Towards an Application of the Life Cycle Assessment Framework for GHG Emissions of the Dairy System: A Literature Review
Abstract
1. Introduction
2. Methodology
3. Contextualising GHG Emissions of Dairy Production Management Systems and Farm Simulation Models
4. Life Cycle Assessment, Inherent Weaknesses, and Improving Accuracy
5. Existing Whole Farm Simulation Models
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Rotz, C.A.; Stout, R.C.; Holly, M.A.; Kleinman, P.J.A. Regional environmental assessment of dairy farms. J. Dairy Sci. 2020, 103, 3275–3288. [Google Scholar] [CrossRef] [PubMed]
- ISO 14040:2006(en); Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en (accessed on 13 October 2020).
- Vibart, R.; de Klein, C.; Jonker, A.; van der Weerden, T.; Bannink, A.; Bayat, A.R.; Crompton, L.; Durand, A.; Eugène, M.; Klumpp, K.; et al. Challenges and opportunities to capture dietary effects in on-farm greenhouse gas emissions models of ruminant systems. Sci. Total Environ. 2021, 769, 144989. [Google Scholar] [CrossRef] [PubMed]
- Tarighaleslami, A.H.; Ghannadzadeh, A.; Atkins, M.J.; Walmsley, M.R.W. Environmental life cycle assessment for a cheese production plant towards sustainable energy transition: Natural gas to biomass vs. natural gas to geothermal. J. Clean. Prod. 2020, 275, 122999. [Google Scholar] [CrossRef]
- Wang, L.; Setoguchi, A.; Oishi, K.; Sonoda, Y.; Kumagai, H.; Irbis, C.; Inamura, T.; Hirooka, H. Life cycle assessment of 36 dairy farms with by-product feeding in Southwestern China. Sci. Total Environ. 2019, 696, 133985. [Google Scholar] [CrossRef]
- Ibidhi, R.; Calsamiglia, S. Carbon footprint assessment of spanish dairy cattle farms: Effectiveness of dietary and farm management practices as a mitigation strategy. Animals 2020, 10, 2083. [Google Scholar] [CrossRef]
- Byrne, J. Improving the peer review of narrative literature reviews. Res. Integr. Peer Rev. 2016, 1, 12. [Google Scholar] [CrossRef]
- Wakefield, A.; Axon, S. Scaling the food mountain: Implications for addressing the determinants of consumer food waste practices. Sustainability 2024, 16, 9409. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Evans, D.; Kowanko, I. Literature reviews: Evolution of a research methodology. Aust. J. Adv. Nurs. 2000, 18, 33–38. [Google Scholar]
- Lorenz, H.; Reinsch, T.; Hess, S.; Taube, F. Is low-input dairy farming more climate friendly? A meta-analysis of the carbon footprints of different production systems. J. Clean. Prod. 2019, 211, 161–170. [Google Scholar] [CrossRef]
- Segerkvist, K.A.; Hansson, H.; Sonesson, U.; Gunnarsson, S. Research on Environmental, Economic, and Social Sustainability in Dairy Farming: A Systematic Mapping of Current Literature. Sustainability 2020, 12, 5502. [Google Scholar] [CrossRef]
- Caffrey, K.R.; Veal, M.W. Conducting an agricultural life cycle assessment: Challenges and perspectives. Sci. World J. 2013, 2013, 472431. [Google Scholar] [CrossRef] [PubMed]
- Lovendahl, P.; Difford, G.F.; Li, B.; Chagunda, M.G.G.; Huhtanen, P.; Lidauer, M.H.; Lassen, J.; Lund, P. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 2018, 12, s336–s349. [Google Scholar] [CrossRef] [PubMed]
- Drews, J.; Czycholl, I.; Krieter, J. A life cycle assessment study of dairy farms in northern Germany: The influence of performance parameters on environmental efficiency. J. Environ. Manag. 2020, 273, 111127. [Google Scholar] [CrossRef]
- Mostert, P.F.; van Middelaar, C.E.; Bokkers, E.A.M.; de Boer, I.J.M. The impact of subclinical ketosis in dairy cows on greenhouse gas emissions of milk production. J. Clean. Prod. 2018, 171, 773–782. [Google Scholar] [CrossRef]
- Mostert, P.F.; Bokkers, E.A.M.; de Boer, I.J.M.; van Middelaar, C.E. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic stochastic simulation model: A case study. Animal 2019, 13, 2913–2921. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Mc Geough, E.J.; Little, S.M.; Janzen, H.H.; McAllister, T.A.; McGinn, S.M.; Beauchemin, K.A. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study. J. Dairy Sci. 2012, 95, 5164–5175. [Google Scholar] [CrossRef]
