 pages, 2941 KiB  
Article
A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns
by Fei Bian, Yonghui Wang, Haixia Ren, Luzhang Wan, Huidong Guo, Yuxue Jia, Xia Liu, Fanhua Ning, Guojun Shi and Pengfei Ren
Horticulturae 2025, 11(7), 730; https://doi.org/10.3390/horticulturae11070730 - 23 Jun 2025
Viewed by 439
Abstract
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom [...] Read more.
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom and two vegetable cycles annually). Crop straw was first used to cultivate Pleurotus eryngii, achieving 80% biological efficiency and reducing substrate costs by ~36.3%. The spent mushroom substrate (SMS) was then reused for Ganoderma lucidum and vegetable cultivation, maximizing the resource efficiency. SMS application significantly improved soil properties: organic matter increased 11-fold (from 14.8 to 162.78 g/kg) and pH decreased from 8.34 to ~6.75. The available phosphorus and potassium contents increased several-fold compared to untreated soil. Metagenomic analysis showed the enrichment of beneficial decomposer bacteria (Hyphomicrobiales, Burkholderiales, and Streptomyces) and functional genes involved in glyoxylate metabolism, nitrogen cycling, and lignocellulose degradation. These changes shifted the microbial community from a stress-tolerant to a nutrient-cycling profile. The vegetable yield and quality improved markedly: cabbage and cauliflower yields increased by 34–38%, and the tomato lycopene content rose by 179%. Economically, the system generated 1,695,000–1,962,881.4 CNY per hectare annually and reduced fertilizer costs by ~450,000 CNY per hectare. This mushroom–vegetable rotation addresses ecological bottlenecks in saline–alkaline lands through lignin-driven carbon release, organic acid-mediated pH reduction, and actinomycete-dominated decomposition, offering a sustainable agricultural strategy for coastal regions. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

15 pages, 3493 KiB  
Article
A Pathway for Sugar Production from Agricultural Waste Catalyzed by Sulfonated Magnetic Carbon Microspheres
by Maoru Xu, Yanfeng Duan, Hongfu Li, Shoulin He, Xingyu Zi, Yanting Zhao, Cheng Jiao and Xiaoyun Li
Molecules 2025, 30(13), 2675; https://doi.org/10.3390/molecules30132675 - 20 Jun 2025
Viewed by 286
Abstract
Lignocellulose is an important renewable biomass resource. However, at present, there is a lack of efficient and environmentally friendly catalytic systems that can selectively convert lignocellulose components into high-value sugars, and the value realization of agricultural waste (such as straw) remains challenging. Carbon-based [...] Read more.
Lignocellulose is an important renewable biomass resource. However, at present, there is a lack of efficient and environmentally friendly catalytic systems that can selectively convert lignocellulose components into high-value sugars, and the value realization of agricultural waste (such as straw) remains challenging. Carbon-based solid acids are used in the valorization of biomass due to their simple preparation and excellent catalytic performance. In this study, the magnetic carbon microspheres catalyst was prepared using concentrated sulfuric acid and hydroxyethyl sulfonic acid as sulfonating agents. Two sulfonation catalysts were applied to the hydrolysis of typical agricultural waste (rice straw). The performance of catalyst conversion to reducing sugar was compared, and the glucose yield was lower than 30%. The sulfonation catalyst of hydroxyethyl sulfonic acid obtained a higher yield of pentose (76.67%) than that of concentrated sulfuric acid (74.25%) in 110 min. The optimal reaction conditions were found: substrate was 0.04 g straw, catalyst was 0.04 g, H2O/γ-valerolactone ratio was 8:2 in the solvent, and the reaction time was 110 min at 140 °C. Under these conditions, the sulfonation properties of hydroxyethyl sulfonic acid as a green sulfonating agent are similar to those of concentrated sulfuric acid. Its excellent catalytic performance is attributed to the medium B/L acid density ratio on the catalyst surface. In addition, the prepared catalyst can be effectively separated from the reaction residue in the catalytic system. This work provides a green catalytic system for the high-value utilization of agricultural waste from renewable carbon sources. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

