Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (517)

Search Parameters:
Keywords = life cycle GHG emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1895 KiB  
Article
How Does Sharing Economy Advance Sustainable Production and Consumption? Evidence from the Policies and Business Practices of Dockless Bike Sharing
by Shouheng Sun, Yiran Wang, Dafei Yang and Qi Wu
Sustainability 2025, 17(15), 7053; https://doi.org/10.3390/su17157053 - 4 Aug 2025
Viewed by 64
Abstract
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It [...] Read more.
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It also dynamically quantifies the environmental and economic performance of DBS practices from a life cycle perspective. The findings indicate that effective SPC practices can be achieved through the collaborative efforts of multiple stakeholders, including the government, operators, manufacturers, consumers, recycling agencies, and other business partners, supported by regulatory systems and advanced technologies. The SPC practices markedly improved the sustainability of DBS promotion in Beijing. This is evidenced by the increase in greenhouse gas (GHG) emission reduction benefits, which have risen from approximately 35.81 g CO2-eq to 124.40 g CO2-eq per kilometer of DBS travel. Considering changes in private bicycle ownership, this value could reach approximately 150.60 g CO2-eq. Although the economic performance of DBS operators has also improved, it remains challenging to achieve profitability, even when considering the economic value of the emission reduction benefits. In certain scenarios, DBS can maximize profits by optimizing fleet size and efficiency, without compromising the benefits of emission reductions. The framework of stakeholder interaction proposed in this study and the results of empirical analysis not only assist regulators, businesses, and the public in better understanding and promoting sustainable production and consumption practices in the sharing economy but also provide valuable insights for achieving a win-win situation of platform profitability and environmental benefits in the SPC practice process. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 190
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

29 pages, 1079 KiB  
Article
Electricity-Related Emissions Factors in Carbon Footprinting—The Case of Poland
by Anna Lewandowska, Katarzyna Joachimiak-Lechman, Jolanta Baran and Joanna Kulczycka
Energies 2025, 18(15), 4092; https://doi.org/10.3390/en18154092 - 1 Aug 2025
Viewed by 158
Abstract
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess [...] Read more.
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess their strengths and weaknesses in the context of the calculation requirements of carbon footprint analysis in accordance with the GHG Protocol. The article presents the results of carbon footprint calculations for different ranges of emissions in the life cycle of 1 kWh of electricity delivered to a hypothetical organization. Next, a discussion on the quality of the emissions factors has been provided, taking account of data quality indicators. It was concluded that two of the emissions factors that are compared—those based on the national consumption mix and the residual mix for Poland—have been recognized as suitable for use in carbon footprint calculations. Beyond the calculation results, the research highlights the significance of the impact of the selection of emissions factors on the reliability of environmental analysis. The article identifies methodological challenges, including the risk of double counting, limited transparency, methodological inconsistency, and low correlation of data with specific locations and technologies. The insights presented contribute to improving the robustness of carbon footprint calculations. Full article
Show Figures

Figure 1

25 pages, 3891 KiB  
Review
The Carbon Footprint of Milk Production on a Farm
by Mariusz Jerzy Stolarski, Kazimierz Warmiński, Michał Krzyżaniak, Ewelina Olba-Zięty and Paweł Dudziec
Appl. Sci. 2025, 15(15), 8446; https://doi.org/10.3390/app15158446 - 30 Jul 2025
Viewed by 314
Abstract
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the [...] Read more.
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the farm level, with a particular focus on technological, environmental and organisational factors affecting emission levels. The analysis is based on a review of, inter alia, 46 peer-reviewed publications and 11 environmental reports, legal acts and databases concerning the CF in different regions and under various production systems. This study identifies the main sources of emissions, including enteric fermentation, manure management, and the production and use of feed and fertiliser. It also demonstrates the significant variability of the CF values, which range, on average, from 0.78 to 3.20 kg CO2 eq kg−1 of milk, determined by the farm scale, nutritional strategies, local environmental and economic determinants, and the methodology applied. Moreover, this study stresses that higher production efficiency and integrated farm management could reduce the CF per milk unit, with further intensification having, however, diminishing effects. The application of life cycle assessment (LCA) methods is essential for a reliable assessment and comparison of the CF between systems. Ultimately, an effective CF reduction requires a comprehensive approach that combines improved nutritional practices, efficient use of resources, and implementation of technological innovations adjusted to regional and farm-specific determinants. The solutions presented in this paper may serve as guidelines for practitioners and decision-makers with regard to reducing GHG emissions. Full article
(This article belongs to the Special Issue Environmental Management in Milk Production and Processing)
Show Figures