- van Middelaar, C.E.; Berentsen, P.B.M.; Dijkstra, J.; van Arendonk, J.A.M.; de Boer, I.J.M. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain. J. Dairy Sci. 2015, 98, 4889–4903. [Google Scholar] [CrossRef]
- O’Brien, D.; Geoghegan, A.; McNamara, K.; Shalloo, L. How can grass-based dairy farmers reduce the carbon footprint of milk? Anim. Prod. Sci. 2016, 56, 495–500. [Google Scholar] [CrossRef]
- Sorley, M.; Casey, I.; Styles, D.; Merino, P.; Trindade, H.; Mulholland, M.; Resch Zafra, C.; Keatinge, R.; le Gall, A.; O’Brien, D.; et al. Factors influencing the carbon footprint of milk production on dairy farms with different feeding strategies in western Europe. J. Clean. Prod. 2024, 435, 140104. [Google Scholar] [CrossRef]
- Soteriades, A.D.; Gonzalez-Mejia, A.M.; Styles, D.; Foskolos, A.; Moorby, J.M.; Gibbons, J.M. Effects of high-sugar grasses and improved manure management on the environmental footprint of milk production at the farm level. J. Clean. Prod. 2018, 202, 1241–1252. [Google Scholar] [CrossRef]
- IPCC. CH4 and N2O Emissions from Livestock Manure. 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/4_2_CH4_and_N2O_Livestock_Manure.pdf (accessed on 14 February 2022).
- Owen, J.J.; Silver, W.L. Greenhouse gas emissions from dairy manure management: A review of field-based studies. Glob. Change Biol. 2015, 21, 550–565. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Clean. Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- FAO. Global Livestock Environmental Assessment Model (GLEAM). 2020. Available online: https://www.fao.org/gleam/results (accessed on 20 December 2020).
- Liu, L.; Zheng, X.; Wei, X.; Kai, Z.; Xu, Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Evans, L.; VanderZaag, A.C.; Sokolov, V.; Baldé, H.; MacDonald, D.; Wagner-Riddle, C.; Gordon, R. Ammonia emissions from the field application of liquid dairy manure after anaerobic digestion or mechanical separation in Ontario, Canada. Agric. For. Meteorol. 2018, 258, 89–95. [Google Scholar] [CrossRef]
- DEFRA. Environmental Improvement Plan 2023; Defra—Department for Environment Food and Rural Affairs: London, UK, 2023. [Google Scholar]
- DEFRA. Greenhouse Gas Mitigation Practices-Farm Practices Survey England 2021; Defra—Department for Environment Food and Rural Affairs: London, UK, 2021. Available online: https://www.gov.uk/government/statistics/farm-practices-survey-february-2021-greenhouse-gas-mitigation-practices (accessed on 14 February 2022).
- Vetter, S.H.; Malin, D.; Smith, P.; Hillier, J. The potential to reduce GHG emissions in egg production using a GHG calculator—A Cool Farm Tool case study. J. Clean. Prod. 2018, 202, 1068–1076. [Google Scholar] [CrossRef]
- Food Standards Agency. Pesticides in Food. 2021. Available online: https://www.food.gov.uk/business-guidance/pesticides-in-food (accessed on 3 March 2023).
- Hansen, T.L.; Li, M.; Li, J.; Vankerhove, C.J.; Sotirova, M.A.; Tricarico, J.M.; Cabrera, V.E.; Kebreab, E.; Reed, K.F. The ruminant farm systems animal module: A biophysical description of animal management. Animals 2021, 11, 1373. [Google Scholar] [CrossRef]
- Jia, Z.Q.; Zhang, Y.C.; Huang, Q.T.; Jones, A.K.; Han, Z.J.; Zhao, C.Q. Acute toxicity, bioconcentration, elimination, action mode and detoxification metabolism of broflanilide in zebrafish, Danio rerio. J. Hazard. Mater. 2020, 394, 122521. [Google Scholar] [CrossRef]
- Straw, E.A.; Brown, M.J.F. Co-formulant in a commercial fungicide product causes lethal and sub-lethal effects in bumble bees. Sci. Rep. 2021, 11, 21653. [Google Scholar] [CrossRef]
- Rotz, C.A.; Holly, M.; de Long, A.; Egan, F.; Kleinman, P.J.A. An environmental assessment of grass-based dairy production in the northeastern United States. Agric. Syst. 2020, 184, 102887. [Google Scholar] [CrossRef]
- Üçtuğ, F.G. The Environmental Life Cycle Assessment of Dairy Products. Food Eng. Rev. 2019, 11, 104–121. [Google Scholar] [CrossRef]
- DEFRA. Agri-Climate Report 2021—GOV.UK. 2021. Available online: https://www.gov.uk/government/statistics/agri-climate-report-2021/agri-climate-report-2021 (accessed on 14 February 2022).
- Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.J.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Anim. Feed. Sci. Technol. 2011, 166–167, 29–45. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Olesen, J.E.; del Prado, A.; Soussana, J.F. A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livest. Sci. 2007, 112, 240–251. [Google Scholar] [CrossRef]
- Schils, R.L.M.; De Haan, M.H.A.; Hemmer, J.G.A.; Van den Pol-van Dasselaar, A.; De Boer, J.A.; Evers, A.G.; Holshof, G.; Van Middelkoop, J.C.; Zom, R.L.G. DairyWise, a Whole-Farm Dairy Model. J. Dairy Sci. 2007, 90, 5334–5346. [Google Scholar] [CrossRef]
- Kiefer, L.; Menzel, F.; Bahrs, E. The effect of feed demand on greenhouse gas emissions and farm profitability for organic and conventional dairy farms. J. Dairy Sci. 2014, 97, 7564–7574. [Google Scholar] [CrossRef]
- O’Brien, D.; Shalloo, L.; Grainger, C.; Buckley, F.; Horan, B.; Wallace, M. The influence of strain of Holstein-Friesian cow and feeding system on greenhouse gas emissions from pastoral dairy farms. J. Dairy Sci. 2010, 93, 3390–3402. [Google Scholar] [CrossRef]
- Little, S.M.; Benchaar, C.; Janzen, H.H.; Kröbel, R.; McGeough, E.J.; Beauchemin, K.A. Demonstrating the Effect of Forage Source on the Carbon Footprint of a Canadian Dairy Farm Using Whole-Systems Analysis and the Holos Model: Alfalfa Silage vs. Corn Silage. Climate 2017, 5, 87. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Ouatahar, L.; Bannink, A.; Lanigan, G.; Amon, B. Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems. Sci. Total Environ. 2021, 776, 145932. [Google Scholar] [CrossRef]
- Caro, D. Carbon Footprint. Encycl. Ecol. 2019, 4, 252–257. [Google Scholar] [CrossRef]
- Gilardino, A.; Quispe, I.; Pacheco, M.; Bartl, K. Comparison of different methods for consideration of multifunctionality of Peruvian dairy cattle in Life Cycle Assessment. Livest. Sci. 2020, 240, 104151. [Google Scholar] [CrossRef]
- Komínková, D. Environmental Impact Assessment and Application—Part 1. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- McClelland, S.C.; Arndt, C.; Gordon, D.R.; Thoma, G. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review. Livest. Sci. 2018, 209, 39–45. [Google Scholar] [CrossRef]
- Paramesh, V.; Parajuli, R.; Chakurkar, E.B.; Sreekanth, G.B.; Kumar, H.B.C.; Gokuldas, P.P.; Mahajan, G.R.; Manohara, K.K.; Viswanatha, R.K.; Ravisankar, N. Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India. Energy 2019, 188, 116101. [Google Scholar] [CrossRef]
- FAO. GLEAM, a Comprehensive Life Cycle Assessment of Livestock Sector’s Environmental Impacts. 2015. Available online: http://www.fao.org/ag/againfo/home/en/news_archive/2015_GLEAM_environmental_impacts.html (accessed on 20 December 2020).
- Curran, M.A. Life-cycle assessment. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 359–366. [Google Scholar] [CrossRef]
- Leip, A.; Uwizeye, A. Nitrogen Footprints. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 370–382. [Google Scholar] [CrossRef]
- Weiss, F.; Leip, A. Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model. Agric. Ecosyst. Environ. 2012, 149, 124–134. [Google Scholar] [CrossRef]
- Beukes, P.C.; Gregorini, P.; Romera, A.J.; Levy, G.; Waghorn, G.C. Improving production efficiency as a strategy to mitigate greenhouse gas emissions on pastoral dairy farms in New Zealand. Agric. Ecosyst. Environ. 2010, 136, 358–365. [Google Scholar] [CrossRef]
- Mogensen, L.; Kristensen, T.; Nguyen, T.L.T.; Knudsen, M.T.; Hermansen, J.E. Method for calculating carbon footprint of cattle feeds—Including contribution from soil carbon changes and use of cattle manure. J. Clean. Prod. 2014, 73, 40–51. [Google Scholar] [CrossRef]
- Park, Y.S.; Lee, K.M.; Yang, S.H. Life Cycle Assessment of the Domestic Dairy Cow System. J. Korean Soc. Environ. Eng. 2015, 37, 52–59. [Google Scholar] [CrossRef]
- 60. Experts in Sustainable Forest & Agricultural Advice (EFECA). Prepared for the UK Roundtable on Sustainable Soya. 2019. Available online: https://www.efeca.com/wp-content/uploads/2019/12/UK-RT-on-Sustainable-Soya-APR-2019-final.pdf (accessed on 16 May 2024).
- Bertrand, S.; Barnett, J. Standard method for determining the carbon footprint of dairy products reduces confusion. Anim. Front. 2011, 1, 14–18. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Ruviaro, C.F.; de Leis, C.M.; Florindo, T.J.; de Medeiros Florindo, G.I.B.; da Costa, J.S.; Tang, W.Z.; Pinto, A.T.; Soares, S.R. Life cycle cost analysis of dairy production systems in Southern Brazil. Sci. Total Environ. 2020, 741, 140273. [Google Scholar] [CrossRef] [PubMed]
- Jayasundara, S.; Worden, D.; Weersink, A.; Wright, T.; VanderZaag, A.; Gordon, R.; Wagner-Riddle, C. Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy production systems. J. Clean. Prod. 2019, 229, 1018–1028. [Google Scholar] [CrossRef]
- Parajuli, R.; Dalgaard, T.; Birkved, M. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Sci. Total Environ. 2018, 619–620, 127–143. [Google Scholar] [CrossRef] [PubMed]
- Jose, V.S.; Sejian, V.; Bagath, M.; Ratnakaran, A.P.; Lees, A.M.; Al-Hosni, Y.A.S.; Sullivan, M.; Bhatta, R.; Gaughan, J.B. Modeling of Greenhouse Gas Emission from Livestock. Front. Environ. Sci. 2016, 4, 191545. [Google Scholar] [CrossRef]
- IPCC. Chapter 10 Emissions from Livestock and Manure Management. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 14 February 2022).
- Bannink, A.; Zom, R.L.G.; Groenestein, K.C.; Dijkstra, J.; Sebek, L.B.J. Applying a mechanistic fermentation and digestion model for dairy cows with emission and nutrient cycling inventory and accounting methodology. Animal 2020, 14, s406–s416. [Google Scholar] [CrossRef]
- Olesen, J.E.; Schelde, K.; Ministry of Food, Agriculture and Fisheries Internal Report. FarmGHG A Model for Estimating Greenhouse Gas Emissions from Livestock. 2004. Available online: https://pure.au.dk/portal/da/publications/farmghg-users-manual-a-model-for-estimating-greenhouse-gas-emissi (accessed on 21 March 2021).
- Olesen, J.E.; Schelde, K.; Weiske, A.; Weisberg, M.R.; Asman, W.A.H.; Djurhuus, J. Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agric. Ecosyst. Environ. 2006, 112, 207–220. [Google Scholar] [CrossRef]
- del Prado, A.; Misselbrook, T.; Chadwick, D.; Hopkins, A.; Dewhurst, R.J.; Davison, P.; Butler, A.; Schröder, J.; Scholefield, D. SIMSDAIRY: A modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimisation. Sci. Total Environ. 2011, 409, 3993–4009. [Google Scholar] [CrossRef]
- Rotz, A.C.; Chianwaw, D.S.; Montes, F.; Hafner, S.; Bonifacio, H.F. Dairy Gas Emissions Model (DairyGEM), Reference Manual. 2015. Available online: https://www.agmrv.org/knowledge-portal/resources/the-dairy-gas-emissions-model-dairygem/ (accessed on 5 May 2021).
- Beukes, P.C.; Gregorini, P.; Romera, A.J. Estimating greenhouse gas emissions from New Zealand dairy systems using a mechanistic whole farm model and inventory methodology. Anim. Feed. Sci. Technol. 2011, 166–167, 708–720. [Google Scholar] [CrossRef]
- Dijkstra, J.; Bannink, A.; Bosma, P.M.; Lantinga, E.A.; Reijs, J.W. Modeling the Effect of Nutritional Strategies for Dairy Cows on the Composition of Excreta Nitrogen. Front. Sustain. Food Syst. 2018, 2, 63. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Volden, H.; Åkerlind, M.; Brask, M.; Hellwing, A.L.F.; Storlien, T.; Bertilsson, J. A prediction equation for enteric methane emission from dairy cows for use in NorFor. Acta Agric. Scand. A Anim. Sci. 2013, 63, 126–130. [Google Scholar] [CrossRef]
- The Primary Industries Climate Challenges Centre (PICCC). Tools Greenhouse Accounting Frameworks (GAF) for Australian Primary Industries. 2023. Available online: https://www.piccc.org.au/resources/Tools (accessed on 8 February 2023).