23 pages, 1405 KiB  
Review
Biogas Production from Organic Waste in the Forestry and Agricultural Context: Challenges and Solutions for a Sustainable Future
by Luisa Patricia Uranga-Valencia, Sandra Pérez-Álvarez, Rosalío Gabriel-Parra, Jesús Alicia Chávez-Medina, Marco Antonio Magallanes-Tapia, Esteban Sánchez-Chávez, Ezequiel Muñoz-Márquez, Samuel Alberto García-García, Joel Rascón-Solano and Luis Ubaldo Castruita-Esparza
Energies 2025, 18(12), 3174; https://doi.org/10.3390/en18123174 - 17 Jun 2025
Viewed by 681
Abstract
Biogas produced from agricultural and forestry waste is emerging as a strategic and multifunctional solution to address climate change, inefficient waste management, and the need for renewable energy by transforming large volumes of biomass. Global estimates indicate that approximately 1.3 billion tons of [...] Read more.
Biogas produced from agricultural and forestry waste is emerging as a strategic and multifunctional solution to address climate change, inefficient waste management, and the need for renewable energy by transforming large volumes of biomass. Global estimates indicate that approximately 1.3 billion tons of waste is produced each year for these sectors; this waste is processed through anaerobic digestion, allowing it to be transformed into energy and biofertilizers. This reduces greenhouse gas emissions by up to 90%, promotes rural development, improves biodiversity, and prevents environmental risks, such as forest fires. However, despite its high global technical potential, which is estimated at 8000 TWh per year, its use remains limited as a result of its high initial costs, low efficiency in relation to lignocellulosic waste, and weak regulatory frameworks, especially in countries like Mexico, which use less than 5% of their available biomass. In response, emerging technologies, such as co-digestion with microalgae, integrated biorefineries, and artificial intelligence tools, are opening up new avenues for overcoming these barriers under a comprehensive approach that combines science, technology, and community participation. Therefore, biogas is positioned as a key pillar for a circular, fair, and resilient bioeconomy, promoting energy security and advancing toward a just and environmentally responsible future. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

21 pages, 710 KiB  
Review
Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective
by Reckson Kamusoko and Patrick Mukumba
Fermentation 2025, 11(6), 338; https://doi.org/10.3390/fermentation11060338 - 11 Jun 2025
Viewed by 1483
Abstract
Maize (Zea mays) is one of the most cultivated crops in South Africa, serving as a staple food, stock feed, and a key element in several industrial applications. It contributes significantly to the growth of the South African agricultural economy. The [...] Read more.
Maize (Zea mays) is one of the most cultivated crops in South Africa, serving as a staple food, stock feed, and a key element in several industrial applications. It contributes significantly to the growth of the South African agricultural economy. The cultivation of maize generates a large amount of agricultural waste, mainly in the form of maize stover (MS), which encapsulates leaves, stalks, cobs, and husks. Approximately 5.15 metric tons (Mt) yr−1 of MS are generated in South Africa. This corresponds to an energy potential of 94 PJ. There is immense potential to surpass the annual yield of MS by 126% up to about 11.66 Mt yr−1 through practices such as zero tillage and improved agricultural production systems. MS may pose a serious threat to the environment if not managed in a sustainable and eco-friendly manner. Valorization of MS into biogas presents an excellent opportunity to effectively control biomass waste while contributing to renewable energy production and mitigating dependence on depleting fossil fuels. However, MS continues to be overlooked as a sustainable bioenergy resource due to its lignocellulosic structure. This study explores the potential of converting MS into biogas for heat and power generation, addressing both energy needs and waste management in South Africa. The purpose is to provide knowledge that will inform researchers, innovators, industrialists, policy makers, investors, and other key stakeholders interested in renewable energy systems. Collaborative efforts among multiple stakeholders are vital to leverage biogas as a technology to promote socio-economic development in South Africa. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

