Conventional and Novel Strategies for Cellulose Isolation from Nut Shells: A Review
Abstract
1. Introduction
2. Methodology
3. Definition of Nut
4. Nut Production
5. Nut By-Products and Their Importance
Husk (%) | Shell (%) | Skin (%) [87] | Kernel (%) | Ref. | |
---|---|---|---|---|---|
Almond | 52.7 ± 8.05 | 32.76 ± 6.81 | 4–6% | 14.58 ± 2.48 | [92] |
Areca Nut | Included in shell % | 42.30 ± 2.76 | Not reported | 58.34 ± 2.65 | [93] |
Brazil Nut | - | 49.82 ± 2.58 | Not reported | 50.18 ± 2.58 | [94] |
Cashew | Included in shell % | 63.84 ± 6.46 | 5.36 ± 5.33 | 31.67 ± 7.14 | [91] |
Chestnut | Included in shell % | 13.95 ± 1.92 | Not reported | 86.00 ± 1.92 | [89] |
Coconut | 54.38 ± 0.7 | 15.18 ± 2.40 | Not reported | - | [95] |
Hazelnut | - | 57.66 ± 7.77 | 2–3% | 42.34 ± 7.77 | [96] |
Macadamia | Included in shell % | 57.32 ± 1.18 | Not reported | 42.98 ± 0.79 | [97] |
Peanut | Included in shell % | 31.03 ± 0.11 | 2.5–3% | 68.90 ± 0.11 | [98] |
Pecan | Included in shell % | 47.08 ± 2.95 | 2–5% | 52.92 ± 2.95 | [99] |
Pistachio | Included in shell % | 45.18 ± 7.02 | 9–11% | 54.82 ± 0.65 | [100] |
Walnut | Included in shell % | 50.55 ± 0.85 | Not reported | 49.45 ± 7.02 | [101] |
5.1. Nut By-Product Composition
5.2. Applications of Nut By-Products
6. Sample Preparation
7. Extraction Methods
7.1. Alkaline Pre-Treatment
7.2. Hydrothermal Pre-Treatment
7.3. Dilute Acid Pre-Treatment
7.4. Ionic Liquid (IL) Pre-Treatment
7.5. Deep Eutectic Solvents (DESs) Pre-Treatment
7.6. Organic Solvent (Organosolv) Pre-Treatment
7.7. Microwave-Assisted Extraction (MAE) Pre-Treatment
7.8. Ultrasound Pre-Treatment
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AcHBD | Acidic hydrogen bond donor | [Emim] [CH3CO2] | 1-Ethyl-3-methylimidazolium acetate |
AIBP | Agro-industrial by-product | HBA | Hydrogen bond acceptor |
AP | Alkaline pre-treatment | HBD | Hydrogen bond donor |
APD | Alkaline peroxide delignification | IL | Ionic liquid |
AS | Almond shell | IOD | Ionic solvent delignification |
[Bmim][Cl] | 1-Butyl-3-methylimidazolium hexafluorophosphate chloride | LA | Lactic acid |
CA | Citric acid | LHW | Liquid hot water (hydrothermal) |
ChCl | Choline chloride | MAE | Microwave-assisted extraction |
CNSL | Cashew nut shell liquid | MT | Metric tons |
DAP | Dilute acid pre-treatment | SWE | Subwater critical extraction |
DES | Deep eutectic solvent | OA | Oxalic acid |
DESD | DES pre-treatment | v/v | Volume/volume percentage (%) |
EG | Ethylene glycol |
References
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- King, J.C.; Blumberg, J.; Ingwersen, L.; Jenab, M.; Tucker, K.L. Tree Nuts and Peanuts as Components of a Healthy Diet. J. Nutr. 2008, 138, 1736S–1740S. [Google Scholar] [CrossRef] [PubMed]
- Albala, K. Nuts: A Global History; The University of Chicago Press: Chicago, IL, USA, 2014. [Google Scholar]
- Pakholok, O. The idea of healthy lifestyle and its transformation into health-oriented lifestyle in contemporary society. SAGE Open 2013, 3, 1–11. [Google Scholar] [CrossRef]
- Dreher, M.L.; Maher, C.V. The traditional and emerging role of nuts in healthful diets. Nutr. Rev. 1996, 54, 241–245. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.A. Handbook of Nuts; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gonçalves, B.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of Nuts and Their Potential Health Benefits—An Overview. Foods 2023, 12, 942. [Google Scholar] [CrossRef]
- Murthy, H.N.; Bapat, V.A. Bioactive Compounds in Underutilized Fruits and Nuts; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef]
- Paroni, R.; Cas, M.D.; Rizzo, J.; Ghidoni, R.; Montagna, M.T.; Rubino, F.M.; Iriti, M. Bioactive phytochemicals of tree nuts. Determination of the melatonin and sphingolipid content in almonds and pistachios. J. Food Compos. Anal. 2019, 82, 103227. [Google Scholar] [CrossRef]
- McNeill, D.C.; Pal, A.K.; Nath, D.; Rodriguez-Uribe, A.; Mohanty, A.K.; Pilla, S.; Gregori, S.; Dick, P.; Misra, M. Upcycling of ligno-cellulosic nutshells waste biomass in biodegradable plastic-based biocomposites uses-a comprehensive review. Compos. Part C Open Access 2024, 14, 100478. [Google Scholar] [CrossRef]
- Michalak, M.; Kieltyka-Dadasiewicz, A. Nut oils and their dietetic and cosmetic significance: A Review. J. Oleo. Sci. 2019, 68, 111–120. [Google Scholar]
- Kamal-Eldin, A.; Moreau, R.A. Tree Nut Oils. In Gourmet and Health-Promoting Specialty Oils; Elsevier: Amsterdam, The Netherlands, 2009; pp. 127–149. [Google Scholar]
- Linkies, A.; Graeber, K.; Knight, C.; Leubner-Metzger, G. The evolution of seeds. New Phytol. 2010, 186, 817–831. [Google Scholar] [CrossRef]
- Doster, M.A.; Michailides, T.J. Relationship between shell discoloration of pistachio nuts and incidence of fungal decay and insect infestation. Plant Dis. 1999, 83, 259–264. [Google Scholar] [CrossRef]
- Block, J.M.; Polmann, G.; Neves, M.I.L.; Sánchez-Martínez, J.D.; Cifuentes, A.; Ibañez, E. Valorisation of Coproducts and By-products Obtained from Nuts. In Agri-Food Waste Valorisation; The Royal Society of Chemistry: Washington, DC, USA, 2023; pp. 95–146. [Google Scholar]
- Moreira, B.; Gonçalves, A.; Pinto, L.; Prieto, M.A.; Carocho, M.; Caleja, C.; Barros, L. Intercropping Systems: An Opportunity for Environment Conservation within Nut Production. Agriculture 2024, 14, 1149. [Google Scholar] [CrossRef]
- Chang, M.C. Harnessing energy from plant biomass. Curr. Opin. Chem. Biol. 2007, 11, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Glucose, A.D.F. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 2017, 24, 4605–4609. [Google Scholar]
- Choudhary, J.; Singh, S.; Nain, L. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron. J. Biotechnol. 2016, 21, 82–92. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Lu, Y.; Fan, X. Structure and Characteristics of Lignin. In Lignin: Biosynthesis and Transformation for Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–75. [Google Scholar]
- Rostamabadi, H.; Bist, Y.; Kumar, Y.; Yildirim-Yalcin, M.; Ceyhan, T.; Falsafi, S.R. Cellulose nanofibers, nanocrystals, and bacterial nanocellulose: Fabrication, characterization, and their most recent applications. Future Postharvest Food 2024, 1, 5–33. [Google Scholar] [CrossRef]
- Yu, K.; Yang, L.; Zhang, S.; Liu, H. Strong, tough, conductive and transparent nanocellulose hydrogel based on Ca2+-induced cross-linked double-networks and its adsorption of methylene blue dye. Int. J. Biol. Macromol. 2024, 274, 133417. [Google Scholar] [CrossRef] [PubMed]
- Padhi, S.; Singh, A.; Routray, W. Nanocellulose from agro-waste: A comprehensive review of extraction methods and applications. Rev. Environ. Sci. Biotechnol. 2023, 22, 1–27. [Google Scholar] [CrossRef]
- Jonoobi, M.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 2015, 22, 935–969. [Google Scholar] [CrossRef]
- Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Nanocellulose, O.S. A tiny fiber with huge applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. [Google Scholar] [CrossRef]
- Wang, F.; Hu, Z.; Ouyang, S.; Wang, S.; Liu, Y.; Li, M.; Wu, Y.; Li, Z.; Qian, J.; Wu, Z.; et al. Application progress of nanocellulose in food packaging: A review. Int. J. Biol. Macromol. 2024, 268, 131936. [Google Scholar] [CrossRef] [PubMed]
- Kupnik, K.; Primožič, M.; Kokol, V.; Leitgeb, M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers 2020, 12, 2825. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-Z.; Ma, M.-G.; Ji, X.-X.; Choi, S.-E.; Si, C. Recent Developments and Applications of Hemicellulose from Wheat Straw: A Review. Front. Bioeng. Biotechnol. 2021, 9, 690773. [Google Scholar] [CrossRef]
- Tarasov, D.; Leitch, M.; Fatehi, P. Thermal properties of lignocellulosic precipitates from neutral sulfite semichemical pulping process. Fuel Process. Technol. 2017, 158, 146–153. [Google Scholar] [CrossRef]
- Mancera, C.; El Mansouri, N.-E.; Vilaseca, F.; Ferrando, F.; Salvado, J. The effect of lignin as a natural adhesive on the physico-mechanical properties of Vitis vinifera fiberboards. Bioresources 2011, l6, 2851–2860. [Google Scholar] [CrossRef]