Figure 1

15 pages, 993 KiB  
Review
Energy Footprint of Cheese: A Critical Review of the Environmental Impact and Opportunities for Sustainability
by Karina S. Silvério, Daniela Freitas and João M. Dias
Appl. Sci. 2025, 15(14), 8072; https://doi.org/10.3390/app15148072 - 20 Jul 2025
Viewed by 517
Abstract
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the [...] Read more.
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the European Union (EU). Each cheese has various biochemical compositions, production methods, and maturation environments. This study has provided a critical review of the environmental impacts of cheese production, focusing on energy consumption, greenhouse gas (GHG) emissions, and the integration of renewable energy sources as sustainable strategies for this sector. Based on case studies and life cycle assessment (LCA) methodologies, the analysis revealed significant variability in energy use (3.0 to 70.2 MJ/kg) and GHG emissions (up to 22.13 kg CO2 eq/kg), influenced by factors such as the cheese type, production complexity, system boundaries, and the technological or geographical context. Particular attention was given to heat treatment, refrigeration, and maturation processes, which contribute substantially to the overall energy footprint. The paper also discusses the methodological challenges in LCA studies, including the role of co-product allocation and database limitations. Finally, strategic renewable energy options, such as biogas recovery and solar thermal integration, are discussed as sustainable alternatives to reduce the environmental footprint of the dairy sector and support its sustainability. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

18 pages, 2344 KiB  
Article
Life Cycle Assessment of Key Mediterranean Agricultural Products at the Farm Level Using GHG Measurements
by Georgios Bartzas, Maria Doula and Konstantinos Komnitsas
Agriculture 2025, 15(14), 1494; https://doi.org/10.3390/agriculture15141494 - 11 Jul 2025
Viewed by 266
Abstract
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes [...] Read more.
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes using GHG measurements at four pilot fields located in different regions of Greece. With the use of a cradle-to-gate approach six environmental impact categories, more specifically acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation potential (POCP), and cumulative energy demand (CED) as energy-based indicator are assessed. The functional unit used is 1 ha of cultivated land. Any potential carbon offsets from mitigation practices are assessed through an integrated low-carbon certification framework and the use of innovative, site-specific technologies. In this context, the present study evaluates three life cycle inventory (LCI)-based scenarios: Baseline (BS), which represents a 3-year crop production period; Field-based (FS), which includes on-site CO2 and CH4 measurements to assess the effects of mitigation practices; and Inventoried (IS), which relies on comprehensive datasets. The adoption of carbon mitigation practices under the FS scenario resulted in considerable reductions in environmental impacts for all pilot fields assessed, with average improvements of 8% for olive, 5.7% for sweet potato, 4.5% for corn, and 6.5% for grape production compared to the BS scenario. The uncertainty analysis indicates that among the LCI-based scenarios evaluated, the IS scenario exhibits the lowest variability, with coefficient of variation (CV) values ranging from 0.5% to 7.3%. In contrast, the FS scenario shows slightly higher uncertainty, with CVs reaching up to 15.7% for AP and 14.7% for EP impact categories in corn production. The incorporation of on-site GHG measurements improves the precision of environmental performance and supports the development of site-specific LCI data. This benchmark study has a noticeable transferability potential and contributes to the adoption of sustainable practices in other regions with similar characteristics. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 291
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

17 pages, 784 KiB  
Article
A Survey-Based Emission Inventory of Greenhouse Gases Released from Rice Production on Consolidated Land in the Red River Delta of Vietnam
by Dinh Thi Hai Van, Nguyen Thi Kim Oanh and Nguyen Thi Bich Yen
Atmosphere 2025, 16(7), 794; https://doi.org/10.3390/atmos16070794 - 30 Jun 2025
Viewed by 463
Abstract
In this study, relevant rice cultivation data were collected through a local survey, and the life cycle assessment (LCA) method was employed to quantify greenhouse gas (GHG) emissions from rice production on consolidated land in the Red River Delta (RRD). Systematic sampling was [...] Read more.
In this study, relevant rice cultivation data were collected through a local survey, and the life cycle assessment (LCA) method was employed to quantify greenhouse gas (GHG) emissions from rice production on consolidated land in the Red River Delta (RRD). Systematic sampling was used in face-to-face interviews with 45 rice farming households in a representative commune of Hai Duong province. Specific GHG emissions were significantly higher in the summer crop (averaged at 11.4 t CO2-eq/ha or 2.2 t CO2-eq/t grain) than in the spring crop (6.8 t CO2-eq/ha or 1.2 t CO2-eq/t grain). Methane was a dominant GHG emitted from paddy fields, contributing 84% of the total emissions of CO2-eq in the summer crop and 73% in the spring crop. Fertilizer use and N2O emissions accounted for 9% of emissions in the summer crop and 16% in the spring crop. Energy consumption for machinery and irrigation added a further 4% and 8%, respectively. Annually, as of 2023, the rice production activities in the RRD release 7.3 Tg of CO2-eq (100 years), a significant contribution to the national GHG emissions. GHG emissions under alternative scenarios of rice straw management were assessed. This study highlights the role of land consolidation in improving water management, which contributes to lowering emissions. Based on the findings, several mitigation measures could be identified, including improved irrigation practices, optimized fertilizer use, and the promotion of sustainable rice straw management practices. Full article
Show Figures

Figure 1

15 pages, 15667 KiB  
Article
Novel Tools for Analyzing Life Cycle Energy Use, Carbon Emissions, and Cost of Additive Manufacturing
by Christopher Price, Kristina Armstrong, Dipti Kamath, Sachin Nimbalkar and Joseph Cresko
J. Manuf. Mater. Process. 2025, 9(7), 214; https://doi.org/10.3390/jmmp9070214 - 25 Jun 2025
Viewed by 604
Abstract
Decarbonizing industrial manufacturing is a significant challenge in the effort to limit the impacts of global climate change. Additive manufacturing (AM) is one pathway for reducing the impacts of manufacturing as it creates parts layer-by-layer rather than by removing (i.e., subtracting) material from [...] Read more.
Decarbonizing industrial manufacturing is a significant challenge in the effort to limit the impacts of global climate change. Additive manufacturing (AM) is one pathway for reducing the impacts of manufacturing as it creates parts layer-by-layer rather than by removing (i.e., subtracting) material from solid stock as with conventional techniques. This reduces material inputs and generates less waste, which can substantially lower life cycle energy consumption and greenhouse gas emissions. However, AM adoption in the manufacturing sector has been slow, partly due to challenges in making a strong business case compared with more traditional and widely available techniques. This paper highlights the need for the development of simple screening analysis tools to speed the adoption of AM in the manufacturing sector by providing decision-makers easy access to important production life cycle emissions, and cost information. Details on the development of two Microsoft Excel software tools are provided: upgrades to an existing tool on the energy and carbon impacts of AM and a new tool for analyzing the major cost components of AM. A case study applies these two tools to the production of a lightweight aerospace bracket, showing how the tools can be used to estimate the environmental benefits and production costs of AM. Full article
Show Figures

Graphical abstract

25 pages, 1652 KiB  
Review
Review of the Role of Heat Pumps in Decarbonization of the Building Sector
by Agnieszka Żelazna and Artur Pawłowski
Energies 2025, 18(13), 3255; https://doi.org/10.3390/en18133255 - 21 Jun 2025
Viewed by 602
Abstract
The transition to low-carbon heating systems is fundamental to achieving climate neutrality, particularly within the building sector, which accounts for a significant share of global greenhouse gas emissions. Among various technologies, heat pumps have emerged as a leading solution due to their high [...] Read more.
The transition to low-carbon heating systems is fundamental to achieving climate neutrality, particularly within the building sector, which accounts for a significant share of global greenhouse gas emissions. Among various technologies, heat pumps have emerged as a leading solution due to their high energy efficiency and potential to significantly reduce CO2 emissions, especially when powered by renewable electricity. This systematic review synthesizes findings from the recent literature, including peer-reviewed studies and industry reports, to evaluate the technical performance, environmental impact, and deployment potential of air source, ground source, and water source heat pumps. This review also investigates life cycle greenhouse gas emissions, the influence of geographical energy mix diversity, and the integration of heat pumps within hybrid and district heating systems. Results indicate that hybrid HP systems achieve the lowest specific GHG emissions (0.108 kgCO2eq/kWh of heat delivered on average), followed by WSHPs (0.018 to 0.216 kgCO2eq/kWh), GSHPs (0.050–0.211 kgCO2eq/kWh), and ASHPs (0.083–0.216 kgCO2eq/kWh). HP systems show a potential GHG emission reduction of up to 90%, depending on the kind of technology and energy mix. Despite higher investment costs, the lower environmental footprint of GSHPs and WSHPs makes them attractive options for decarbonizing the building sector due to better performance resulting from more stable thermal input and higher SCOP. The integration of heat pumps with thermal storage, renewable energy, and smart control technologies further enhances their efficiency and climate benefits, regardless of the challenges facing their market potential. This review concludes that heat pumps, particularly in hybrid configurations, are a cornerstone technology for sustainable building heat supply and energy transition. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

25 pages, 1588 KiB  
Article
Reducing the Environmental Footprint of Urban Housing in Sub-Saharan Africa: A Case Study of Cameroon
by Modeste Kameni Nematchoua and Mbani Menguissa Andre Marie
Buildings 2025, 15(12), 2141; https://doi.org/10.3390/buildings15122141 - 19 Jun 2025
Viewed by 411
Abstract
This study presents a comprehensive Life Cycle Assessment (LCA) of the NENGOUE residence, a multi-occupancy building located in Yaoundé, Cameroon, over an 80-year lifespan. The analysis encompasses four life cycle phases—construction, use, renovation, and deconstruction—and evaluates twelve environmental impact categories. The results reveal [...] Read more.
This study presents a comprehensive Life Cycle Assessment (LCA) of the NENGOUE residence, a multi-occupancy building located in Yaoundé, Cameroon, over an 80-year lifespan. The analysis encompasses four life cycle phases—construction, use, renovation, and deconstruction—and evaluates twelve environmental impact categories. The results reveal that the use phase contributes overwhelmingly to environmental burdens, accounting for over 96% of total impacts. To mitigate this dominance, two alternative scenarios were assessed: a sustainable transport model and the integration of a photovoltaic system. In the first scenario, environmentally friendly commuting strategies, such as increased walking, cycling, and public transport, led to a 17.10% reduction in greenhouse gas (GHG) emissions. In the second, rooftop photovoltaics offset 69.29% of the building’s electricity needs, resulting in a 26.72% GHG reduction. A third, combined scenario demonstrated the highest environmental gains, achieving a 42.97% reduction in GHG emissions, alongside substantial improvements across other impact categories, including acidification (−38.4%), cumulative energy demand (−28.3%), and photochemical ozone formation (−40.18%). In addition to the environmental benefits, the study highlights the importance of considering social acceptance, behavioral change, and economic feasibility for real-world implementation. The willingness of residents to adopt sustainable mobility practices, cultural preferences, safety concerns, and the initial cost barriers associated with photovoltaic technology are identified as critical factors. These findings underscore the need for integrated strategies that combine technological innovation with inclusive urban planning and stakeholder engagement. The proposed approach demonstrates that aligning environmental measures with local socio-economic realities can significantly enhance the sustainability of residential buildings, contributing meaningfully to climate change mitigation in Sub-Saharan African cities. Full article
Show Figures