38 pages, 3321 KiB  
Review
Conventional and Novel Strategies for Cellulose Isolation from Nut Shells: A Review
by Andrea Están, Mónica Umaña, Valeria S. Eim, Gabriela Clemente and Susana Simal
Molecules 2025, 30(12), 2486; https://doi.org/10.3390/molecules30122486 - 6 Jun 2025
Viewed by 916
Abstract
Nut by-products, particularly shells, are a globally abundant agricultural residue. Their widespread accumulation poses a serious environmental challenge. However, nut shells are of great interest due to their inherent lignocellulosic composition. For instance, they are rich in cellulose, a high-value biopolymer widely used [...] Read more.
Nut by-products, particularly shells, are a globally abundant agricultural residue. Their widespread accumulation poses a serious environmental challenge. However, nut shells are of great interest due to their inherent lignocellulosic composition. For instance, they are rich in cellulose, a high-value biopolymer widely used in the production of bio-based materials. Therefore, this review critically analyses conventional and novel pre-treatment strategies for the extraction of cellulose from nut shells, emphasising the importance of optimising valorisation routes to minimise ecological impact. Various techniques—ranging from alkaline treatments to emerging approaches such as deep eutectic solvents and hydrothermal methods—have been examined and compared. The findings in cellulose purification through different strategies reveal that, while some methods are promising, others remain underexplored. Emphasis is placed on the necessity of comprehending the specific structural and chemical characteristics of each type of nut shell; as such, knowledge is fundamental to understanding the efficiency of the applied methods. This review highlights the growing interest in the valorisation of nut shell by-products as promising lignocellulosic resources of significant utility. Therefore, it also reveals the need for further research, focusing on process scalability, cost-efficiency, and environmental impact. Advancing in these areas is essential to enable the transition of nut shells from waste to a highly valuable resource. Full article
(This article belongs to the Special Issue Featured Reviews in Applied Chemistry 2.0)
Show Figures

Graphical abstract

25 pages, 6135 KiB  
Article
Enhancement of Polyvinyl Alcohol-Based Films by Chemically Modified Lignocellulosic Nanofibers Derived from Bamboo Shoot Shells
by Jingjing Du, Jianlong Guo, Qian Zhu, Jiagang Guo, Jiayu Gu, Yuhan Wu, Ling Ren, Song Yang and Jian Jiang
Polymers 2025, 17(11), 1571; https://doi.org/10.3390/polym17111571 - 5 Jun 2025
Cited by 1 | Viewed by 575
Abstract
In this study, polyvinyl alcohol (PVA) films were reinforced with lignocellulosic nanofibers (LCNFs) extracted from bamboo shoot shells using a choline chloride-based deep eutectic solvent (DES). A filler loading of 10 wt% was identified as the optimal condition for enhancing film performance. To [...] Read more.
In this study, polyvinyl alcohol (PVA) films were reinforced with lignocellulosic nanofibers (LCNFs) extracted from bamboo shoot shells using a choline chloride-based deep eutectic solvent (DES). A filler loading of 10 wt% was identified as the optimal condition for enhancing film performance. To improve interfacial compatibility between the PVA matrix and LCNFs, three surface modification treatments were applied to the nanofibers: hydrochloric acid (HCl) hydrolysis, citric acid (CA) crosslinking, and a dual modification combining both methods (HCl&CA). Among all formulations, films incorporating dual-modified LCNF at 10 wt% loading exhibited the most significant improvements. Compared to neat PVA, these composites showed a 79.2% increase in tensile strength, a 15.1% increase in elongation at break, and a 33.1% enhancement in Young’s modulus. Additionally, thermal stability and barrier properties were improved, while water swelling and solubility were reduced. Specifically, the modified films achieved a thermal residue of 9.21% and the lowest degradation rate of 10.81%/min. Water vapor transmission rate and oxygen permeability decreased by 18.8% and 18.6%, respectively, and swelling and solubility dropped to 14.26% and 3.21%. These results highlight the synergistic effect of HCl hydrolysis and CA crosslinking in promoting uniform filler dispersion and strong interfacial adhesion, offering an effective approach to valorizing bamboo shoot shell waste into high-performance, eco-friendly packaging materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

32 pages, 2113 KiB  
Review
Agricultural Waste: Challenges and Solutions, a Review
by Maximilian Lackner and Maghsoud Besharati
Waste 2025, 3(2), 18; https://doi.org/10.3390/waste3020018 - 3 Jun 2025
Cited by 2 | Viewed by 2662
Abstract
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such [...] Read more.
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such as those from sugarcane, rice, and wheat, contribute to pollution when improperly disposed of through burning or burying, contaminating soil, water, and air. However, these residues also represent untapped resources for bioenergy production, composting, mulching, and the creation of value-added products like biochar, bioplastics, single-cell protein and biobased building blocks. The paper highlights various solutions, including integrating agricultural waste into livestock feed formulations to reduce competition for human food crops, producing biofuels like ethanol and biodiesel from lignocellulosic materials, and adopting circular economy practices to upcycle waste into high-value products. Technologies such as anaerobic digestion for biogas production and gasification for synthesis gas offer renewable energy alternatives and ample feedstocks for gas fermentation while addressing waste management issues. Composting and vermicomposting enhance soil fertility, while mulching improves moisture retention and reduces erosion. Moreover, the review emphasizes the importance of policy frameworks, public-private partnerships, and farmer education in promoting effective waste management practices. By implementing these strategies, agricultural waste can be transformed into a resource, contributing to food security, environmental conservation, and economic growth. Full article
Show Figures

