Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,612)

Search Parameters:
Keywords = life prediction models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 (registering DOI) - 1 Aug 2025
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

24 pages, 3366 KiB  
Article
Real-Time Integrative Mapping of the Phenology and Climatic Suitability for the Spotted Lanternfly, Lycorma delicatula
by Brittany S. Barker, Jules Beyer and Leonard Coop
Insects 2025, 16(8), 790; https://doi.org/10.3390/insects16080790 (registering DOI) - 31 Jul 2025
Abstract
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The [...] Read more.
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The model was designed for use in the Degree-Day, Establishment Risk, and Phenological Event Maps (DDRP) platform, which is an open-source decision support tool to help to detect, monitor, and manage invasive threats. We validated the model using presence records and phenological observations derived from monitoring studies and the iNaturalist database. The model performed well, with more than >99.9% of the presence records included in the potential distribution for North America, a large proportion of the iNaturalist observations correctly predicted, and a low error rate for dates of the first appearance of adults. Cold and heat stresses were insufficient to exclude the SLF from most areas of the conterminous United States (CONUS), but an inability for the pest to complete its life cycle in cold areas may hinder establishment. The appearance of adults occurred several months earlier in warmer regions of North America and Europe, which suggests that host plants in these areas may experience stronger feeding pressure. The near-real-time forecasts produced by the model are available at USPest.org and the USA National Phenology Network to support decision making for the CONUS. Forecasts of egg hatch and the appearance of adults are particularly relevant for surveillance to prevent new establishments and for managing existing populations. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

25 pages, 2982 KiB  
Review
Residual Stresses in Metal Manufacturing: A Bibliometric Review
by Diego Vergara, Pablo Fernández-Arias, Edwan Anderson Ariza-Echeverri and Antonio del Bosque
Materials 2025, 18(15), 3612; https://doi.org/10.3390/ma18153612 (registering DOI) - 31 Jul 2025
Abstract
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 [...] Read more.
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 to 2024. Residual stress research in metal manufacturing has gained prominence, particularly in relation to welding, additive manufacturing, and machining—processes that induce significant stress gradients affecting mechanical behavior and service life. Emerging trends focus on simulation-based prediction methods, such as the finite element method, heat treatment optimization, and stress-induced defect prevention. Key thematic clusters include process-induced microstructural changes, mechanical property enhancement, and the integration of modeling with experimental validation. By analyzing the evolution of research output, global collaboration networks, and process-specific contributions, this review provides a comprehensive overview of current challenges and identifies strategic directions for future research in residual stress management in advanced metal manufacturing. Full article
Show Figures

Figure 1

21 pages, 2245 KiB  
Article
Extraction of Corrosion Damage Features of Serviced Cable Based on Three-Dimensional Point Cloud Technology
by Tong Zhu, Shoushan Cheng, Haifang He, Kun Feng and Jinran Zhu
Materials 2025, 18(15), 3611; https://doi.org/10.3390/ma18153611 (registering DOI) - 31 Jul 2025
Abstract
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using [...] Read more.
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using three-dimensional point cloud data obtained through 3D surface scanning. The Otsu method was applied for image binarization, and each corrosion pit was geometrically represented as an ellipse. Key pit parameters—including length, width, depth, aspect ratio, and a defect parameter—were statistically analyzed. Results of the Kolmogorov–Smirnov (K–S) test at a 95% confidence level indicated that the directional angle component (θ) did not conform to any known probability distribution. In contrast, the pit width (b) and defect parameter (Φ) followed a generalized extreme value distribution, the aspect ratio (b/a) matched a Beta distribution, and both the pit length (a) and depth (d) were best described by a Gaussian mixture model. The obtained results provide valuable reference for assessing the stress state, in-service performance, and predicted remaining service life of operational stay cables. Full article
(This article belongs to the Section Construction and Building Materials)
20 pages, 2619 KiB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 (registering DOI) - 31 Jul 2025
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

24 pages, 4217 KiB  
Article
Contact Load Measurement and Validation for Tapered Rollers in Wind Turbine Main Bearing
by Zhenggang Guo, Jingqi Yu, Wanxiu Hao and Yuming Niu
Sensors 2025, 25(15), 4726; https://doi.org/10.3390/s25154726 (registering DOI) - 31 Jul 2025
Abstract
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain [...] Read more.
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain measurement, bore-to-measurement-point sensitivity analysis was optimized. Multiple structurally optimized sensor brackets were designed to enhance strain measurement sensitivity, and their performance was comparatively evaluated via simulation. To mitigate sensitivity fluctuations caused by roller rotation phase variations, a strain–phase–load calculation method incorporating real-time phase compensation was developed and verified through simulation analysis. A dedicated roller contact load testing system was constructed and experimental validation was conducted. Results demonstrate 95% accuracy in contact load acquisition. This method accurately obtains roller contact loads in wind turbine main bearings, proving crucial for studying bearing mechanical behavior, predicting fatigue life, optimizing structural design, and enhancing reliability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

16 pages, 832 KiB  
Article
Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems
by Jevgenijs Telicko, Andris Krumins and Agris Nikitenko
Buildings 2025, 15(15), 2702; https://doi.org/10.3390/buildings15152702 (registering DOI) - 31 Jul 2025
Abstract
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of [...] Read more.
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of numerous actuators and monitoring points makes manually designed control algorithms potentially suboptimal due to the complexity and human factors. To address this challenge, model predictive control based on artificial neural networks can be employed. The advantage of this approach lies in the model’s ability to learn and understand the dynamic behavior of the building from monitoring datasets. It should be noted that the effectiveness of such control models is directly dependent on the forecasting accuracy of the neural networks. In this study, we adapt neural network architectures such as GRU and TCN for use in the context of building model predictive control. Furthermore, we propose a novel hybrid architecture that combines the strengths of recurrent and convolutional neural networks. These architectures were compared using real monitoring data collected with a custom-developed device introduced in this work. The results indicate that, under the given experimental conditions, the proposed hybrid architecture outperforms both GRU and TCN models, particularly when processing large sequential input vectors. Full article
Show Figures

Figure 1

18 pages, 1863 KiB  
Article
A Daily Accumulation Model for Predicting PFOS Residues in Beef Cattle Muscle After Oral Exposure
by Ian Edhlund, Lynn Post and Sara Sklenka
Toxics 2025, 13(8), 649; https://doi.org/10.3390/toxics13080649 (registering DOI) - 31 Jul 2025
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a relatively long half-life, has been associated with adverse health effects in humans and laboratory animals. There are few toxicokinetic studies on PFOS in domestic livestock raised for human food consumption, which are critical for assessing human food safety. This work aimed to develop a simple daily accumulation model (DAM) for predicting PFOS residues in edible beef cattle muscle. A one-compartment toxicokinetic model in a spreadsheet format was developed using simple calculations to account for daily PFAS into and out of the animal. The DAM was used to simulate two case studies to predict resultant PFOS residues in edible beef cattle tissues. The results demonstrated that the model can reasonably predict PFOS concentrations in beef cattle muscle in a real-world scenario. The DAM was then used to simulate dietary PFOS exposure in beef cattle throughout a typical lifespan in order to derive a generic bioaccumulation factor. The DAM is expected to work well for other PFAS in beef cattle, PFAS in other livestock species raised for meat, and other chemical contaminants with relatively long half-lives. Full article
Show Figures

Figure 1

25 pages, 12805 KiB  
Article
Efficient Probabilistic Modelling of Corrosion Initiation in RC Structures Considering Non-Diffusive Barriers and Censored Data
by Guilherme Henrique Rossi Vieira, Ritermayer Monteiro Teixeira, Leila Cristina Meneghetti and Sandoval José Rodrigues Júnior
Buildings 2025, 15(15), 2690; https://doi.org/10.3390/buildings15152690 - 30 Jul 2025
Abstract
This article presents a probabilistic methodology for assessing corrosion initiation in reinforced concrete structures exposed to chloride ingress. The approach addresses key limitations of conventional analytical models by accounting for non-diffusive barriers and incorporating a rigorous statistical treatment of censored data to mitigate [...] Read more.
This article presents a probabilistic methodology for assessing corrosion initiation in reinforced concrete structures exposed to chloride ingress. The approach addresses key limitations of conventional analytical models by accounting for non-diffusive barriers and incorporating a rigorous statistical treatment of censored data to mitigate biases introduced by limited simulation durations. A combination of analytical solutions for diffusion from opposite sides with time-dependent boundary conditions is also proposed and validated. The probabilistic study includes the depassivation assessment of a hollow pier section. The blocking effect caused by rebars is statistically characterised through correction factors derived from finite element simulations. These factors are used to adjust analytical solutions, which are computationally inexpensive. Results show that neglecting the rebar blocking effect can overestimate the mean corrosion initiation time by up to 42%, while the use of censored data reduces bias in lifetime estimates. The observed frequency of censored events reached up to 20% when simulations were truncated at 100 years. The corrected analytical models closely match the finite element results, statistically validating their application. The case study indicates premature corrosion initiation (less than 10 years to achieve target reliability), underscoring the need to better reconcile the desired levels of reliability with realistic input parameters for depassivation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 919 KiB  
Article
Timing of Intervals Between Utterances in Typically Developing Infants and Infants Later Diagnosed with Autism Spectrum Disorder
by Zahra Poursoroush, Gordon Ramsay, Ching-Chi Yang, Eugene H. Buder, Edina R. Bene, Pumpki Lei Su, Hyunjoo Yoo, Helen L. Long, Cheryl Klaiman, Moira L. Pileggi, Natalie Brane and D. Kimbrough Oller
Brain Sci. 2025, 15(8), 819; https://doi.org/10.3390/brainsci15080819 (registering DOI) - 30 Jul 2025
Abstract
Background: Understanding the origin and natural organization of early infant vocalizations is important for predicting communication and language abilities in later years. The very frequent production of speech-like vocalizations (hereafter “protophones”), occurring largely independently of interaction, is part of this developmental process. Objectives: [...] Read more.
Background: Understanding the origin and natural organization of early infant vocalizations is important for predicting communication and language abilities in later years. The very frequent production of speech-like vocalizations (hereafter “protophones”), occurring largely independently of interaction, is part of this developmental process. Objectives: This study aims to investigate the gap durations (time intervals) between protophones, comparing typically developing (TD) infants and infants later diagnosed with autism spectrum disorder (ASD) in a naturalistic setting where endogenous protophones occur frequently. Additionally, we explore potential age-related variations and sex differences in gap durations. Methods: We analyzed ~1500 five min recording segments from longitudinal all-day home recordings of 147 infants (103 TD infants and 44 autistic infants) during their first year of life. The data included over 90,000 infant protophones. Human coding was employed to ensure maximally accurate timing data. This method included the human judgment of gap durations specified based on time-domain and spectrographic displays. Results and Conclusions: Short gap durations occurred between protophones produced by infants, with a mode between 301 and 400 ms, roughly the length of an infant syllable, across all diagnoses, sex, and age groups. However, we found significant differences in the gap duration distributions between ASD and TD groups when infant-directed speech (IDS) was relatively frequent, as well as across age groups and sexes. The Generalized Linear Modeling (GLM) results confirmed these findings and revealed longer gap durations associated with higher IDS, female sex, older age, and TD diagnosis. Age-related differences and sex differences were highly significant for both diagnosis groups. Full article
Show Figures

Figure 1

14 pages, 5172 KiB  
Article
Sustainable Metal Recovery from Photovoltaic Waste: A Nitric Acid-Free Leaching Approach Using Sulfuric Acid and Ferric Sulfate
by Payam Ghorbanpour, Pietro Romano, Hossein Shalchian, Francesco Vegliò and Nicolò Maria Ippolito
Minerals 2025, 15(8), 806; https://doi.org/10.3390/min15080806 - 30 Jul 2025
Abstract
In recent years, recovering precious and base metals such as silver and copper from end-of-life products has become a fundamental factor in the sustainable development of many countries. This not only supports environmental goals but is also a profitable economic activity. Therefore, in [...] Read more.
In recent years, recovering precious and base metals such as silver and copper from end-of-life products has become a fundamental factor in the sustainable development of many countries. This not only supports environmental goals but is also a profitable economic activity. Therefore, in this study, we investigate the recovery of silver and copper from an end-of-life photovoltaic panel powder using an alternative leaching system containing sulfuric acid and ferric sulfate instead of nitric acid-based leaching systems, which are susceptible to producing hazardous gases such as NOx. To obtain this goal, a series of experiments were designed with the Central Composite Design (CCD) approach using Response Surface Methodology (RSM) to evaluate the effect of reagent concentrations on the leaching rate. The leaching results showed that high recovery rates of silver (>85%) and copper (>96%) were achieved at room temperature using a solution containing only 0.2 M sulfuric acid and 0.15 M ferric sulfate. Analysis of variance was applied to the leaching data for silver and copper recovery, resulting in two statistical models that predict the leaching efficiency based on reagent concentrations. Results indicate that the models are statistically significant due to their high R2 (0.9988 and 0.9911 for Ag and Cu, respectively) and the low p-value of 0.0043 and 0.0003 for Ag and Cu, respectively. The models were optimized to maximize the dissolution of silver and copper using Design Expert software. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

20 pages, 5568 KiB  
Article
Dynamic Wear Modeling and Experimental Verification of Guide Cone in Passive Compliant Connectors Based on the Archard Model
by Yuanping He, Bowen Wang, Feifei Zhao, Xingfu Hong, Liang Fang, Weihao Xu, Ming Liao and Fujing Tian
Polymers 2025, 17(15), 2091; https://doi.org/10.3390/polym17152091 - 30 Jul 2025
Abstract
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element [...] Read more.
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element simulation, and experimental validation, we establish a bidirectional coupling framework analyzing dynamic contact mechanics and wear evolution. By developing phased contact state identification criteria and geometric constraints, a transient load calculation model is established, revealing dynamic load characteristics with peak contact forces reaching 206.34 N. A dynamic contact stress integration algorithm is proposed by combining Archard’s theory with ABAQUS finite element simulation and ALE adaptive meshing technology, enabling real-time iterative updates of wear morphology and contact stress. This approach constructs an exponential model correlating cumulative wear depth with docking cycles (R2 = 0.997). Prototype experiments demonstrate a mean absolute percentage error (MAPE) of 14.6% between simulated and measured wear depths, confirming model validity. With a critical wear threshold of 0.8 mm, the predicted service life reaches 45,270 cycles, meeting 50-year operational requirements (safety margin: 50.9%). This research provides theoretical frameworks and engineering guidelines for wear-resistant design, material selection, and life evaluation in high-reliability automatic docking systems. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 4016 KiB  
Article
Long Short-Term Memory Mixture Density Network for Remaining Useful Life Prediction of IGBTs
by Yarens J. Cruz, Fernando Castaño and Rodolfo E. Haber
Technologies 2025, 13(8), 321; https://doi.org/10.3390/technologies13080321 - 30 Jul 2025
Abstract
A reliable prediction of the remaining useful life of critical electronic components, such as insulated gate bipolar transistors, is necessary for preventing failures in many industrial applications. Recently, diverse machine-learning techniques have been used for this task. However, they are generally focused on [...] Read more.
A reliable prediction of the remaining useful life of critical electronic components, such as insulated gate bipolar transistors, is necessary for preventing failures in many industrial applications. Recently, diverse machine-learning techniques have been used for this task. However, they are generally focused on capturing the temporal dependencies or on representing the probabilistic nature of the degradation of the device. This work proposes a neural network architecture that combines long short-term memory and mixture density networks to address both targets simultaneously when modeling the remaining useful life. The proposed model was trained and evaluated using a real dataset of insulated gate bipolar transistors, demonstrating a high capacity for predicting the remaining useful life of the validation devices. The proposed model outperformed the other algorithms considered in the study in terms of root mean squared error and coefficient of determination. In general terms, an average reduction of at least 18% of the root mean squared error was obtained when compared with the second-best model among those considered in this work, but in some specific cases, the root mean squared error during the prediction of remaining useful life decreased up to 21%. In addition to the high performance obtained, the characteristics of the network output also facilitated the creation of confidence intervals, which are more informative than solely exact values for decision-making. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

27 pages, 10182 KiB  
Article
Storage Life Prediction of High-Voltage Diodes Based on Improved Artificial Bee Colony Algorithm Optimized LSTM-Transformer Framework
by Zhongtian Liu, Shaohua Yang and Bin Suo
Electronics 2025, 14(15), 3030; https://doi.org/10.3390/electronics14153030 - 30 Jul 2025
Abstract
High-voltage diodes, as key devices in power electronic systems, have important significance for system reliability and preventive maintenance in terms of storage life prediction. In this paper, we propose a hybrid modeling framework that integrates the Long Short-Term Memory Network (LSTM) and Transformer [...] Read more.
High-voltage diodes, as key devices in power electronic systems, have important significance for system reliability and preventive maintenance in terms of storage life prediction. In this paper, we propose a hybrid modeling framework that integrates the Long Short-Term Memory Network (LSTM) and Transformer structure, and is hyper-parameter optimized by the Improved Artificial Bee Colony Algorithm (IABC), aiming to realize the high-precision modeling and prediction of high-voltage diode storage life. The framework combines the advantages of LSTM in time-dependent modeling with the global feature extraction capability of Transformer’s self-attention mechanism, and improves the feature learning effect under small-sample conditions through a deep fusion strategy. Meanwhile, the parameter type-aware IABC search mechanism is introduced to efficiently optimize the model hyperparameters. The experimental results show that, compared with the unoptimized model, the average mean square error (MSE) of the proposed model is reduced by 33.7% (from 0.00574 to 0.00402) and the coefficient of determination (R2) is improved by 3.6% (from 0.892 to 0.924) in 10-fold cross-validation. The average predicted lifetime of the sample was 39,403.3 h, and the mean relative uncertainty of prediction was 12.57%. This study provides an efficient tool for power electronics reliability engineering and has important applications for smart grid and new energy system health management. Full article
Show Figures

Figure 1

22 pages, 16421 KiB  
Article
Deep Neural Network with Anomaly Detection for Single-Cycle Battery Lifetime Prediction
by Junghwan Lee, Longda Wang, Hoseok Jung, Bukyu Lim, Dael Kim, Jiaxin Liu and Jong Lim
Batteries 2025, 11(8), 288; https://doi.org/10.3390/batteries11080288 - 30 Jul 2025
Abstract
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially [...] Read more.
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially introduce biases into training and evaluation pipelines. This study presents a deep learning framework that integrates autoencoder-based anomaly detection with a residual neural network (ResNet) to achieve state-of-the-art prediction of remaining useful life at the cycle level using only a single-cycle input. The framework systematically filters out anomalous samples using multiple variants of convolutional and sequence-to-sequence autoencoders, thereby enhancing data integrity before optimizing and training the ResNet-based models. Benchmarking against existing deep learning approaches demonstrates a significant performance improvement, with the best model achieving a mean absolute percentage error of 2.85% and a root mean square error of 40.87 cycles, surpassing prior studies. These results indicate that autoencoder-based anomaly filtering significantly enhances prediction accuracy, reinforcing the importance of systematic anomaly detection in battery prognostics. The proposed method provides a scalable and interpretable solution for intelligent battery management in electric vehicles and energy storage systems. Full article
(This article belongs to the Special Issue Machine Learning for Advanced Battery Systems)
Show Figures

Figure 1

Back to TopTop