- Dairy Australia. Australian Dairy Carbon Calculator—DGAS. 2023. Available online: https://www.dairyaustralia.com.au/en/climate-and-environment/greenhouse-gas-emissions/australian-dairy-carbon-calculator (accessed on 8 February 2023).
- Bonesmo, H.; Beauchemin, K.A.; Harstad, O.M.; Skjelvåg, A.O. Greenhouse gas emission intensities of grass silage based dairy and beef production: A systems analysis of Norwegian farms. Livest. Sci. 2013, 152, 239–252. [Google Scholar] [CrossRef]
- Rotz, C.A.; Montes, F.; Hafner, S.D.; Heber, A.J.; Grant, R.H. Ammonia emission model for whole farm evaluation of dairy production systems. J. Environ. Qual. 2014, 43, 1143–1158. [Google Scholar] [CrossRef] [PubMed]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Coiner, C.U. The Integrated Farm System Model Reference Manual Version 4.7. 2022. Available online: https://www.researchgate.net/publication/242713478_THE_INTEGRATED_FARM_SYSTEM_MODEL (accessed on 6 April 2021).
- Ashfield, A.; Crosson, P.; Wallace, M. Simulation modelling of temperate grassland based dairy calf to beef production systems. Agric. Syst. 2013, 115, 41–50. [Google Scholar] [CrossRef]
- Foley, P.A.; Crosson, P.; Lovett, D.K.; Boland, T.M.; O’Mara, F.P.; Kenny, D.A. Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems. Agric. Ecosyst. Environ. 2011, 142, 222–230. [Google Scholar] [CrossRef]
- Danfær, A.; Huhtanen, P.; Udén, P.; Sveinbjornsson, J. The nordic dairy cow model, karoline—Description. In Nutrient Digestion and Utilization in Farm Animals: Modelling Approaches; CABI Publishing: Wallingford, UK, 2006; pp. 383–406. [Google Scholar] [CrossRef]
- Sise, J.A.; Kerslake, J.I.; Oliver, M.J.; Glennie, S.; Butler, D.; Behrent, M.; Fennessy, P.F.; Campbell, A.W. Development of a software model to estimate daily greenhouse gas emissions of pasture-fed ruminant farming systems. Anim. Prod. Sci. 2010, 51, 60–70. [Google Scholar] [CrossRef]
- Wheeler, D.M.; Ledgard, S.F.; DeKlein, C.A.M. Using the OVERSEER nutrient budget model to estimate on-farm greenhouse gas emissions. Aust. J. Exp. Agric. 2008, 48, 99–103. [Google Scholar] [CrossRef]
- Kesting, M.; Witzke, P. Methodology Underlying the CAPRI Model. 2021. Available online: https://climate.ec.europa.eu/system/files/2021-10/policy_strategies_analysis_models_capri_model_methodology_en.pdf (accessed on 21 March 2021).
- FarmAC. The FarmAC Model. 2023. Available online: https://www.farmac.dk/ (accessed on 27 January 2023).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. In Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; CABI Publishing: Wallingford, UK, 2013; Available online: https://www.fao.org/4/i3437e/i3437e.pdf (accessed on 28 February 2021).
- Küstermann, B.; Kainz, M.; Hülsbergen, K.J. Modeling carbon cycles and estimation of greenhouse gas emissions from organic and conventional farming systems. Renew. Agric. Food Syst. 2008, 23, 38–52. [Google Scholar] [CrossRef]
- Hillier, J.; Walter, C.; Malin, D.; Garcia-Suarez, T.; Mila-i-Canals, L.; Smith, P. A farm-focused calculator for emissions from crop and livestock production. Environ. Model. Softw. 2011, 26, 1070–1078. [Google Scholar] [CrossRef]
- Valio. Valio Introduces Valio Carbo® Farm Calculator—To Help Lower its Farmers’ CO2e Emissions by an Estimated 30% Within 5 Years. 2020. Available online: https://www.valio.com/news/valio-introduces-valio-carbo-farm-calculator---to-help-lower-its-farmers-co2e-emissions-by-an-estimated-30-within-5-years/ (accessed on 2 February 2023).
- Arla. How We Measure Dairy Farming’s Carbon Footprint. 2023. Available online: https://www.arla.com/sustainability/sustainable-dairy-farming/how-we-measure-dairy-farmings-carbon-footprint/#how-do-we-know-that-arla-farmers-are-among-the-most-climate-efficient-in-the-world (accessed on 8 February 2023).
- Eugène, M.; Sauvant, D.; Nozière, P.; Viallard, D.; Oueslati, K.; Lherm, M.; Mathias, E.; Doreau, M. A new Tier 3 method to calculate methane emission inventory for ruminants. J. Environ. Manag. 2019, 231, 982–988. [Google Scholar] [CrossRef]
- Gooday, R.D.; Anthony, S.G.; Durrant, C.; Harris, D.; Lee, D.; Metcalfe, P.; Newell-Proce, P.; Turner, A. Farmscoper Extension: Defra Project SCF0104. 2015. Available online: https://adas.co.uk/services/farmscoper/ (accessed on 2 March 2021).
- Agrecalc. How We Calculate Your Carbon Footprint: Our Modelling Methodology. 2025. Available online: https://www.agrecalc.com/home/about/information-on-ipcc-methodologies/ (accessed on 10 October 2020).
- Teagasc. Teagasc Climate Action Strategy—Sustainability Digital Platform. 2022. Available online: https://www.teagasc.ie/news--events/daily/environment/teagasc-climate-action-strategy---sustainability-digital-platform.php (accessed on 7 February 2023).
- Niu, M.; Kebreab, E.; Hristov, A.N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R.; Brito, A.F.; Boland, T.; Casper, D.; et al. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob. Change Biol. 2018, 24, 3368–3389. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Johnson, I.R.; Chapman, D.; Parsons, A.J.; Eckard, R. DairyMod: A Biophysical Simulation Model of the Australian Dairy System. 2003. Available online: https://www.researchgate.net/publication/259892592_DairyMod_a_biophysical_simulation_model_of_the_Australian_dairy_system (accessed on 30 June 2023).
- Cabrera, V.E.; Breuer, N.E.; Hildebrand, P.E.; Letson, D. The dynamic North Florida dairy farm model: A user-friendly computerized tool for increasing profits while minimizing N leaching under varying climatic conditions. Comput. Electron. Agric. 2005, 49, 286–308. [Google Scholar] [CrossRef]
- Finnegan, W.; Yan, M.; Holden, N.M.; Goggins, J. A review of environmental life cycle assessment studies examining cheese production. Int. J. Life Cycle Assess. 2018, 23, 1773–1787. [Google Scholar] [CrossRef]
- Lie, H.; Rich, K.M.; van der Hoek, R.; Dizyee, K. An empirical evaluation of policy options for inclusive dairy value chain development in Nicaragua: A system dynamics approach. Agric. Syst. 2018, 164, 193–222. [Google Scholar] [CrossRef]
- Teagasc. AgNav—A Sustainable Digital Platform to Support Farmers. 2023. Available online: https://www.teagasc.ie/news--events/news/2023/agnav--a-sustainable-dig.php (accessed on 9 September 2024).
- Today’s Farm. AgNav: A New Way to Measure. 2023. Available online: https://www.teagasc.ie/media/website/publications/2023/AgNav---A-new-way-to-measure-and-enhance-sustainability.pdf (accessed on 18 November 2024).
Model Name | Animal | CH4 | CO2 | N2O | CS | NH3 and NO3 | Economics | AW | Biodiversity | EME Measurement | Manure Measurement | Country | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DairyWise | Dairy | ✓ | ✓ | ✓ | ✓ | ✓ | CH4 EF × DMI (Schils et al., 2006) and updated [68] | Emission factor | Netherlands | Schils, De Haan et al. [42]; Bannink et al. [68] | |||
FarmGHG | Dairy | ✓ | ✓ | ✓ | ✓ | Kirchgessner et al. (1995) cited in [69,70] | IPCC Tier 2 | Europe | Olesen et al. [69,70] | ||||
SIMS Dairy | Dairy | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Giger-Reverdin et al. (2003) cited in [71] | IPCC and Chadwick and Pain (1997) and Yamulki et al. (1999) cited in [71] | UK | Del Prado et al. [71] | |
DairyGEM | Dairy | ✓ | ✓ | ✓ | ✓ | Mills (2003) cited in [72] | IPCC (2006) Tier 2 and Sommer (2004) cited in [72] | USA | Rotz et al. [72] | ||||
Holos | Dairy | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | IPCC | IPCC | Canada | Mc Geough et al. [19] | ||
WFM | Dairy | ✓ | H2 balance and VFA profile | Estimates OMD and N excretion, not N2O or CH4 from manure | New Zealand | Beukes et al. [57]; Beukes, Gregorini and Romera [73] | |||||||
The GHG model | Dairy | ✓ | ✓ | ✓ | ✓ | ✓ | (Mills et al., 2003; IPCC, 2006) cited in [21] | Emission factors | Ireland | O’Brien et al. [21] | |||
Dairy Tier 3 | Dairy | ✓ | ✓ | Rumen H2 based on VFA stoichiometry | IPCC Tier 2 | Netherlands | Bannink, van Schijndel and Dijkstra [68]; Dijkstra et al. [74] | ||||||
NorFor | Dairy | ✓ | ✓ | ✓ | ✓ | Nielsen et al. [75] | Sweden/Denmark | Nielsen et al. [75] | |||||
D-GAF | Dairy | ✓ | ✓ | ✓ | Livestock numbers, DMI, DM digestibility, milk metabolic rate increase, liveweight, liveweight gain and milk production | VS, DM digestibility, emission potential (0.24), ash content, methane conversion factor | Australia | The Primary Industries Climate Challenges Centre (PICCC) [76] | |||||
D-GAS | Dairy | ✓ | ✓ | ✓ | Based on DM, DM Digestibility and CP | Emissions factor | Australia | Dairy Australia [77] | |||||
HolosNor | Dairy and Beef | ✓ | ✓ | ✓ | ✓ | IPCC (2006) Tier 2 and digestibility of the diet [67] | IPCC (2006) [67] | Norway | Bonesmo et al. [78] | ||||
Integrated Farm System Model (IFSM) | Dairy and Beef | ✓ | ✓ | ✓ | ✓ | ✓ | Mills 2003 cited in [79,80] | IPCC 2006 Tier 2 [67] and Sommer (2004) cited in [79,80] | USA | Rotz et al. [79,80] | |||
FarmSim | Cattle | ✓ | ✓ | ✓ | ✓ | ✓ | IPCC Tier 1 and 2 | IPCC Tier 2 | France | Schils, Olesen et al. [41] | |||
Grange Dairy Beef Systems Model | Cattle | ✓ | ✓ | ✓ | ✓ | Based on real measurements | Ashfield, Crosson and Wallace [81] | ||||||
BEEFGEM | Beef | ✓ | ✓ | ✓ | ✓ | ✓ | IPCC (2006) [67] | Husted (1994), Chadwick (2000) and Oenema (1997) cited in [82] | Ireland | Foley et al. [82] | |||
Karoline | Beef | ✓ | Rumen H2, VFA stoichiometry, CH4 formation in hind gut | manure N and P output | Denmark/Sweden, and Finland | Danfær et al. [83] | |||||||
Hoofprint | Sheep and beef | ✓ | ✓ | ✓ | ✓ | ✓ | Energy intake × number of animals | Energy intake × number of animals | New Zealand | Sise et al. [84] | |||
OVERSEER | Ruminants | ✓ | ✓ | ✓ | NO3 | EF (21.6 g CH4 kg−1 DMI) × animal intake (IPCC, 2006) [67] | NZ inventory EF and IPCC Tier 2 [67] | New Zealand | Wheeler et al. [85] | ||||
CAPRI | Ruminants and non-ruminants | ✓ | ✓ | ✓ | Data Coefficients | EU | Kesting and Witzke [86] | ||||||
FarmAC | Ruminants and non-ruminants | ✓ | ✓ | ✓ | ✓ | ✓ | Not specified | Not specified | Denmark | FarmAC [87] | |||
GLEAM | Ruminants and non-ruminants | ✓ | ✓ | ✓ | IPCC Tier 2 [67] | IPCC Tier 2 [67] | - | Gerber et al. [88] | |||||
REPRO | Ruminants and non-ruminants | ✓ | ✓ | ✓ | Aim for future module | IPCC—conversion factors [67] | IPCC [67] | Germany | K✓stermann, Kainz and H✓lsbergen [89] | ||||
Cool Farm Tool | Various livestock | ✓ | ✓ | ✓ | ✓ | ✓ | IPCC and FCR | IPCC Tier 2 | - | Hillier et al. [90] | |||
Valio Carbo® Farm calculator | Various livestock | ✓ | ✓ | ✓ | ✓ | (Ramin and Huhtanen, 2013) cited in [91] | Sommer et al. (2004), (Elsgaad (2016), Petersen (2016), IPCC (2006) [67] and (Gronroos et al. 2017) cited in [91] | Finland | Valio [91] | ||||
INRA method | Various livestock | Sauvant and Nozière (2016) cited in [92] | IPCC Tier 2 [67] and Eugene 2019 [93] | France | Eugène et al. [93] | ||||||||
GAS-EM | Various livestock | ✓ | ✓ | ✓ | Kirchgessner et al. (1994) cited in [3] | IPCC Tier 2 [67] | Germany | Vibart et al. [3] | |||||
Arla Global Climate Check Carbon tool | Various livestock | ✓ | ✓ | IPCC 2006 [67] | IPCC 2006 [67] | Sweden/Denmark/Germany/UK | Vibart et al. [3]; Arla [92] | ||||||
Farmscoper | Various livestock | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | IPCC 1996 cited in [94] | IPCC Tier 2 (1996) cited in [94] | UK | Gooday et al. [94] | |
Agrecalc | Various livestock | ✓ | ✓ | ✓ | ✓ | ✓ | IPCC 2006 Tier 2 [67] | IPCC Tier 2 [67] | UK | Agrecalc [95] | |||
Sustainability Digital Platform—in development | Various livestock | ✓ | NUE | ✓ | ✓ | ✓ | - | - | - | Teagasc [96] | |||
The Ruminant Farm Systems Model (RuFaS) | Dairy | ✓ | ✓ | ✓ | ✓ | ✓ | Choice of three: (1) Niu et al. [97] (2) Mills et al., Mitsherlich Model 3 cited in [98], or (3) the IPCC Tier 2 model [67] | Based on animal and dietary characteristics and IPCC Tier 2 [67] | USA | Hansen et al. [98] | |||
DairyMod | Dairy | ✓ | Australia | Johnson et al. [99] | |||||||||
DyNoFlo | Dairy | ✓ | ✓ | Estimates manure N excretion using milk production from milking cows and book values for dry cows, heifers, and steers. | USA—Florida | Cabrera et al. [100] |
Limitation | Issue | Mitigation Measure | Outcomes | |
---|---|---|---|---|
Investigator guidance during scope design | Unholistic scope design | Can lead to trade-offs and negative impacts | Collaborating with key parties, e.g., ecologists, and the local community and engaging in knowledge exchange | Allows knowledge exchange between various parties to consider multiple aspects and limit possible trade-offs. |
Lacking comparability | Multiple units and insufficient information to compare management systems | Investigate the functional units to ensure the choice does not bias the result towards one system. Basing the unit on production efficiency. | A universal functional unit, to allow easy comparison between farms and outputs. Based on production efficiency to encourage high efficiency and large profits and a manageable level to calculate. | |
LCA length | lacks inclusion of all inputs, e.g., Imported feed | Length needs to ensure all emissions are included and total is not skewed or underestimating emissions. | If time-scale is an issue then a larger study should be planned with the aim of completion in the future to show a more holistic view. With the limitations of the current study clearly highlighted. | |
Bias towards environmental sustainability | LCAs of dairy farms often lack consideration for social and economic impacts, when economics can have a large influence on decision-making. | Consider sustainability holistically, by including social and economic impacts when possible to be more inclusive. | A holistically approach to ensure there are no-trade offs between environmental, economic and social sustainability, that would impact feasibility in real life. | |
Policy guidance | Lack of data | Can lead to the tweaking of boundaries, e.g., self-sufficiency and more generalised data. | DEFRA to provide anonymised country-specific data for researchers and to collaborate. Policymakers and Government to incentivise farmers to measure their environmental impact via farm calculator tools, implement a biodiversity management plan and encourage surveying the biodiversity of the farm. | A higher volume of farms measuring their emissions and biodiversity on-farm to collate large datasets for country-specific data. Baseline data for countries, farm types and sizes to have tailored data for specific farms. Overcoming the issues of the limitations of IPCC tier 1. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, F.T.; Axon, S. Towards an Application of the Life Cycle Assessment Framework for GHG Emissions of the Dairy System: A Literature Review. Land 2025, 14, 1207. https://doi.org/10.3390/land14061207
Baker FT, Axon S. Towards an Application of the Life Cycle Assessment Framework for GHG Emissions of the Dairy System: A Literature Review. Land. 2025; 14(6):1207. https://doi.org/10.3390/land14061207
Chicago/Turabian StyleBaker, Fern T., and Stephen Axon. 2025. "Towards an Application of the Life Cycle Assessment Framework for GHG Emissions of the Dairy System: A Literature Review" Land 14, no. 6: 1207. https://doi.org/10.3390/land14061207
APA StyleBaker, F. T., & Axon, S. (2025). Towards an Application of the Life Cycle Assessment Framework for GHG Emissions of the Dairy System: A Literature Review. Land, 14(6), 1207. https://doi.org/10.3390/land14061207