Figure 1

14 pages, 1249 KiB  
Article
Sweet Chestnut Wood Distillate’s Role in Reducing Helicoverpa armigera Damage and Enhancing Chickpea Performance: Evidence from Field Trial
by Pablo Carril, Ilaria Colzi, Riccardo Fedeli, Cristina Gonnelli and Stefano Loppi
Horticulturae 2025, 11(6), 613; https://doi.org/10.3390/horticulturae11060613 - 30 May 2025
Viewed by 877
Abstract
The moth Helicoverpa armigera (Lepidoptera: Noctuidae), better known as the pod borer, poses significant threats to chickpea (Cicer arietinum L.) production. Therefore, effective and sustainable crop management strategies are required to mitigate the impact of this cosmopolitan pest. The present study aimed [...] Read more.
The moth Helicoverpa armigera (Lepidoptera: Noctuidae), better known as the pod borer, poses significant threats to chickpea (Cicer arietinum L.) production. Therefore, effective and sustainable crop management strategies are required to mitigate the impact of this cosmopolitan pest. The present study aimed at investigating the potential of wood distillate (WD), a liquid byproduct of the pyrolysis of waste lignocellulosic biomass, to both reduce H. armigera pest incidence and to enhance crop yields in field-grown chickpea. The application of WD as a foliar spray effectively reduced the number of damaged pods by 35% during the plant´s reproductive stage compared with water-sprayed plants (~16 vs. 24 bored pods plant−1, respectively) and increased the number of healthy pods (~16 vs. 10 pods plant−1, respectively). Moreover, the lower pest incidence was accompanied by an improvement of both the seed yield and the quality at the plant´s full maturity stage. Specifically, WD-treated plants increased both the number and weight of seeds by ~80% compared to water-sprayed plants (~23 vs. 13 and 5.5 vs. 3 plant−1, respectively) which further showed a remarkable improvement in their nutritional value, with the concentration of total polyphenols, flavonoids, starch, calcium, and magnesium increasing by 17%, 56%, 43%, 23%, and 15%, respectively. These results underscore the potential of WD to both improve chickpea performance and to reduce H. armigera damage to sustainably improve the productivity of this critical legume crop, aligning with the principles of the circular economy and offering an environmentally friendly alternative to synthetic pesticides and fertilizers in agriculture. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Graphical abstract

10 pages, 1519 KiB  
Article
Investigation of Particleboard Production from Durian Husk and Bamboo Waste
by Thi Kim Hong Tang and Nhat Quang Nguyen
J. Compos. Sci. 2025, 9(6), 276; https://doi.org/10.3390/jcs9060276 - 29 May 2025
Viewed by 717
Abstract
Agricultural residues offer promising opportunities for the development of biocomposites. Durian husk, a lignocellulosic by-product abundantly available in Southeast Asia, and bamboo waste, an underutilized biomass resource, present considerable potential for sustainable particleboard production. This study focuses on developing single-layer bio-based particleboards using [...] Read more.
Agricultural residues offer promising opportunities for the development of biocomposites. Durian husk, a lignocellulosic by-product abundantly available in Southeast Asia, and bamboo waste, an underutilized biomass resource, present considerable potential for sustainable particleboard production. This study focuses on developing single-layer bio-based particleboards using varying proportions of durian husk and bamboo waste bonded with urea formaldehyde resin. The fabricated boards were evaluated for thickness swelling, modulus of rupture, and internal bond strength according to relevant European standards. Results indicated that all particleboards met the Type P1 requirements for general-purpose use under dry conditions, as specified in BS EN 312:2010. The findings demonstrate the feasibility of converting agricultural waste into value-added, eco-friendly materials, supporting waste valorization, promoting circular economy practices, and contributing to the development of bio-based materials. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