- Weidener, D.; Dama, M.; Dietrich, S.K.; Ohrem, B.; Pauly, M.; Leitner, W.; De María, P.D.; Grande, P.M.; Klose, H. Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation. Biotechnol. Biofuels 2020, 13, 155. [Google Scholar] [CrossRef]
- Guerriero, G.; Hausman, J.F.; Strauss, J.; Ertan, H.; Siddiqui, K.S. Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 2016, 16, 1–16. [Google Scholar] [CrossRef]
- Howard, R.L.; Abotsi, E.; Van Rensburg, E.L.J.; Howard, S. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2003, 2, 602–619. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Pinto, E.; Aggrey, W.N.; Boakye, P.; Amenuvor, G.; Sokama-Neuyam, Y.A.; Fokuo, M.K.; Karimaie, H.; Sarkodie, K.; Adenutsi, C.D.; Erzuah, S.; et al. Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. Sci. Afr. 2022, 15, e01078. [Google Scholar] [CrossRef]
- Norfarhana, A.S.; Ilyas, R.A.; Ngadi, N.; Othman, M.H.D.; Misenan, M.S.M.; Norrrahim, M.N.F. Revolutionizing lignocellulosic biomass: A review of harnessing the power of ionic liquids for sustainable utilization and extraction. Int. J. Biol. Macromol. 2024, 256, 128256. [Google Scholar] [CrossRef]
- Matsakas, L.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. Lignin-first biomass fractionation using a hybrid organosolv–Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour. Technol. 2019, 273, 521–528. [Google Scholar] [CrossRef]
- Gil-Guillén, I.; Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Obtaining Cellulose Fibers from Almond Shell by Combining Subcritical Water Extraction and Bleaching with Hydrogen Peroxide. Molecules 2024, 29, 3284. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Zhang, X.; Li, K.; Jin, Y.; Wu, W. DES: Their effect on lignin and recycling performance. RSC Adv. 2023, 13, 3241–3254. [Google Scholar] [CrossRef] [PubMed]
- Jablonsky, M.; Haz, A.; Majova, V. Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose 2019, 26, 7675–7684. [Google Scholar] [CrossRef]
- Alhanish, A.; Ghalia, M.A. Cellulose-based bionanocomposites for food packaging applications. In Bionanocomposites for Food Packaging Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 217–246. [Google Scholar]
- Ting, S.S.; Gie, G.P.; Omar, M.F.; Abdullah, M.F. Nanocellulose-reinforced biocomposites. In Biomass, Biofuels, Biochemicals: Biodegradable Polymers and Composites-Process Engineering to Commercialization; Elsevier: Amsterdam, The Netherlands, 2021; pp. 461–494. [Google Scholar]
- Park, N.; Kim, H.Y.; Koo, B.W.; Yeo, H.; Choi, I.G. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 2010, 101, 7046–7053. [Google Scholar] [CrossRef] [PubMed]
- Ribas, L.E.; Baravalle, M.E.; Gasser, F.B.; Renna, M.S.; Addona, S.; Ortega, H.H.; Savino, G.H.; Van de Velde, F.; Hein, G.J. Extraction of phenolic compounds from the shells of pecan nuts with cytotoxic activity through apoptosis against the colon cancer cell line HT-29. J. Food Sci. 2021, 86, 5409–5423. [Google Scholar] [CrossRef]
- John, J.A.; Shahidi, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J. Funct. Foods 2010, 2, 196–209. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Arcan, I.; Yemenicioǧlu, A. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compos. Anal. 2009, 22, 184–188. [Google Scholar] [CrossRef]
- Kyei, S.K.; Akaranta, O.; Darko, G.; Chukwu, U.J. Extraction, Characterization and Application of Cashew Nut Shell Liquid from Cashew Nut Shells. Chem. Sci. Int. J. 2019, 28, 1–10. [Google Scholar] [CrossRef]
- Wu, H.; Li, Q.; Yu, H.; Gu, M.; Wang, Y.; Xu, C.; Liao, Z. Comprehensive utilization of Hainan cashew nut shell: Process optimization of cashew nut shell liquid extraction and cardanol refinement by catalytic transfer hydrogenation. Ind. Crops Prod. 2023, 203, 117168. [Google Scholar] [CrossRef]
- Sá, N.M.S.M.; Mattos, A.L.A.; Silva, L.M.A.; Brito, E.S.; Rosa, M.F.; Azeredo, H.M.C. From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. Int. J. Biol. Macromol. 2020, 161, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.C. Food Allergens: Seafood, Tree Nuts, Peanuts. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 640–647. [Google Scholar]
- Prior, R.L.; Gu, L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 2005, 66, 2264–2280. [Google Scholar] [CrossRef] [PubMed]
- Oxford English Dictionary. s.v. ‘nut (n.1 & adj.2)’. December 2024. Available online: https://0-www-oed-com.llull.uib.es/dictionary/nut_n1?tab=meaning_and_use#33974435 (accessed on 27 February 2025).
- George, E.S.; Daly, R.M.; Tey, S.L.; Brown, R.; Wong, T.H.T.; Tan, S.Y. Perspective: Is it Time to Expand Research on ‘Nuts’ to Include ‘Seeds’? Justifications and Key Considerations. Adv. Nutr. 2022, 13, 1016–1027. [Google Scholar] [CrossRef]
- University of Wisconsin. Fruit Key. 2009. Available online: https://courses.botany.wisc.edu/botany_400/Lab/LabWK03Fruitkey.html (accessed on 23 February 2025).
- Hokmabadi, H.; Sedaghati, E. Safety of Food and Beverages: Nuts. Encycl. Food Saf. 2014, 3, 340–348. [Google Scholar]
- Rwahwire, S.; Tomkova, B.; Periyasamy, A.P.; Kale, B.M. Green thermoset reinforced biocomposites. In Green Composites for Automotive Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 61–80. [Google Scholar]
- Duke, J.A. Handbook of Nuts: Herbal Reference Library; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–343. [Google Scholar]
- Ros, E.; Mataix, J. Fatty acid composition of nuts–implications for cardiovascular health. Br. J. Nutr. 2006, 96, S29–S35. [Google Scholar] [CrossRef]
- Brufau, G.; Boatella, J.; Rafecas, M. Nuts: Source of energy and macronutrients. Br. J. Nutr. 2006, 96, S24–S28. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products; FAOSTAT: Rome, Italy, 2025. [Google Scholar]
- Wojdyło, A.; Turkiewicz, I.P.; Tkacz, K.; Nowicka, P.; Bobak, Ł. Nuts as functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Food Chem. X 2022, 15, 100418. [Google Scholar] [CrossRef]
- Lima, L.W.; Stonehouse, G.C.; Walters, C.; El Mehdawi, A.F.; Fakra, S.C.; Pilon-Smits, E.A.H. Selenium Accumulation, Speciation and Localization in Brazil Nuts (Bertholletia excelsa H.B.K.). Plants 2019, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- Ak, B.E.; Parlakci, H. The Low Yield Reasons and Solution of Pistachio Nut in Turkey; FAO CIHEAM Nut Network: Zaragoza, Spain, 1997. [Google Scholar]
- Rabadán, A.; Álvarez-Ortí, M.; Pardo, J.E. A comparison of the effect of genotype and weather conditions on the nutritional composition of most important commercial nuts. Sci. Hortic. 2019, 244, 218–224. [Google Scholar] [CrossRef]
- Luedeling, E.; Girvetz, E.H.; Semenov, M.A.; Brown, P.H. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS ONE 2011, 6, e20155. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Cano-Barbacil, N.R.; Cano-Barbacil, C.; Cano Sánchez, J. La Floración del Almendro Prunus Dulcis se Adelanta en el Centro Peninsular Durante el Periodo 1981–2024; Agencia Estatal de Meteorología: Madrid, Spain, 2025. [Google Scholar]
- Spanish Ministry of Agriculture Fisheries and Food. 2024/2025 Campaign Balance; Spanish Ministry of Agriculture Fisheries and Food: Madrid, Spain, 2024. [Google Scholar]
- Puliga, F.; Leonardi, P.; Minutella, F.; Zambonelli, A.; Francioso, O. Valorization of Hazelnut Shells as Growing Substrate for Edible and Medicinal Mushrooms. Horticulturae 2022, 8, 214. [Google Scholar] [CrossRef]
- Dardick, C.; Callahan, A.M. Evolution of the fruit endocarp: Molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Front. Plant Sci. 2014, 5, 89362. [Google Scholar] [CrossRef] [PubMed]
- Famiani, F.; Bonghi, C.; Chen, Z.H.; Drincovich, M.F.; Farinelli, D.; Lara, M.V.; Proietti, S.; Rosati, A.; Vizzotto, G.; Walker, R.P. Stone Fruits: Growth and Nitrogen and Organic Acid Metabolism in the Fruits and Seeds—A Review. Front. Plant Sci. 2020, 11, 572601. [Google Scholar] [CrossRef]
- Huss, J.C.; Antreich, S.J.; Bachmayr, J.; Xiao, N.; Eder, M.; Konnerth, J.; Gierlinger, N. Topological Interlocking and Geometric Stiffening as Complementary Strategies for Strong Plant Shells. Adv. Mater. 2020, 32, 2004519. [Google Scholar] [CrossRef]
- NAEINSUN, Iranian Pistachio. Wikipedia Commons. 2013. Available online: https://commons.wikimedia.org/wiki/File:Pistachio01.JPG (accessed on 5 May 2025).
- Guilhem Vellut, Hazelnut. Wikipedia Commons. 2021. Available online: https://commons.wikimedia.org/wiki/File:Hazelnut_(51283027793).jpg (accessed on 5 May 2025).
- THOR. Pistachio. Wikipedia Commons. 2010. Available online: https://commons.wikimedia.org/wiki/File:Pistachio_vera.jpg (accessed on 5 May 2025).
- Fir0002. Lots of Hazelnuts. Wikipedia Commons. 2004. Available online: https://commons.wikimedia.org/wiki/File:Hazelnuts.jpg (accessed on 5 May 2025).
- DeNotenboer. Pistachio Nuts. Flickr Creative Commons. 2012. Available online: https://www.flickr.com/photos/74260741@N07/6691400039 (accessed on 5 May 2025).
- RGY23. Hazelnuts. Pixabay Creative Commons. 2024. Available online: https://pixabay.com/photos/hazelnut-peanut-nut-filbert-3898490/ (accessed on 5 May 2025).
- OpenAI. Pistachio Shell, Hazelnut Shell, Almond Parts (Hull, Shell, Skin, Kernel). 2025. Available online: https://sora.chatgpt.com/ (accessed on 22 May 2025).
- Queirós, C.S.G.P.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefinery 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, J.; Cong, J.; Zhang, T.; Lei, H.; Xu, H.; Luo, Z.; Li, M. The road to reuse of walnut by-products: A comprehensive review of bioactive compounds, extraction and identification methods, biomedical and industrial applications. Trends Food Sci. Technol. 2024, 143, 104264. [Google Scholar] [CrossRef]
- Alasalvar, C.; Huang, G.; Bolling, B.W.; Jantip, P.; Pegg, R.B.; Wong, X.K.; Chang, S.K.; Pelvan, E.; de Camargo, A.C.; Mandalari, G.; et al. Upcycling commercial nut byproducts for food, nutraceutical, and pharmaceutical applications: A comprehensive review. Food Chem. 2025, 467, 142222. [Google Scholar] [CrossRef] [PubMed]
- Fuso, A.; Risso, D.; Rosso, G.; Rosso, F.; Manini, F.; Manera, I.; Caligiani, A. Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods 2021, 10, 1197. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Roeder, A.H.K. Plant Development: Differential Growth Rates in Distinct Zones Shape an Ancient Plant Form. Curr. Biol. 2017, 27, R19–R21. [Google Scholar] [CrossRef] [PubMed]
- Ramalhosa, E.; Delgado, T.; Estevinho, L.; Pereira, J.A. Hazelnut (Corylus avellana L.) Cultivars and Antimicrobial Activity. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 627–636. [Google Scholar]
- Serdar, Ü.; Soylu, A. Selection of chestnuts (c. Sativa mill.) in samsun vicinity. Acta Hortic. 1999, 494, 333–338. [Google Scholar] [CrossRef]
- Costa-Trigo, I.; Paz, A.; Morán-Aguilar, M.G.; Pérez Guerra, N.; Pinheiro de Souza Oliveira, R.; Domínguez, J.M. Enhancing the biorefinery of chestnut burrs. Part I. Study of the pretreatment with choline chloride urea diluted deep eutectic solvent. Biomass Bioenergy 2023, 173, 106786. [Google Scholar] [CrossRef]
- Stéphane, K.Y.; Halbin, K.J.; Charlemagne, N. Comparative Study of Physical Properties of Cashew Nuts from Three Main Production Areas in Côte d’Ivoire. Agric. Sci. 2020, 11, 1232–1249. [Google Scholar]
- Godini, A. Hull, Shell and Kernel Relationships in Almond Fresh Fruits; CIHEAM: Paris, France, 1984; Volume 2. [Google Scholar]
- Ananda, K.S.; Rajesh, B.; Shobha, D. Yield Performance of Exotic Accessions of Arecanut (Areca catechu L.). Indian J. Plant Genet. Resour. 2005, 18, 114–116. [Google Scholar]
- Vargas, E.A.; Santos, E.A.D.; Whitaker, T.B.; Slate, A.B. Determination of aflatoxin risk components for in-shell Brazil nuts. Food Addit. Contam. Part A 2011, 28, 1242–1260. [Google Scholar] [CrossRef]
- Bellow, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Kolawole, F.O.; Hassan, S.B. Physical properties of coconut shell nanoparticles. Kathmandu Univ. J. Sci. Eng. Technol. 2018, 12, 63–79. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N. Determination of size and shape features of hazelnuts using multivariate analysis. Acta Sci. Pol. Hortorum Cultus 2017, 16, 49–61. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Topp, B.; Alam, M. Image-Based Phenotyping of Shell Thickness Revealed Strong Association with Kernel Recovery in Macadamia. Biol. Life Sci. Forum. 2021, 11, 95. [Google Scholar]
- Gulluoglu, L.; Bakal, H.; Onat, B.; Kurt, C.; Arioglu, H. Comparison of agronomic and quality characteristics of some peanut (Arachis hypogaea L.) varieties grown as main and double crop in Mediterranean region. Turk. J. Field Crops 2017, 22, 166–177. [Google Scholar] [CrossRef]
- Hoffmann, J.F.; Crizel, R.L.; Siebeneichler, T.J.; Foscarini, S.C.; de Oliveira Duarte da Silva, T.; Ferreira, C.D.; Carvalho, I.R.; Hellwig, C.G.; Martins, C.R. Tree thinning affects the physicochemical characteristics and bioactive compounds in ‘Barton’ and ‘Melhorada’ pecan cultivars. Ciência Agrotecnol. 2024, 48, e005924. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Rafe, A.; Moghaddam, T.M.; Mohammad Amini, A. Physical properties of pistachio nut and its kernel as a function of moisture content and variety. Part II. Gravimetrical properties. J. Food Eng. 2007, 81, 218–225. [Google Scholar] [CrossRef]
- Salih, H. Physicochemical properties of Walnuts (Juglans regia L.) shells and kernels growing in different locations in Kurdistan region-Iraq. J. Zankoy Sulaimani-Part A 2020, 22, 109–118. [Google Scholar] [CrossRef]
- Olajide, J.O.; Igbeka, J.C. Some physical properties of groundnut kernels. J. Food Eng. 2003, 58, 201–204. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, Q.; Cui, M.; Jia, X.; Li, N. Evaluation of the in vitro and in vivo Genotoxicity of Almond Skins. Biomed. Environ. Sci. 2011, 24, 415–421. [Google Scholar]
- Shirmohammadi, S.; Taghizadeh, A.; Paya, H.; Javanmard, A.; Abachi, S.; Darabi, B.H.; Gharajeh, S.N.; Shokrani, N. Evaluation of Nutritive Values of Agro-Industrial By-Products (AIBPS) and Effect of Their Nano Structural Characteristics on the Kinetics of Biogas Production and Methane Emission. Preprint 2021. [Google Scholar] [CrossRef]
- Vazquez-Flores, A.A.; Núñez-Gastélum, J.A.; Alvarez-Parrilla, E.; Wall-Medrano, A.; Rodrigo-Garcĺa, J.; Ayala-Zavala, J.F.; González-Aguilar, G.A.; De La Rosa, L.A. By-Products of the Nut and Peanut Agro-Industry as Sources of Phytochemicals Suitable for the Nutraceutical and Food Industries. In Plant Food By-Products; Apple Academic Press: Oakville, ON, Canada, 2018; pp. 201–220. [Google Scholar]
- Kader, A.A. Impact of nut postharvest handling, de-shelling, drying and storage on quality. In Improving the Safety and Quality of Nuts; Elsevier: Amsterdam, The Netherlands, 2013; pp. 22–34. [Google Scholar]
- E. R. S. United States Department of Agriculture. USDA. 2024. Available online: https://www.usda.gov/ (accessed on 3 June 2025).
- Pérez, J.; Muñoz-Dorado, J.; De La Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Fortunati, E.; Luzi, F.; Puglia, D.; Torre, L. Extraction of Lignocellulosic Materials From Waste Products. In Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–38. [Google Scholar]
- Zhang, J.; Wang, Y.; Du, X.; Qu, Y. Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass. Bioresour. Technol. 2020, 303, 122846. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Cabrera, R.Q.; Meersman, F.; Mcmillan, P.F.; Dmitriev, V. Nanomechanical and Structural Properties of Native Cellulose Under Compressive Stress. Biomacromolecules 2011, 12, 2178–2183. [Google Scholar] [CrossRef]
- Quiroz Castañeda, R.E.; Folch-Mallol, J.L. Degradation of Lignocellulosic Biomass—Techniques, Applications and Commercialization; BoD—Books on Demand: Norderstedt, Germany, 2013. [Google Scholar]
- Verardi, A.; De Bari, I.; Ricca, E.; Calabrò, V.; Verardi, A.; De Bari, I.; Ricca, E.; Calabrò, V. Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. In Bioethanol; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Khodayari, A.; Thielemans, W.; Hirn, U.; Van Vuure, A.W.; Seveno, D. Cellulose-hemicellulose interactions—A nanoscale view. Carbohydr. Polym. 2021, 270, 118364. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Zhang, M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int. J. Biol. Macromol. 2024, 280, 135657. [Google Scholar] [CrossRef]
- Chen, H. Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose; Springer: Dordrecht, The Netherlands, 2014; pp. 25–71. [Google Scholar]
- Rai, R.; Kumar, V.; Dhar, P. Recalcitrance of Lignocellulosic Biomass and Pretreatment Technologies: A Comprehensive Insight. In Thermochemical and Catalytic Conversion Technologies for Future Biorefineries; Springer: Singapore, 2022; pp. 13–52. [Google Scholar]
- Wang, L.; Li, G.; Chen, X.; Yang, Y.; Liew, R.K.; Abo-Dief, H.M.; Lam, S.S.; Sellami, R.; Peng, W.; Li, H. Extraction strategies for lignin, cellulose, and hemicellulose to obtain valuable products from biomass. Adv. Compos. Hybrid Mater. 2024, 7, 219. [Google Scholar] [CrossRef]
- Buranov, A.U.; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crops Prod. 2008, 28, 237–259. [Google Scholar] [CrossRef]
- Campbell, M.M.; Sederoff, R.R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 1996, 11, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Demirbaş, A. Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis 2006, 76, 285–289. [Google Scholar] [CrossRef]
- Demirbaş, A. Kinetics for non-isothermal flash pyrolysis of hazelnut shell. Bioresour. Technol. 1998, 66, 247–252. [Google Scholar] [CrossRef]
- Yalchi, T. Determination of digestibility of almond hull in sheep. Afr. J. Biotechnol. 2011, 10, 3022–3026. [Google Scholar]
- Aktas, T.; Thy, P.; Williams, R.B.; McCaffrey, Z.; Khatami, R.; Jenkins, B.M. Characterization of almond processing residues from the Central Valley of California for thermal conversion. Fuel Process. Technol. 2015, 140, 132–147. [Google Scholar] [CrossRef]
- Karri, V.R. Use of groundnut shell compost as a natural fertilizer for the cultivation of vegetable plants. Int. J. Adv. Res. Sci. Eng. 2018, 7, 97–104. [Google Scholar]
- Karagöktaş, M.; Veli, U.; Aydoğdu, M.; Rastgeldi, I. The effects of pistachio nut hull compost on soil fertility: A comparative study with manure. In Proceedings of the 9th International Soil Science Congress on “The Soul of Soil and Civilization”, Side, Antalya, Turkey, 14–16 October 2014. [Google Scholar]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef]
- Swanson, K.L.; Bill, H.M.; Asmus, J.; Heguy, J.M.; Fadel, J.G.; Depeters, E.J. In vitro and in sacco digestibility of almond hulls. J. Agric. Sci. 2021, 159, 615–621. [Google Scholar] [CrossRef]
- McKay, A.M.; Kerr, W.L.; Dorick, J.M.; Dunn, L.L. Conditions for optimal shelling, microbial reduction, and kernel quality in pecans. Postharvest Biol. Technol. 2022, 191, 111966. [Google Scholar] [CrossRef]
- Donohoe, B.S.; Ciesielski, P.N.; Vinzant, T.B. Preservation and preparation of lignocellulosic biomass samples for multi-scale microscopy analysis. Methods Mol. Biol. 2012, 908, 31–47. [Google Scholar]
- Liu, Z.H.; Qin, L.; Pang, F.; Jin, M.J.; Li, B.Z.; Kang, Y.; Dale, B.E.; Yuan, Y.J. Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind. Crops Prod. 2013, 44, 176–184. [Google Scholar] [CrossRef]
- Kapoor, M.; Semwal, S.; Satlewal, A.; Christopher, J.; Gupta, R.P.; Kumar, R.; Puri, S.K.; Ramakumar, S.S.V. The impact of particle size of cellulosic residue and solid loadings on enzymatic hydrolysis with a mass balance. Fuel 2019, 245, 514–520. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khazaeian, A. Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Compos. B Eng. 2012, 43, 1475–1479. [Google Scholar] [CrossRef]
- Oyedeji, O.; Gitman, P.; Qu, J.; Webb, E. Understanding the Impact of Lignocellulosic Biomass Variability on the Size Reduction Process: A Review. ACS Sustain. Chem. Eng. 2020, 8, 2327–2343. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Zhao, G.; Ye, F. Comparison of milling methods on the properties of common buckwheat flour and the quality of wantuan, a traditional Chinese buckwheat food. Food Chem. X 2023, 19, 100845. [Google Scholar] [CrossRef]
- Susi, S.; Ainuri, M.; Wagiman, W.; Falah, M.A.F. Effect of delignification and bleaching stages on cellulose purity of oil palm empty fruit bunches. IOP Conf. Ser. Earth Environ. Sci. 2022, 1116, 012018. [Google Scholar] [CrossRef]
- Wang, B.; Shen, P.; Zhu, W.; Pang, Z.; Dong, C. Effect of ground wood particle size on biomass fractionation using p-toluenesulfonic acid treatment. Cellulose 2020, 27, 4043–4052. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; Martín-Pérez, L.; Gil-Guillén, I.; González-Martínez, C.; Chiralt, A. Subcritical Water Extraction for Valorisation of Almond Skin from Almond Industrial Processing. Foods 2023, 12, 3759. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, L.; Xu, L.; Pan, H.; Hao, H.; Guo, F. Preparation of peanut shell cellulose nanofibrils and their superhydrophobic aerogels and their application on cotton fabrics. J. Porous Mater. 2023, 30, 471–483. [Google Scholar] [CrossRef]
- Özbek, H.N.; Yanık, D.K.; Fadıloğlu, S.; Fahrettin, G. Effect of microwave-assisted alkali pre-treatment on fractionation of pistachio shell and enzymatic hydrolysis of cellulose-rich residues. J. Chem. Technol. Biotechnol. 2021, 96, 521–531. [Google Scholar] [CrossRef]
- Siqueira, G.; Arantes, V.; Saddler, J.N.; Ferraz, A.; Milagres, A.M.F. Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnol. Biofuels 2017, 10, 176. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Chuin, C.T.H.; Sabar, S.; Fazita, M.R.N.; Taiwo, O.F.A.; Hassan, T.M. Microcrystalline cellulose, M.K.M.H., characterization and bio-composites application—A review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Jȩdrzejczyk, M.; Soszka, E.; Czapnik, M.; Ruppert, A.M.; Grams, J. Physical and chemical pretreatment of lignocellulosic biomass. In Second and Third Generation of Feedstocks: The Evolution of Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 143–196. [Google Scholar]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Kim, T.H. Pretreatment of Lignocellulosic Biomass. In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 91–110. [Google Scholar]
- Drapcho, C.M.; Nhuan, N.P.; Walker, T.H. Biofuels Engineering Process Technology; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzym. Res. 2011, 1, 787532. [Google Scholar] [CrossRef] [PubMed]
- Jamaldheen, S.B.; Kurade, M.B.; Basak, B.; Yoo, C.G.; Oh, K.K.; Jeon, B.H.; Kim, T.H. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour. Technol. 2022, 346, 126591. [Google Scholar] [CrossRef] [PubMed]
- Corsi, L.; Mateo, S.; Spaccini, F.; Buratti, C.; Moya, A.J. Optimization of Microwave-Assisted Organosolv Pretreatment for Enzymatic Hydrolysis of Cherry Tree Pruning and Pistachio Shells: A Step to Bioethanol Production. Bioenergy Res. 2024, 17, 294–308. [Google Scholar] [CrossRef]
- Gong, Y.; Li, S.; Hu, Y.; Jin, G.; Zhou, H.; Lim, L.T.; Xiao, Q. Acidic and alkaline deep eutectic solvents pretreatment of Macadamia nutshells for production of cellulose nanofibrils and lignin nanoparticles. Int. J. Biol. Macromol. 2025, 300, 140251. [Google Scholar] [CrossRef] [PubMed]
- Surek, E.; Buyukkileci, A.O. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr. Polym. 2017, 174, 565–571. [Google Scholar] [CrossRef]
- Li, H.; Liang, J.; Chen, L.; Ren, M.; Zhou, C. Utilization of walnut shell by deep eutectic solvents: Enzymatic digestion of cellulose and preparation of lignin nanoparticles. Ind. Crops Prod. 2023, 192, 116034. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Qureshi, K.; Harijan, K.; Abro, R.; Abbas, T.; Bazmi, A.A.; Karim, S.; Yu, G. Insight into progress in pre-treatment of lignocellulosic biomass. Energy 2017, 122, 724–745. [Google Scholar] [CrossRef]
- Tsubota, T.; Khuong, D.A.; Nagaoka, H.; Kumagai, S.; Andou, Y. Use of the Wise method as a pretreatment for the selective removal of lignin when preparing bamboo-activated carbon. Adv. Bamboo Sci. 2023, 5, 100049. [Google Scholar] [CrossRef]
- Camarena-Bononad, P.; Freitas, P.A.V.; González-Martínez, C.; Chiralt, A.; Vargas, M. Influence of the Purification Degree of Cellulose from Posidonia oceanica on the Properties of Cellulose-PLA Composites. Polysaccharides 2024, 5, 807–822. [Google Scholar] [CrossRef]
- Ng, H.M.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Hui, D.; Low, C.Y.; Rahmat, A.R. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. B Eng. 2015, 75, 176–200. [Google Scholar] [CrossRef]
- Azelee, N.I.W.; Mahdi, H.I.; Cheng, Y.S.; Nordin, N.; Illias, R.M.; Rahman, R.A.; Shaarani, S.M.; Bhatt, P.; Yadav, S.; Chang, S.W.; et al. Biomass degradation: Challenges and strategies in extraction and fractionation of hemicellulose. Fuel 2023, 339, 126982. [Google Scholar] [CrossRef]
- Qing, Q.; Li, H.; Kumar, R.; Wyman, C.E. Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment. In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 391–415. [Google Scholar]
- Jana, U.K.; Kango, N.; Pletschke, B. Hemicellulose-Derived Oligosaccharides: Emerging Prebiotics in Disease Alleviation. Front. Nutr. 2021, 8, 670817. [Google Scholar] [CrossRef]
- Ye, L.; Han, Y.; Wang, X.; Lu, X.; Qi, X.; Yu, H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Mol. Catal. 2021, 515, 111899. [Google Scholar] [CrossRef]
- An, S.; Li, W.; Liu, Q.; Li, M.; Ma, Q.; Ma, L.; Chang, H.M. A two-stage pretreatment using acidic dioxane followed by dilute hydrochloric acid on sugar production from corn stover. RSC Adv. 2017, 7, 32452–32460. [Google Scholar] [CrossRef]
- Namhaed, K.; Triquet, T.; Cognet, P.; Darmawan, M.A.; Muryanto, M.; Gozan, M. Formic acid as a catalyst in furfural production by simultaneous extraction processes via steam stripping and biphasic systems. Chem. Eng. Res. Des. 2025, 218, 388–399. [Google Scholar] [CrossRef]
- Ibrahim, Q.; Kruse, A. Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresour. Technol. Rep. 2020, 11, 100506. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Erdocia, X.; Bouhtoury, F.C.-E.; Prado, R.; Labidi, J. Multistage treatment of almonds waste biomass: Characterization and assessment of the potential applications of raw material and products. Waste Manag. 2018, 80, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Eibes, G.; Dávila, I.; Moreira, M.T.; Labidi, J.; Gullón, P. Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohydr. Polym. 2018, 192, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Hoşgün, E.Z.; Ay, S.B.; Bozan, B. Effect of sequential pretreatment combinations on the composition and enzymatic hydrolysis of hazelnut shells. Prep. Biochem. Biotechnol. 2021, 51, 570–579. [Google Scholar] [CrossRef]
- Hoşgün, E.Z.; Bozan, B. Effect of Different Types of Thermochemical Pretreatment on the Enzymatic Hydrolysis and the Composition of Hazelnut Shells. Waste Biomass Valoriz. 2020, 11, 3739–3748. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Fathi, M.; Ghoddusi, H.B. Pickering emulsions stabilized by cellulose nanocrystals extracted from hazelnut shells: Production and stability under different harsh conditions. Int. J. Biol. Macromol. 2024, 258, 128982. [Google Scholar] [CrossRef] [PubMed]
- López, L.; Rivas, S.; Moure, A.; Vila, C.; JParajó, C. Development of Pretreatment Strategies for the Fractionation of Hazelnut Shells in the Scope of Biorefinery. Agronomy 2020, 10, 1568. [Google Scholar] [CrossRef]
- Teh, W.X.; Hossain, M.M.; To, T.Q.; Aldous, L. Pretreatment of macadamia nut shells with ionic liquids facilitates both mechanical cracking and enzymatic hydrolysis. ACS Sustain. Chem. Eng. 2015, 3, 992–999. [Google Scholar] [CrossRef]
- Lu, A.; Yu, X.; Ji, Q.; Chen, L.; Yagoub, A.E.G.; Olugbenga, F.; Zhou, C. Preparation and characterization of lignin-containing cellulose nanocrystals from peanut shells using a deep eutectic solvent containing lignin-derived phenol. Ind. Crops Prod. 2023, 195, 116415. [Google Scholar] [CrossRef]
- Kasiri, N.; Fathi, M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 2018, 106, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Robles, E.; Izaguirre, N.; Martin, A.; Moschou, D.; Labidi, J. Assessment of Bleached and Unbleached Nanofibers from Pistachio Shells for Nanopaper Making. Molecules 2021, 26, 1371. [Google Scholar] [CrossRef]
- Harini, K.; Mohan, C.C. Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse. Int. J. Biol. Macromol. 2020, 163, 1375–1383. [Google Scholar] [CrossRef]
- Morales, A.; Labidi, J.; Gullón, P. Integral valorisation of walnut shells based on a three-step sequential delignification. J. Environ. Manag. 2022, 310, 114730. [Google Scholar] [CrossRef]
- Li, H.; Liang, J.; Kong, F.; Ren, M.; Yagoub Mohammed, A.E.G.A.; Zhou, C. Preparation of lignin-containing cellulose nanofibers from walnut shell using deep eutectic solvent for nanotube conductive film. Ind. Crops Prod. 2024, 207, 117737. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Y.; Guo, Y.; Yue, J. Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans regia L.) Shell Agricultural Waste. Polymers 2019, 11, 1130. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Bensah, E.C.; Mensah, M. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations. Int. J. Chem. Eng. 2013, 2013, 719607. [Google Scholar] [CrossRef]
- Wei, W.; Wang, B.; Wang, X.; Ling, R.; Jin, Y. Comparison of acid and alkali catalyzed ethylene glycol organosolv pretreatment for sugar production from bagasse. Bioresour. Technol. 2021, 320, 124293. [Google Scholar] [CrossRef]
- Feng, C.; Zhu, J.; Hou, Y.; Qin, C.; Chen, W.; Nong, Y.; Liao, Z.; Liang, C.; Bian, H.; Yao, S. Effect of temperature on simultaneous separation and extraction of hemicellulose using p-toluenesulfonic acid treatment at atmospheric pressure. Bioresour. Technol. 2022, 348, 126793. [Google Scholar] [CrossRef]
- Yu, Z.; Jameel, H.; Chang, H.M.; Park, S. The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour. Technol. 2011, 102, 9083–9089. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, J.; Zhang, Y.; Yu, Q.; Yuan, Z.; Liu, Y. Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresour. Technol. 2013, 144, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, J.Y.; Jang, H.M.; Lee, M.W.; Park, J.M. Sequential dilute acid and alkali pretreatment of corn stover: Sugar recovery efficiency and structural characterization. Bioresour. Technol. 2015, 182, 296–301. [Google Scholar] [CrossRef]
- Ashoor, S.; Sukumaran, R.K. Mild alkaline pretreatment can achieve high hydrolytic and fermentation efficiencies for rice straw conversion to bioethanol. Prep. Biochem. Biotechnol. 2020, 50, 814–819. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Hu, F.; Ragauskas, A. Pretreatment and Lignocellulosic Chemistry. Bioenergy Res. 2012, 5, 1043–1066. [Google Scholar] [CrossRef]
- Guthrie, F.; Wang, Y.; Neeve, N.; Quek, S.Y.; Mohammadi, K.; Baroutian, S. Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food Bioprod. Process. 2020, 122, 136–144. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y.; Lovillo, M.P.; Carrera Fernández, C.A.; Ruiz Rodríguez, A. Subcritical Water Extraction of Natural Products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A 2010, 1217, 2484–2494. [Google Scholar] [CrossRef]
- Abdelmoez, W.; Nage, S.M.; Bastawess, A.; Ihab, A.; Yoshida, H. Subcritical water technology for wheat straw hydrolysis to produce value added products. J. Clean. Prod. 2014, 70, 68–77. [Google Scholar] [CrossRef]
- Haghighi Asl, A.; Khajenoori, M. Mass Transfer-Advances in Sustainable Energy and Environment Oriented Numerical Modeling; IntechOpen: London, UK, 2013; pp. 459–487. [Google Scholar]
- Ozel, M.Z.; Gogus, F.; Lewis, A.C. Subcritical water extraction of essential oils from Thymbra spicata. Food Chem. 2003, 82, 381–386. [Google Scholar] [CrossRef]
- Matsunaga, M.; Matsui, H.; Otsuka, Y.; Yamamoto, S. Chemical conversion of wood by treatment in a semi-batch reactor with subcritical water. J. Supercrit. Fluids 2008, 44, 364–369. [Google Scholar] [CrossRef]
- Qin, L.; Li, W.C.; Liu, L.; Zhu, J.Q.; Li, X.; Li, B.Z.; Yuan, Y.J. Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnol. Biofuels 2016, 9, 70. [Google Scholar] [CrossRef]
- TLloyd, A.; Wyman, C.E. Predicted effects of mineral neutralization and bisulfate formation on hydrogen ion concentration for dilute sulfuric acid pretreatment. Appl. Biochem. Biotechnol. 2004, 113–116, 1013–1022. [Google Scholar]
- Banff, C. The International Association for the Properties of Water and Steam. In Proceedings of the International Association for the Properties of Water and Steam (IAPWS), Banff, AB, Canada, 4 October 2019; pp. 11–18. [Google Scholar]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Debiparna, D.; Sai, M.S.N.; Aniya, V.; Satyavathi, B. Strategic biorefinery platform for green valorization of agro-industrial residues: A sustainable approach towards biodegradable plastics. J. Clean. Prod. 2021, 290, 125184. [Google Scholar]
- Singh, P.P.; Saldaña, M.D.A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Kheirkhah, H.; Baroutian, S.; Quek, S.Y. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food Bioprod. Process. 2019, 115, 143–153. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nizetic, S.; Ong, H.C.; Chong, C.T.; Atabani, A.E.; Pham, V.V. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. J. Environ. Manag. 2021, 296, 113194. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Pu, Y.; Studer, M.; Wyman, C.; Ragauskas, A.J. Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Adv. 2012, 2, 10925–10936. [Google Scholar] [CrossRef]
- Baral, N.R.; Shah, A. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresour. Technol. 2017, 232, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Mosier, N.S. Fundamentals of Aqueous Pretreatment of Biomass. In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 129–143. [Google Scholar]
- Lancha, J.P.; Perré, P.; Colin, J.; Lv, P.; Ruscassier, N.; Almeida, G. Multiscale investigation on the chemical and anatomical changes of lignocellulosic biomass for different severities of hydrothermal treatment. Sci. Rep. 2021, 11, 8444. [Google Scholar] [CrossRef]
- Beig, B.; Riaz, M.; Naqvi, S.R.; Hassan, M.; Zheng, Z.; Karimi, K.; Pugazhendhi, A.; Atabani, A.E.; Thuy Lan Chi, N. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel 2021, 287, 119670. [Google Scholar] [CrossRef]
- Chen, Y.; Stevens, M.A.; Zhu, Y.; Holmes, J.; Moxley, G.; Xu, H. Reducing acid in dilute acid pretreatment and the impact on enzymatic saccharification. J. Ind. Microbiol. Biotechnol. 2012, 39, 691–700. [Google Scholar] [CrossRef]
- Ballesteros, I.; Negro, M.J.; Oliva, J.M.; Cabañas, A.; Manzanares, P.; Ballesteros, M. Ethanol Production from Steam-Explosion Pretreated Wheat Straw. In Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, USA, 2006; pp. 496–508. [Google Scholar]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids-Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef]
- Zhao, B.; Al Rasheed, H.; Ali, I.; Hu, S. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Bioresour. Technol. 2021, 319, 124115. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, M.A.; Ivanov, A.S.; Arkhipova, E.A.; Desyatov, A.V.; Savilov, S.V.; Lunin, V.V. Structure and properties of new dicationic ionic liquid DBTMEDA(BF4)2. Struct. Chem. 2019, 30, 451–456. [Google Scholar] [CrossRef]
- Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale Studies on Ionic Liquids. Chem. Rev. 2017, 117, 6636–6695. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, A.P.; Rodríguez, O.; Macedo, E.A. Dissolution and fractionation of nut shells in ionic liquids. Bioresour. Technol. 2017, 227, 188–196. [Google Scholar] [CrossRef]
- Xu, G.C.; Ding, J.C.; Han, R.Z.; Dong, J.J.; Ni, Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 2016, 203, 364–369. [Google Scholar] [CrossRef]
- Tu, W.C.; Weigand, L.; Hummel, M.; Sixta, H.; Brandt-Talbot, A.; Hallett, J.P. Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose 2020, 27, 4745–4761. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Lim, K.L. Protic ionic liquids as next-generation proton exchange membrane materials: Current status & future perspectives. React. Funct. Polym. 2022, 171, 105160. [Google Scholar]
- Yu, K.; Ding, W.L.; Lu, Y.; Wang, Y.; Liu, Y.; Liu, G.; Huo, F.; He, H. Ionic liquids screening for lignin dissolution: COSMO-RS simulations and experimental characterization. J. Mol. Liq. 2022, 348, 118007. [Google Scholar] [CrossRef]
- Baaqel, H.; Díaz, I.; Tulus, V.; Chachuat, B.; Guillén-Gosálbez, G.; Hallett, J.P. Role of life-cycle externalities in the valuation of protic ionic liquids–a case study in biomass pretreatment solvents. Green Chem. 2020, 22, 3132–3140. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Omar, K.A.; Sadeghi, R. Database of deep eutectic solvents and their physical properties: A review. J. Mol. Liq. 2023, 384, 121899. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2020, 121, 1232–1285. [Google Scholar] [CrossRef]
- Marcotullio, G.; De Jong, W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem. 2010, 12, 1739–1746. [Google Scholar] [CrossRef]
- Liu, C.; Wyman, C.E. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 degrees C. Carbohydr. Res. 2006, 341, 2550–2556. [Google Scholar] [CrossRef]
- Han, S.; Wang, R.; Wang, K.; Jiang, J.; Xu, J. Low-condensed lignin and high-purity cellulose production from poplar by synergistic deep eutectic solvent-hydrogenolysis pretreatment. Bioresour. Technol. 2022, 363, 127905. [Google Scholar] [CrossRef] [PubMed]
- Skulcova, A.; Russ, A.; Jablonsky, M.; Sima, J. The pH behavior of seventeen deep eutectic solvents. Bioresources 2019, 13, 5042–5051. [Google Scholar] [CrossRef]
- Sazali, A.L.; Amran, S.K.; Pa, K.F.; Anuar, M.R.; Kelly Yong, T.-L. Potential of lignin from oil palm biomass using deep eutectic solvents as carbon fibre precursor. Malays. J. Anal. Sci. 2023, 27, 471–487. [Google Scholar]
- Zhao, X.; Li, S.; Wu, R.; Liu, D. Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures. Biofuels Bioprod. Biorefin. 2017, 11, 567–590. [Google Scholar] [CrossRef]
- Pan, X.; Xie, D.; Yu, R.W.; Lam, D.; Saddler, J.N. Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Ind. Eng. Chem. Res. 2007, 46, 2609–2617. [Google Scholar] [CrossRef]
- Chin, D.W.K.; Lim, S.; Pang, Y.L.; Lim, C.H.; Shuit, S.H. Effects of organosolv pretreatment using ethylene glycol on degraded empty fruit bunch for delignification and fractionation. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 012003. [Google Scholar] [CrossRef]
- Zhang, Z.; Harrison, M.D.; Rackemann, D.W.; Doherty, W.O.S.; O’Hara, I.M. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem. 2016, 18, 360–381. [Google Scholar] [CrossRef]
- Chin, D.W.K.; Lim, S.; Pang, Y.L.; Lam, M.K. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels Bioprod. Biorefin. 2020, 14, 808–829. [Google Scholar] [CrossRef]
- Chu, Q.; Tong, W.; Chen, J.; Wu, S.; Jin, Y.; Hu, J.; Song, K. Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization. Biotechnol. Biofuels 2021, 14, 1–13. [Google Scholar] [CrossRef]
- You, T.T.; Zhang, L.M.; Zhou, S.K.; Xu, F. Structural elucidation of lignin–carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Ind. Crops Prod. 2015, 71, 65–74. [Google Scholar] [CrossRef]
- Jomnonkhaow, U.; Sittijunda, S.; Reungsang, A. Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage. Renew. Energy 2022, 181, 1237–1249. [Google Scholar] [CrossRef]
- Loharkar, P.K.; Ingle, A.; Jhavar, S. Parametric review of microwave-based materials processing and its applications. J. Mater. Res. Technol. 2019, 8, 3306–3326. [Google Scholar] [CrossRef]
- Kalinke, I.; Kubbutat, P.; Dinani, S.T.; Ambros, S.; Ozcelik, M.; Kulozik, U. Critical assessment of methods for measurement of temperature profiles and heat load history in microwave heating processes—A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2118–2148. [Google Scholar] [CrossRef]
- Miura, M.; Kaga, H.; Sakurai, A.; Kakuchi, T.; Takahashi, K. Rapid pyrolysis of wood block by microwave heating. J. Anal. Appl. Pyrolysis 2004, 71, 187–199. [Google Scholar] [CrossRef]
- Ethaib, S.; Omar, R.; Mazlina, M.K.S.; Radiah, A.B.D.; Syafiie, S. Development of a hybrid PSO–ANN model for estimating glucose and xylose yields for microwave-assisted pretreatment and the enzymatic hydrolysis of lignocellulosic biomass. Neural Comput. Appl. 2018, 30, 1111–1121. [Google Scholar] [CrossRef]
- Nomanbhay, S.M.; Hussain, R.; Palanisamy, K.; Nomanbhay, S.M.; Hussain, R.; Palanisamy, K. Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. J. Sustain. Bioenergy Syst. 2013, 3, 7–17. [Google Scholar] [CrossRef]
- Hesas, R.H.; Daud, W.M.A.W.; Sahu, J.N.; Arami-Niya, A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. Appl. Pyrolysis 2013, 100, 1–11. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Michael P Mingos, D. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998, 27, 213–224. [Google Scholar] [CrossRef]
- Kohli, K.; Katuwal, S.; Biswas, A.; Sharma, B.K. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour. Technol. 2020, 303, 122897. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Linares, G.; Rojas, M.L. Ultrasound-Assisted Extraction of Natural Pigments From Food Processing By-Products: A Review. Front. Nutr. 2022, 9, 891462. [Google Scholar] [CrossRef]
- El Khayat Driaa, Y.; Maarir, H.; Mennani, M.; Grimi, N.; Moubarik, A.; Ultrasound, N.B. pulsed electric fields, and high-voltage electrical discharges assisted extraction of cellulose and lignin from walnut shells. Int. J. Biol. Macromol. 2025, 292, 139319. [Google Scholar] [CrossRef]
- Ardila, A.N.; Arriola-Villaseñor, E.; González, E.E.V.; Guerrero, H.E.G.; Hernández-Maldonado, J.A.; Gutiérrez-Pineda, E.; Villa, C.C. Enhanced Cellulose Extraction from Banana Pseudostem Waste: A Comparative Analysis Using Chemical Methods Assisted by Conventional and Focused Ultrasound. Polymers 2024, 16, 2785. [Google Scholar] [CrossRef]
- Poon, J.J.; Tan, M.C.; Loo Kiew, P. Ultrasound-assisted extraction in delignification process to obtain high purity cellulose. Cellul. Chem. Technol. 2020, 54, 725–734. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Applying ultrasound-assisted processing to obtain cellulose fibres from rice straw to be used as reinforcing agents. Innov. Food Sci. Emerg. Technol. 2022, 76, 102932. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Wu, J.Y. Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochem. Eng. J. 2013, 79, 214–220. [Google Scholar] [CrossRef]
- Arruda, H.; Silva, E.K.; Pereira, G.A.; Angolini, C.-F.F.; Eberlin, M.N.; Miereles, M.A.A.; Pastore, G.M. Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. Ultrason. Sonochem. 2019, 50, 82–95. [Google Scholar] [CrossRef] [PubMed]
Cellulose (g/100 g dm) | Hemicellulose (g/100 g dm) | Lignin (g/100 g dm) | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Nut Type | Area | Method | Conditions | Untreated Matter | Treated Matter | Untreated Matter | Treated Matter | Untreated Matter | Treated Matter | |
Almond | Guara | Hydrothermal | 30 min, 180 °C | 26.8 ± 1.3 | 41.7 ± 0.9 | 23.6 ± 0.2 | 11.6 ± 0.1 | 21.2 ± 2.0 | 18.6 ± 0.1 | [40] |
Hydrothermal + bleaching | 30 min, 180 °C bleaching 8% H2O2 pH = 12, 1 h (×4) | 26.8 ± 1.3 | 78.4 ± 0.2 | 23.6 ± 0.2 | 12.2 ± 1.2 | 21.2 ± 2.0 | 4.9 ± 1.2 | |||
Hydrothermal + bleaching | 30 min, 180 °C, bleaching 1.7% NaClO2, 4 h (×7) | 26.8 ± 1.3 | 83.7 ± 2.4 | 23.6 ± 0.2 | 12.5 ± 0.7 | 21.2 ± 2.0 | 5.1 ± 0.6 | |||
Marcona | Organosolv | EtOH:H2O (70:30), 90 min 200 °C (×3) | 18.19 ± 0.19 | 48.63 ± 1.27 | 35.99 ± 1.23 | 22.15 ± 0.26 | 31.24 ± 0.29 | 14.85 ± 0.40 | [166] | |
Chestnut | Spain | Hydrothermal | non-isothermal regimen, 180 °C | 20.6 ± 1.4 | 26.0 ± 1.6 | 10.5 ± 0.5 | 6.4 ± 0.1 | 44.6 ± 1.4 | 61.2 ± 1.6 | [167] |
Hazelnut | Levante | Hydrothermal | biomass:H2O 1:10, 0.5 h, 180 °C | 18.7 ± 0.5 | 27.8 ± 0.9 | 18.7 ± 0.1 | 4.5 ± 0.5 | 46.7 ± 0.2 | 58.7 ± 0.3 | [153] |
Hydrothermal | biomass H2O 1:10, 0.5 h, 190 °C | 18.7 ± 0.5 | 30.4 ± 1.1 | 18.7 ± 0.1 | 2.2 ± 0.2 | 46.7 ± 0.2 | 63.1 ± 1.5 | |||
Alkaline | 2.25% NaOH, 0.5 h, 60 °C | 16.7 | 18.1 | 13.3 | 12.4 | 51.3 | 32.8 | [168] | ||
Dilute acid | 0.5% H2SO4, 0.5 h, 120 °C | 16.7 | 21.6 | 13.3 | 7.8 | 51.3 | 60.0 | |||
Hydrothermal | biomass:H2O 1:10, 0.5 h, 120 °C | 16.7 | 23.2 | 13.3 | 9.2 | 51.3 | 63.5 | |||
Hydrothermal + dilute acid | H2O, 0.5 h, 120 °C 0.5% H2SO4, 0.5 h, 120 °C | 16.7 | 29.5 | 16.7 | 2.2 | 51.3 | 67.0 | |||
Dilute acid | 1% H2SO4, 0.25 h, 120 °C | 16.67 | 21.25 | 13.30 | 5.90 | 51.30 | 45.14 | [169] | ||
Alkaline | 2.25% NaOH, 1 h, 150 °C | 16.67 | 12.07 | 13.30 | 4.73 | 51.30 | 28.80 | |||
Hydrothermal | H2O, 0.25 h | 16.67 | 16.29 | 13.30 | 2.03 | 51.30 | 12.35 | |||
Gilan | Alkaline + bleaching | 3% NaOH, pH = 12, 3 h, 80 °C bleaching 2.7% NaClO2, pH = 5, 1 h, 80 °C (×3) | 32.1 ± 2.0 | 70.8 ± 1.3 | 17.9 ± 2.4 | 8.6 ± 0.9 | 38.7 ± 1.1 | 11.5 ± 3.2 | [170] | |
Spain | Alkaline organosolv | 4% NaOH:EtOH (50:50), 1 h, 135 °C | 24.2 ± 0.1 | 29.3 ± 0.5 | 23.2 ± 0.1 | 19.3 ± 0.8 | 39.7 ± 0.61 | 42.6 ± 3.5 | [171] | |
Hydrothermal + alkaline organosolv | 15 min, 60 °C to 210 °C 4% NaOH:EtOH (50:50), 1 h, 135 °C | 24.2 ± 0.1 | 42.8 ± 0.7 | 23.2 ± 0.1 | 3.6 ± 0.1 | 39.7 ± 0.61 | 48.9 ± 2.5 | |||
Acid organosolv | H2SO4:EtOH (60:40), 1 h, 180 °C | 24.2 ± 0.1 | 54.0 ± 1.2 | 23.2 ± 0.1 | 11.9 ± 0.9 | 39.7 ± 0.61 | 29.6 ± 0.7 | |||
Hydrothermal + acid organosolv | 15 min, 60 °C to 210 °C H2SO4:EtOH (60:40), 1 h, 180 °C | 24.2 ± 0.1 | 55.4 ± 1.9 | 23.2 ± 0.1 | 1.7 ± 0.3 | 39.7 ± 0.61 | 40.5 ± 1.2 | |||
Macadamia | Yunnan | DESs + bleaching | ChCl:OA (1:1), 2 h, 110 °C bleaching 10% NaClO2, 2 h, 80 °C | 28.25 ± 1.02 | not reported | 16.74 ± 0.61 | not reported | 34.11 ± 1.15 | not reported | [152] |
Yunnan | DESs + bleaching | K2CO3:glycerol (1:7), 2 h, 110 °C bleaching 10% NaClO2, 2 h, 80 °C | 28.25 ± 1.02 | not reported | 16.74 ± 0.61 | not reported | 34.11 ± 1.15 | not reported | ||
Beaumont | Dilute acid | 0.1 M HCl, 3 h | 34.48 | 29.54 | 21.48 | 24.31 | 11.91 | 31.90 | [19] | |
Alkaline | 0.1 M NaOH, 3 h | 34.48 | 40.64 | 21.48 | 17.47 | 11.91 | 31.68 | |||
NSW | Ionic liquids | [Emim][OAc], 18 h, 110 °C | not reported | not reported | not reported | not reported | 35.50 | 29.20 | [172] | |
Peanut | China | Alkaline + bleaching | 2% NaOH, 24 h bleaching 8% H2O2, 8 h, 50 °C bleaching 2% NaClO2, 4 h, 75 °C | 45.3 ± 1.5 | 79.7 ± 0.7 | 8.84 ± 1.2 | 12.3 ± 0.8 | 30.3 ± 0.61 | 4.2 ± 0.3 | [140] |
Jiangsu | DESs + derived lignin phenol | ChCl:guaiacol (1:1), 3 h, 120 °C | 36.39 ± 0.71 | 37.47 ± 1.00 | 15.64 ± 0.50 | 15.28 ± 0.77 | 25.01 ± 0.94 | 23.30 ± 0.17 | [173] | |
DESs + derived lignin phenol | ChCl:guaiacol:AlCl3 (1:1:0.01), 3 h, 120 °C | 36.39 ± 0.71 | 49.03 ± 0.78 | 15.64 ± 0.50 | 8.57 ± 0.88 | 25.01 ± 0.94 | 17.80 ± 0.11 | |||
DESs + derived lignin phenol | ChCl:guaiacol:AlCl3 (1:1:0.07), 3 h, 120 °C | 36.39 ± 0.71 | 59.49 ± 0.78 | 15.64 ± 0.50 | 1.98 ± 0.11 | 25.01 ± 0.94 | 12.86 ± 0.44 | |||
Pistachio | Fandoghi | Alkaline + bleaching | 2% NaOH, 4 h, 100 °C bleaching 1.7% NaClO2, 6 h, 80 °C | 38.1 ± 1.9 | 71.3 ± 3.4 | 31.4 ± 2.7 | 17.0 ± 3.4 | 23.6 ± 3.0 | 8.2 ± 1.5 | [174] |
Turkey | Microwave alkali | 1.96 N NaOH, 2.63 min, 142 °C, 224 W | 25.15 ± 0.88 | 40.40 | 35.04 ± 1.12 | 31.31 | 25.95 ± 1.30 | 26.86 | [141] | |
Commercial | Organosolv | EtOH:H2O (65:35), 0.05 M MgSO4 | 57.54 | 64.98 | 10.73 | 10.96 | 29.11 | 19.67 | [175] | |
Organosolv + bleaching | EtOH:H2O (65:35), 0.05 M MgSO4 NaOH 1:10, pH = 12, 1 h, 98 °C | 57.54 | 85.39 | 10.73 | 10.53 | 29.11 | 3.37 | |||
Organosolv + bleaching | EtOH:H2O (65:35), 0.05 M MgSO4 NaOH1:10, pH = 12, 1 h, 98 °C 3 M H2O2, pH = 11, NaOH/ Mg(OH)2 (3:1), 5 mmol GLDA, 2 h, 98 °C | 57.54 | 87.38 | 10.73 | 12.62 | 29.11 | 0 | |||
Kerman | Microwave organosolv | 67% EtOH, 0.5 h, 150 °C | 31.2 ± 2.2 | 88.8 ± 3.2 | 31.3 ± 1.3 | 4 | 21.2 ± 1.5 | 5 ± 2 | [151] | |
Walnut | India | Microwave + bleaching | 5 min, 525 W (×5) 5% H2O2, 0.5 h, 70 °C | 42.36 ± 2.11 | 79.24 ± 2.51 | 10.26 ± 1.16 | 0.28 ± 0.10 | 27.19 ± 2.43 | 6.18 ± 1.24 | [176] |
Henan | DESs | ChCl:TsOH:EG (1:1:1), 2 h, 110 °C | 33.35 ± 0.83 | 83.54 ± 0.72 | 22.90 ± 0.66 | 3.83 ± 0.36 | 38.56 ± 0.63 | 9.38 ± 0.35 | [154] | |
ChCl:LA:EG (1:1:1), 4 h, 120 °C | 33.35 ± 0.83 | 47.87 ± 1.02 | 22.90 ± 0.66 | 13.02 ± 1.03 | 38.56 ± 0.63 | 33.34 ± 0.64 | ||||
ChCl:OA:EG (1:1:1), 4 h, 120 °C | 33.35 ± 0.83 | 60.51 ± 0.94 | 22.90 ± 0.66 | 9.54 ± 0.41 | 38.56 ± 0.63 | 26.23 ± 1.22 | ||||
ChCl:CA:EG (1:1:1), 4 h, 120 °C | 33.35 ± 0.83 | 44.68 ± 1.80 | 22.90 ± 0.66 | 15.48 ± 1.32 | 38.56 ± 0.63 | 36.20 ± 1.15 | ||||
Gipuzkoa | Organosolv | EtOH:H2O (70:30), 90 min, 200 °C (×3) | 18.75 | 39.3 ± 1.21 | 27.65 | 16.17 ± 0.44 | 33.25 | 23.59 ± 0.16 | [177] | |
Organosolv + hydrothermal | EtOH:H2O (70:30), 90 min, 200 °C (×3) 210 °C | 18.75 | 48.32 ± 0.39 | 27.65 | 5.41 ± 0.58 | 33.25 | 23.02 ± 2.71 | |||
China | DESs | ChCl:TsOH:EG (1:1:2), 2.5 h, 90 °C | 32.87 ± 0.95 | 74.79 ± 1.58 | 22.53 ± 0.76 | 4.76 ± 0.72 | 38.56 ± 0.69 | 12.88 ± 0.83 | [178] | |
Shanxi | Alkaline | 2 wt% NaOH, 4 h, 100 °C (×4) | 27.4 | 56.6 | 31.3 | 7.6 | 36.31 | 30.98 | [179] | |
Alkaline + bleaching | 2 wt% NaOH, 4 h, 100 °C (×4) bleaching 1.7 wt% NaClO2, 6 h, 80 °C | 27.4 | 87.9 | 31.3 | 1.8 | 36.31 | 0.17 | [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Están, A.; Umaña, M.; Eim, V.S.; Clemente, G.; Simal, S. Conventional and Novel Strategies for Cellulose Isolation from Nut Shells: A Review. Molecules 2025, 30, 2486. https://doi.org/10.3390/molecules30122486
Están A, Umaña M, Eim VS, Clemente G, Simal S. Conventional and Novel Strategies for Cellulose Isolation from Nut Shells: A Review. Molecules. 2025; 30(12):2486. https://doi.org/10.3390/molecules30122486
Chicago/Turabian StyleEstán, Andrea, Mónica Umaña, Valeria S. Eim, Gabriela Clemente, and Susana Simal. 2025. "Conventional and Novel Strategies for Cellulose Isolation from Nut Shells: A Review" Molecules 30, no. 12: 2486. https://doi.org/10.3390/molecules30122486
APA StyleEstán, A., Umaña, M., Eim, V. S., Clemente, G., & Simal, S. (2025). Conventional and Novel Strategies for Cellulose Isolation from Nut Shells: A Review. Molecules, 30(12), 2486. https://doi.org/10.3390/molecules30122486