Figure 1

21 pages, 1037 KiB  
Systematic Review
Evaluating the Sustainability of the Natural Gas-Based Methanol-to-Gasoline Industry: A Global Systematic Review
by Hussein Al-Yafei, Saleh Aseel and Ali Ansaruddin Kunju
Sustainability 2025, 17(12), 5355; https://doi.org/10.3390/su17125355 - 10 Jun 2025
Viewed by 917
Abstract
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing [...] Read more.
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing environmental concerns and the demand for cleaner fuels. This review’s rationale is to assess MTG’s ability to lessen environmental impact while preserving compatibility with current fuel infrastructure. The goal is to examine methanol and gasoline’s effects on the environment, society, and economy throughout their life cycles. This review used a two-phase systematic literature review methodology, filtering and evaluating studies that were indexed by Scopus using bibliometric and thematic analysis. A total of 25 documents were reviewed, in which 22 documents analyzed part of this study, and 68% employed LCA or techno-economic analysis, with the U.S. contributing 35% of the overall publications. A comparative analysis of the reviewed literature indicates that methanol-based fuels offer significantly lower greenhouse gas (GHG) emissions and life cycle environmental impacts than gasoline, particularly when combined with carbon capture and renewable feedstocks. This review also highlights benefits, such as improved safety and energy security, while acknowledging challenges, including high production costs, infrastructure adaptation, and toxicity concerns. Several drawbacks are high manufacturing costs, the necessity to adjust infrastructure, and toxicity issues. The report suggests investing in renewable methanol production, AI-driven process optimization, and robust legislative frameworks for integrating green fuels. The life cycle sustainability assessment (LCSA) of NGTM and MTG systems should be investigated in future studies, particularly in light of different feedstock and regional circumstances. The findings emphasize NGTM and MTG’s strategic role in aligning with several UN Sustainable Development Goals (SDGs) and add to the worldwide conversation on sustainable fuels. A strong transition necessitates multi-stakeholder cooperation, innovation, and supporting policies to fully realize the sustainability promise of cleaner fuels like methanol. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 564 KiB  
Review
Simple Steps Towards Sustainability in Healthcare: A Narrative Review of Life Cycle Assessments of Single-Use Medical Devices (SUDs) and Third-Party SUD Reprocessing
by Cassandra L. Thiel, David Sheon and Daniel J. Vukelich
Sustainability 2025, 17(12), 5320; https://doi.org/10.3390/su17125320 - 9 Jun 2025
Viewed by 771
Abstract
This study reviews life cycle assessments (LCAs) of reprocessed single-use devices (rSUDs) in healthcare to quantify their greenhouse gas (GHG) emission reductions compared to original equipment manufacturer (OEM) SUDs (single-use devices). rSUDs offer notable reductions in solid waste generation, but, until recently, a [...] Read more.
This study reviews life cycle assessments (LCAs) of reprocessed single-use devices (rSUDs) in healthcare to quantify their greenhouse gas (GHG) emission reductions compared to original equipment manufacturer (OEM) SUDs (single-use devices). rSUDs offer notable reductions in solid waste generation, but, until recently, a reduction in greenhouse gases and other emissions from the reprocessing process was only hypothesized. Emerging LCAs in this space can help validate the assumptions of better environmental performance from greater circularity in the medical device industry. Four LCAs analyzing eight devices found consistent and significant GHG reductions ranging from 23% to 60% with rSUD use. Primary data from rSUD manufacturers were utilized in all studies, with SimaPro v9.3.0.2 and Ecoinvent v3.8 being the predominant LCA software and database. Raw material extraction and production dominated SUD emissions, while electricity use and packaging materials were key contributors for rSUDs. Sensitivity analyses highlighted the influence of electricity sources, collection rates, and reprocessing yields on rSUD environmental performance. A comparison with economic input–output-based models revealed an alignment at the time between price differentials and LCA-derived GHG differences, though this may not always hold true. This review demonstrates the substantial environmental benefits of rSUDs, supporting their role as a readily achievable step towards more sustainable and circular healthcare systems. Full article
Show Figures

Figure 1

20 pages, 520 KiB  
Review
Towards an Application of the Life Cycle Assessment Framework for GHG Emissions of the Dairy System: A Literature Review
by Fern T. Baker and Stephen Axon
Land 2025, 14(6), 1207; https://doi.org/10.3390/land14061207 - 4 Jun 2025
Cited by 1 | Viewed by 740
Abstract
Farm simulation models are a popular form of measuring greenhouse gas emissions (GHGe) from the agricultural industry as they are holistic and cost effective. The simulation models often follow the well-accepted life cycle assessment (LCA) framework to estimate the GHGe from the complete [...] Read more.
Farm simulation models are a popular form of measuring greenhouse gas emissions (GHGe) from the agricultural industry as they are holistic and cost effective. The simulation models often follow the well-accepted life cycle assessment (LCA) framework to estimate the GHGe from the complete system from cradle to farm-gate. However, several studies have highlighted flaws in the methodology and accuracy of the application of the LCA tool, underestimating emissions based on the scope of the study. GHGe vary considerably across livestock species, with cattle contributing to the highest proportion, from dairy and beef production. An extensive literature review evaluating the application of the LCA tool for measuring and comparing dairy farm GHGe has not been conducted. The current review evaluates the literature on LCAs of the dairy system across the globe, to highlight the flaws in poor scope design, the potential to underestimate emissions, and significant trade-offs disregarding vital variables. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

16 pages, 1970 KiB  
Article
Extraction of Rare Earth Elements from Idaho-Sourced Soil Through Phytomining: A Case Study in Central Idaho, USA
by Kathryn Richardson, Amin Mirkouei, Kasia Duellman, Anthony Aylward, David Zirker, Eliezer Schwarz and Ying Sun
Sustainability 2025, 17(11), 5118; https://doi.org/10.3390/su17115118 - 3 Jun 2025
Cited by 2 | Viewed by 901
Abstract
Environmentally friendly and low-emission extraction methods are needed to meet worldwide rare earth element (REE) demand. Within a greenhouse setting, this study aims to investigate the REE hyperaccumulation ability of four plant species (e.g., Phalaris arundinacea, Solanum nigrum, Phytolacca americana, [...] Read more.
Environmentally friendly and low-emission extraction methods are needed to meet worldwide rare earth element (REE) demand. Within a greenhouse setting, this study aims to investigate the REE hyperaccumulation ability of four plant species (e.g., Phalaris arundinacea, Solanum nigrum, Phytolacca americana, and Brassica juncea) and the impact of amending REE-rich soil with biochar or fertilizer and watering with citric acid solution. Harvested samples were pyrolyzed, and the resulting bio-ores were acid-digested and underwent elemental analysis to determine REE content. Amending soil with fertilizer and biochar increased bio-ore production, while plant species explained the most variation in bioaccumulation factor. The results indicate that Phalaris arundinacea achieved the highest average REE concentration of 27,940 µg/g for the targeted REEs (comprising cerium, lanthanum, neodymium, praseodymium, and yttrium) and 37,844 µg/g for total REEs. It is also found that soil amendment and plant species are critical parameters in the design and implementation of Idaho-based REE phytomining operations. The life cycle assessment study estimated that the electricity demand of the greenhouse contributed the most to GHG emissions during the greenhouse study. Within the field study, electricity demand of the pyrolysis reactor was determined to be the largest producer of GHGs. The techno-economic analysis estimated that the total cost of growing P. arundinacea for six weeks on a one-acre field area is USD 6213, including 39%, 22%, 21%, and 18% of that cost derived from cultivation, biomass processing, soil treatment with fertilizer, and pyrolysis, respectively. It is concluded that the proposed low-emission extraction pathway, which combines phytomining, drying, and pyrolysis, is a promising sustainable approach for REE extraction, especially from REE-rich soil sourced in Idaho. Full article
Show Figures

Graphical abstract

Back to TopTop