18 pages, 4127 KiB  
Article
Effect of Peanut Straw Biochar on the Co-Digestion Process of Cattle Manure with Corn Stover
by Jize Han, Yuxing Xu, Haorui Yang, Zhoulin Wang, Wenxuan Xu, Xingsheng Kang, Hao Liu and Changqing Liu
Processes 2025, 13(5), 1516; https://doi.org/10.3390/pr13051516 - 15 May 2025
Viewed by 467
Abstract
Peanut straw, a lignocellulosic agricultural residue rich in cellulose, hemicellulose, and lignin, has significant potential for biochar production, which may enhance the anaerobic digestion (AD) process. The addition of biochar can effectively enhance the AD process. However, the role of peanut straw biochar [...] Read more.
Peanut straw, a lignocellulosic agricultural residue rich in cellulose, hemicellulose, and lignin, has significant potential for biochar production, which may enhance the anaerobic digestion (AD) process. The addition of biochar can effectively enhance the AD process. However, the role of peanut straw biochar in anaerobic co-digestion of mixed substrate remains underexplored. This study innovatively employs peanut straw biochar as an exogenous additive in anaerobic co-digestion of cow manure and corn straw. The results demonstrate that the optimal methane yield was achieved at a biochar dosage of 8%, with a significant increase of 19.1% compared to the control group (832.23 mL). Various doses of biochar also facilitated the degradation of the digestion substrate to varying extents, with the highest substrate removal rate of 54.1% achieved when biochar was added at 8%. Furthermore, the addition of peanut straw biochar enhanced the microbial community structure. Specifically, the inclusion of 8% biochar increased the relative abundance of Methanosarcina by 2.8%, while the addition of 6% biochar elevated the relative abundance of Chloroflexota by 1.4%. This study contributes to the sustainable use of agricultural waste and supports the development of biochar-enhanced AD for improved waste management and energy recovery. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 5133 KiB  
Article
An Investigation of the Secretome Composition of Coriolopsis trogii Mafic-2001 and the Optimization of the Mafic-2001 Enzyme Cocktail to Enhance the Saccharification Efficacy of Chinese Distillers’ Grains
by Chengling Bao, Zhiyun Liu, Xiaoxia Zhong, Xiaofeng Guan, Yunhe Cao and Jinxiu Huang
Int. J. Mol. Sci. 2025, 26(10), 4702; https://doi.org/10.3390/ijms26104702 - 14 May 2025
Viewed by 366
Abstract
The efficient degradation of lignocellulose is essential for valorizing agricultural waste and reducing environmental pollution. An efficient degradation process requires an enzyme cocktail capable of comprehensively deconstructing lignocellulosic components. In this study, the secretome of Coriolopsis trogii Mafic-2001 induced by rice straw was [...] Read more.
The efficient degradation of lignocellulose is essential for valorizing agricultural waste and reducing environmental pollution. An efficient degradation process requires an enzyme cocktail capable of comprehensively deconstructing lignocellulosic components. In this study, the secretome of Coriolopsis trogii Mafic-2001 induced by rice straw was examined, and the enzymatic composition and reaction conditions of Coriolopsis trogii were optimized. Mafic-2001 secreted an enzyme cocktail that included ligninolytic enzymes, cellulases, and hemicellulases. However, the relative abundances of endoglucanase (EG) and β-glucosidase (βG) were only 64.37% and 10.69%, respectively, compared with the relative abundance of cellobiohydrolase, which indicated a critical bottleneck in degradation efficiency. To overcome this limitation, the recombinant enzymes rEG1 and rβG1 were expressed in Pichia pastoris X-33. A functionally enhanced enzyme cocktail (rEG1–rβG1–Mafic-2001 = 0.05:0.09:0.86) was developed via a mixture design to achieve a reducing sugar yield of 2.77 mg/mL from Chinese distillers’ grains (CDGs). Structural analyses revealed that the optimized enzyme cocktail disrupted the reticulated fiber architecture of CDGs and attenuated the characteristic Fourier-transform infrared spectroscopy peaks of lignin, cellulose, and hemicellulose. This study elucidates the synergistic lignocellulose deconstruction mechanism of Mafic-2001 and establishes a precision enzyme-supplementation strategy for efficient CDG bioconversion, providing a scalable platform for the valorization of lignocellulosic biomass. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop